一种基于静电喷雾的纳米铝热剂的制备方法与流程

文档序号:19018795发布日期:2019-11-01 20:21阅读:506来源:国知局
一种基于静电喷雾的纳米铝热剂的制备方法与流程

本发明属于含能材料制备领域,具体为一种基于静电喷雾的纳米铝热剂的制备方法。



背景技术:

含能材料是高能量密度材料,是武器装备系统的能量供应的源头,能够为mems火工品,微卫星等提供高效的点火、起爆、传爆、驱动等动力。其中,纳米铝热剂是当今含能材料的研究热点。传统铝热反应是基于微米尺度的金属铝和金属氧化物的快速放热,反应组分之间传热传质距离大,能量释放不够充分。纳米铝热剂是指燃料和氧化剂两者至少有一种的尺度在纳米级。随着尺度的减小,增大了反应组分之间的接触面积,从而获得更大的传热传质效率。

静电喷雾法是利用电场对带电液滴的形变产生喷雾的过程。注射器内的前驱液推至喷口处,在高压电场作用下积累电荷,在电场力的作用下变形为圆锥状,形成射流,射流带正电荷,在电场力的驱动下向导电基底运动。运动过程中,由于同性相斥,射流颗粒间在排斥力的作用下分散成微小液滴,使得带电的组分微粒在向导电基底的运动过程中能够充分分散。

石墨烯(如氧化石墨烯、还原氧化石墨烯、硝化石墨烯等)自身能够发生歧化反应或者分解反应释放化学能,是一种潜在的含能材料。其中氧化石墨烯(go)是石墨经过化学剥离得到的产物。氧化石墨烯边缘缀有大量羧基官能团,表面缀有羟基、羰基等亲水性含氧基团,使得容易于其他含能材料复合,起到增强含能材料点火燃烧性能、调节感度等作用。特别是氧化石墨烯上的-oh和-cooh与纳米al粒子的分散液中的-oh反应,会脱水生成c-o-al共价键,使得纳米al粒子与go之间自组装成为可能。目前将铝热剂负载到氧化石墨烯的方法主要有机械混合法,表面改性自组装法。从负载效果来看,通过机械混合制备得到的样品,铝热剂在氧化石墨烯片层上负载率和分散性不好;通过表面修饰将氧化石墨烯进行改性,然后将铝热剂进行负载的方法由于引入了新的表面改性剂会影响氧化石墨烯的性能。



技术实现要素:

本发明的目的在于提供一种基于静电喷雾的纳米铝热剂的制备方法。

实现本发明目的的技术解决方案为:

一种基于静电喷雾的纳米铝热剂的制备方法,所述方法基于静电喷雾,采用纳米铝热剂氧化石墨烯前驱液为原材料,纳米铝热剂氧化石墨烯前驱液在高压电场中运动沉积在基底上。

进一步的,所述纳米铝热剂氧化石墨烯前驱液的制备方法如下:

步骤(1):配制两份含能材料溶液;

步骤(2):制备氧化石墨烯分散液:称取氧化石墨烯粉末放入步骤(1)中的其中一份含能材料溶液中,搅拌,得到氧化石墨烯分散液;

步骤(3):制备纳米铝热剂分散液:称取目标铝热剂放入步骤(1)中的另一份含能材料溶液中,搅拌,得到纳米铝热剂分散液;

步骤(4):制备纳米铝热剂氧化石墨烯前驱液:将步骤(3)所得纳米铝热剂分散液加入步骤(2)所得氧化石墨烯分散液中,搅拌,得到纳米铝热剂氧化石墨烯前驱液。

进一步的,所述步骤(1)具体为:分别称取两份含能材料加入溶剂中,放置于磁力搅拌机上搅拌0.5-1.5h至含能材料完全溶解。

进一步的,所述的含能材料是硝化棉、聚偏氟乙烯中的一种,所述的溶剂为乙醇和乙醚或dmf和丙酮,所述乙醇和乙醚的体积比为3:1,所述dmf和丙酮的体积比为7:3。

进一步的,所述步骤(2)中的搅拌为放置于磁力搅拌器上以300~700rpm的搅拌速度搅拌0.5-1h。

进一步的,所述步骤(3)中在搅拌之前还包括超声分散,所述超声分散具体为:在500w、40khz下超声0.5-1.5h打破颗粒间团聚;所述搅拌具体为:放置于磁力搅拌器上以600-800rpm的搅拌速度搅拌12-24h。

进一步的,所述步骤(4)中的搅拌具体为:放置于磁力搅拌器上以300~700rpm的搅拌速度搅拌10-20h。

进一步的,所述静电喷雾采用的装置包括:微注射泵,注射器,静电喷雾前驱液,高压电源,铝箔基底;

注射器吸取氧化石墨烯纳米铝热剂前驱液,放置于微注射泵上,铝箔基底接地,利用高压电源给注射器的针头处施加高压,开启微注射泵,注射器内分散液在高压静电场中运动,沉积于导电的铝箔基底上。

进一步的,所述步骤(2)中采用的氧化石墨烯粉末为hummers法制备的单层氧化石墨烯粉末。

进一步的,所述微注射泵中的推进速度为2.5-3ml/h;施加在注射器针头部分压力为18-18.5kv;针头到铝箔基底之间的距离为8-9cm

本发明与现有技术相比,其显著优点在于:

(1)本方法是基于静电喷雾技术,利用制备所得纳米铝热剂-氧化石墨烯分散液在溶液环境中良好的悬浮性和流动性的特点,在有效提升纳米铝热剂分散性的同时,能够使高分散纳米铝热剂较为均匀的负载在氧化石墨烯上,。

(2)本方法装置易于搭建,操作简单,样品制备方式简单。

附图说明

图1是静电喷雾原理示意图。

图2是实施例1制备的氧化石墨烯基负载高分散纳米铝热剂样品tem图。

附图标记说明:

1-微注射泵,2-注射器,3-静电喷雾前驱液,4-高压电源,5-静电喷雾产物,6-铝箔基底。

具体实施方式

下面结合本发明的附图和实施例对本发明作进一步的阐述和说明

结合图1、2,一种基于静电喷雾的氧化石墨烯基负载高分散纳米铝热剂样品制备方法,包括用于静电喷雾的微注射泵1、注射器2、目标氧化石墨烯-纳米铝热剂分散液3、高压电源4,静电喷雾产物5,铝箔基底6。用注射器2吸取所述的氧化石墨烯-纳米铝热剂分散液3,放置于微注射泵1上,铝箔6接地,利用所述高压电源4给针头处施加18~18.5kv的高压,开启微推进器,针筒内分散液在高压静电场中运动,沉积处于接地状态的导电铝箔上。

实施例1:

结合图1、2:

分别称取7.5mg硝化棉加入2ml乙醇:乙醚=3:1(体积比)溶剂中,放置于磁力搅拌机上以600rpm速度搅拌1h至硝化棉完全溶解,得到a、b两份硝化棉溶液。

称取12mg氧化石墨烯粉末,加加入a硝化棉溶液中,放置于磁力搅拌器上以400rpm的搅拌速度搅拌30min,得到氧化石墨烯分散液。

称取105.24mg纳米al粉和467.76g纳米氧化铜粉,加入b硝化棉溶液中,在500w、40khz下超声1h打破颗粒间团聚,然后放置于磁力搅拌器上以700rpm的搅拌速度搅拌12h,得到纳米铝热剂分散液。

将制备得到的纳米铝热剂分散液加入氧化石墨烯分散液中,放置于磁力搅拌器上以400rpm的搅拌速度搅拌12h,得到纳米铝热剂-氧化石墨烯前驱液。

用体积5ml的针筒吸取2ml纳米铝热剂前驱液,放置于微注射泵上。将铝箔接地,设置针头处到铝箔的距离为8-9cm。

开启高压电源,设置电压为18~18.5kv,开始静电喷雾.

收集铝箔基底上的目标产物,对产物进行表征,tem测试结果如图2所示,通过图2可以分析得出,通过静电喷雾能有效实现纳米铝热剂在氧化石墨烯片层上的高负载。

实施例2:

结合图1:

分别称取两份7.5mg聚偏氟乙烯加入2mldmf:丙酮=7:3(体积比)溶剂中,放置于磁力搅拌机上以600rpm速度搅拌1h至聚偏氟乙烯完全溶解,得到a、b两份聚偏氟乙烯溶液。

称取12mg氧化石墨烯粉末,加加入a聚偏氟乙烯溶液中,放置于磁力搅拌器上以400rpm的搅拌速度搅拌30min,得到氧化石墨烯分散液。

称取105.24mg纳米al粉和467.76g纳米氧化铜粉,加入b聚偏氟乙烯溶液中,在500w、40khz下超声1h打破颗粒间团聚,然后放置于磁力搅拌器上以700rpm的搅拌速度搅拌12h,得到纳米铝热剂分散液。

将制备得到的纳米铝热剂分散液加入氧化石墨烯分散液中,放置于磁力搅拌器上以400rpm的搅拌速度搅拌12h,得到纳米铝热剂-氧化石墨烯前驱液。

用体积5ml的针筒吸取2ml纳米铝热剂前驱液,放置于微注射泵上。将铝箔接地,设置针头处到铝箔的距离为8-9cm。

开启高压电源,设置电压为18~18.5kv,开始静电喷雾。

收集铝箔基底上的目标产物。

综上所述,本发明的目的在于提供一种氧化石墨烯基负载高分散纳米铝热剂样品制备方法,该方法一方面利用含能粒子在溶液环境中具有良好的分散性和流动性的特点,通过静电喷雾过程提升组分分散性,另一方面,该方法利用纳米铝热剂与氧化石墨烯之间通过长程静电吸引引发的自组装过程,通过高压电场提高组装效率,使得纳米铝热剂高分散附着在氧化石墨烯上。从制备所得样品的tem图可知,通过本方法制备所得样品,纳米铝热剂能均匀的且高分散的负载在氧化石墨烯片层上。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1