一种用于制造光子晶体光纤预制棒的蜂巢式工装的制作方法

文档序号:20530181发布日期:2020-04-24 21:41阅读:342来源:国知局
一种用于制造光子晶体光纤预制棒的蜂巢式工装的制作方法

本实用新型属于光子晶体光纤技术领域,涉及光子晶体光纤预制棒的制造,尤其是一种用于制造光子晶体光纤预制棒的蜂巢式工装。



背景技术:

光子晶体光纤又称为微结构光纤,近年来引起广泛的关注,它的横截面上有复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿整个光纤长度。根据导光机制的不同,光子晶体光纤可分为两类:折射率引导型光子晶体光纤和光子带隙型光子晶体光纤,前者可称为实芯光子晶体光纤,后者称之为空芯光子晶体光纤。实芯光子晶体光纤中光波被限制在高折射率的纤芯处传播,空芯光子晶体光纤中光在纤芯的空气孔中传输。光子晶体光纤以其结构设计灵活、具有普通光纤无法比拟的突出优点,在光纤传感、光通信、非线性光学等领域应用前景广阔。光子晶体包层区气孔的排列方式能够极大地影响光传输模式性能,因此光子晶体光纤研制的重点是拉制工艺控制,保证气孔严格按照设计意图实现。

目前,因工艺实现简单光子晶体光纤拉制通常采用堆砌法,将特定尺寸的高纯度石英毛细管和高纯度石英棒依据光子晶体光纤端面结构进行规则排布,形成光子晶体光纤预制棒。随后将预制棒放置在光纤拉丝塔中,采用普通光纤的拉制方法配以高精密温度、速度、气压控制,拉制成型端面微孔结构尺寸符合要求的光子晶体光纤。预制棒的制备是光子晶体光纤拉制的关键工艺,预制棒内毛细管排列和定位精度直接影响光子晶体光纤拉制质量。堆砌法制备预制棒,人工参与程度大,毛细管排列位置误差难以控制,不利于实现高位置精度的预制棒。为了提高预制棒制备精度,业内提出冲压、钻孔、腐蚀等技术手段,以控制预制棒内孔结构尺寸精度,但工艺复杂,实现成本高,不利于大批量生产。



技术实现要素:

本实用新型的目的在于克服现有技术的不足,提供一种设计合理、制造工艺简单、生产成本低且可实现高位置精度的用于制造光子晶体光纤预制棒的蜂巢式工装。

本实用新型解决其技术问题是采取以下技术方案实现的:

一种用于制造光子晶体光纤预制棒的蜂巢式工装,包括工作盘、多个多边形工装单元和多个定位销;所述多边形工装单元为多棱柱结构且可拆卸地安装在工作盘上;在该多边形工装单元上制有多个定位孔,在每个定位孔上均插装有定位销;由插装有定位销和未插装有定位销的多个多边形工装单元在工作盘上蜂巢式拼接扩展形成光子晶体光纤预制棒制备基础面。

而且,在多边形工装单元相邻的多个定位销形成的限位区内分别插装有石英毛细管或石英棒;在光子晶体光纤预制棒制备基础面上的石英毛细管、石英棒和定位销的外侧套装有石英套筒。

而且,所述多边形工装单元底部安装有磁性垫片,所述工作盘采用磁性材料制成,该多边形工装单元可吸附在工作盘上。

而且,所述多边形工装单元为六棱柱形,在该六棱柱上等距离制有六个定位孔,在每个定位孔内插装有与定位孔适配的圆柱形定位销,该定位销一端插入定位孔内,另一端高于六棱柱表面;在单个或相邻的三个多边形工装单元提供的六个定位销形成的多点高精度限位区内分别插装有石英毛细管或石英棒。

本实用新型的优点和积极效果是:

本实用新型提出一种用于制造光子晶体光纤预制棒的蜂巢式工装,仍基于预制棒堆砌法,采用模块化的多边形工装单元配合定位销,通过组装扩展实现任意结构形式的光子晶体光纤预制棒制备,实现高精度的预制棒内部排布与定位。采用本实用新型的方法形成的预制棒能够拉制出结构更完美、更符合设计要求的光子晶体光纤。

附图说明

图1是本实用新型的多边形工装单元示意图;

图2是本实用新型的装配定位销的多边形工装单元示意图;

图3是本实用新型的多边形工装单元蜂巢式扩展拼装示意图;

图4是本实用新型的使用蜂巢式工装制作光子晶体光纤预制棒示意图;

图5是本实用新型的光子晶体光纤预制棒主体成型示意图。

附图标记说明:

1-六边形工装单元;2-定位孔;3-定位销;4-光子晶体光纤预制棒制备基础面;5-工作盘;6-石英套筒;7-石英毛细管或石英棒

具体实施方式

以下结合附图对本实用新型实施例作进一步详述:

本实用新型提供一种用于制造光子晶体光纤预制棒的蜂巢式工装及方法,采用模块化的多边形工装单元配合定位销,通过组装扩展实现任意结构形式的光子晶体光纤预制棒高精度制备。

一种用于制造光子晶体光纤预制棒的蜂巢式工装,如图1至图5所示,包括工作盘、多个多边形工装单元和多个定位销;所述多边形工装单元为多棱柱结构且可拆卸地安装在工作盘上;在该多边形工装单元上制有多个定位孔,在每个定位孔上均插装有定位销;由插装有定位销和未插装有定位销的多个多边形工装单元在工作盘上蜂巢式拼接扩展形成光子晶体光纤预制棒制备基础面。

在本实施例中,在多边形工装单元相邻的多个定位销形成的限位区内分别插装有石英毛细管或石英棒;在光子晶体光纤预制棒制备基础面上的石英毛细管、石英棒和定位销的外侧套装有石英套筒。

在本实施例中,所述多边形工装单元底部安装有磁性垫片,所述工作盘采用磁性材料制成,该多边形工装单元可吸附在工作盘上。

在本实施例中,所述多边形工装单元为六棱柱形,在该六棱柱上等距离制有六个定位孔,在每个定位孔内插装有与定位孔适配的圆柱形定位销,该定位销一端插入定位孔内,另一端高于六棱柱表面;在单个或相邻的三个多边形工装单元提供的六个定位销形成的多点高精度限位区内分别插装有石英毛细管或石英棒。

下面分别对本实用新型的各个组成部件的结构和功能及工作原理作进一步说明:

图1是多边形工装单元,其多边形元素可向外拼接扩展,形成大面积的光子晶体光纤预制棒制备基础面。

图2是装配定位销的多边形工装单元,六个定位销分别插入多边形工装单元六个定位孔内,石英毛细管或石英棒可插入由定位销构成的限位区内,实现六点精确限位功能。定位销和定位孔尺寸可根据具体采用的石英毛细管和石英棒外径进行适应性调整。

图3是多边形工装单元蜂巢式扩展拼装示意图,多边形工装单元蜂巢式扩展拼装使工作基面上单个或相邻的三个多边形工装单元提供的多个定位销形成六点高精度限位功能。根据光子晶体光纤端面结构,适应性调整多边形工装单元和定位销数量,实现任意结构的光子晶体光纤预制棒高精度制备功能。

图4是使用蜂巢式工装制作光子晶体光纤预制棒示意图,按照光子晶体光纤结构设计要求,若干个石英毛细管和石英棒分别顺序插入其所属的六点高精度定位区,除去多余的定位销,插入石英套筒,对石英毛细管和石英棒进行包裹,石英套筒定位由其内壁接触到石英毛细管、石英棒和定位销保证。

图5是光子晶体光纤预制棒主体成型示意图,在模块化蜂巢式工装保证下,光纤预制棒内部主体构成均被高精度的限位,在石英套筒内壁空隙处填补纯石英材料后,预制棒上端局部点胶粘连各石英部件,抽出预制棒下端模块化蜂巢式工装,高精度的预制棒制备完成。

本实用新型的工作过程为:

步骤1、依据光子晶体光纤设计中石英毛细管和石英棒数量要求,取出多边形工装单元(如图1所示)和定位销若干,将定位销顺序插入多边形工装单元六个定位孔内,形成多个装配定位销的多边形工装单元(如图2所示);

步骤2、根据石英毛细管和石英棒位置要求,将装配定位销的多边形工装单元和未装配定位销的多边形工装单元顺序放置于工作盘内,多边形工装单元底面与工作盘固连并可重复拆装。并利用工装单多边形元素向外蜂巢式拼接扩展,在工作盘上形成大面积的光子晶体光纤预制棒制备基础面(如图3所示);

步骤3、依据光子晶体光纤端面结构,将石英毛细管和石英棒顺序插入预制棒制备基础面上由单个或相邻的三个多边形工装单元提供的多个定位销形成的多点高精度限位区;

在本实施例中,如图4中的实芯光子晶体光纤预制棒示例,中心处为石英棒形成实芯纤芯用于导光,邻近中心处两个大内径石英毛细管用于产生双折射形成保偏能力,周围若干小内径石英毛细管用于调整光纤包层折射率形成全反射导光机制。

步骤4、将石英毛细管和石英棒全部插入到预制棒制备基础面后,拔出周边多余的定位销,随后插入石英套筒,对石英毛细管和石英棒进行包裹,石英套筒定位由其内壁接触到石英毛细管、石英棒和定位销保证。光子晶体光纤预制棒主体高精度成型完成,如图5所示。

步骤5、在光子晶体光纤预制棒主体石英套筒内壁空隙处填补纯石英材料,随后在预制棒上端局部点胶粘连各石英部件,抽出预制棒下端模块化蜂巢式工装,高精度的预制棒制备完成。

需要强调的是,本实用新型所述的实施例是说明性的,而不是限定性的,因此本实用新型包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本实用新型的技术方案得出的其他实施方式,同样属于本实用新型保护的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1