一种高性能无La-Co型永磁铁氧体材料及其制备方法与流程

文档序号:21402063发布日期:2020-07-07 14:34阅读:285来源:国知局
一种高性能无La-Co型永磁铁氧体材料及其制备方法与流程
本发明属于磁性材料制备
技术领域
,具体涉及一种高性能无la-co型永磁铁氧体材料及其制备方法。
背景技术
:永磁铁氧体作为电子信息行业的基础材料,凭借其良好的磁特性和高性价比等优势而受到广泛研究与应用。随着新能源汽车、物联网技术以及先进装备制造等高新技术产业的快速发展,对高性能永磁铁氧体的需求日益增多。目前,主要是通过la-co或la-ca-co联合取代m型锶铁氧体来提高材料的磁性能。例如,日本tdk公司通过la-co联合取代锶铁氧体推出了12系高性能永磁铁氧体材料,其性能指标为:剩余磁感应强度br=460~480mt,磁感矫顽力hcb=328ka/m~352ka/m,内禀矫顽力hcj=368ka/m~392ka/m,最大磁能积(bh)max=41.5~44.7kj/m3。这类高性能永磁铁氧体材料被广泛应用于各类电子设备中,例如汽车电机、家电设备、办公设备等。然而,la是一种稀土金属元素,在地壳中的含量仅为0.00183%,同时受国家稀土政策的影响,金属la的价格波动较大;co更是在《全国矿产资源规划(2016-2020)》中被列入战略性矿产元素,从2017年以来,co2o3价格上涨到35~40万元/吨。la、co资源的稀缺以及昂贵的价格迫切要求永磁铁氧体行业探究一种高性能无la-co型永磁铁氧体材料。针对高性能无la-co型永磁铁氧体研究,江粉磁材公司以srm铁氧体预烧料为原料,通过调整细磨时的添加剂和优化二次球磨工艺制备出永磁铁氧体,其性能指标为:剩余磁感应强度br=421.5mt,磁感矫顽力hcb=308.5ka/m,内禀矫顽力hcj=327.9ka/m,最大磁能积(bh)max=33.94kj/m3,其磁性能未达到市面上高性能永磁铁氧体的指标要求。在公开的专利cn104496444a中,公布了一种无la-co取代的锶铁氧体磁性粉料a1-xbix(fe12-ymy)zo19,a代表sr、ba、ca中的两种或两种以上元素,m代表al和cr中的一种或两种,但必须含有al;x、y、z代表摩尔比,并且x为0.01~0.1;y为0~0.25;z为0.8~1.2。当x=0.01、y=0.18、z=0.9时性能指标为:剩余磁感应强度br=402.5mt、磁感矫顽力hcb=302.2ka/m、内禀矫顽力hcj=407.4ka/m、最大磁能积(bh)max=32.95kj/m3。该材料的矫顽力虽然达到了市面上高性能永磁铁氧体的指标,但是剩余磁感应强度较低。当x=0.01、y=0.05、z=0.89时性能指标为:剩余磁感应强度br=441mt、磁感矫顽力hcb=279.5ka/m、内禀矫顽力hcj=290.7ka/m、最大磁能积(bh)max=34.92kj/m3。该材料的剩余磁感应强度虽然达到了市面上高性能永磁铁氧体的指标,但是其矫顽力较低。专利cn109354488a公开了一种低成本永磁铁氧体材料及其制备方法,通过铁红和碳酸锶制成预烧料,在预烧料中添加低成本添加剂制成低成本永磁铁氧体材料,其材料的性能为:剩余磁感应强度br=415mt、内禀矫顽力hcj=322.3ka/m,材料的剩余磁感应强度和内禀矫顽力均未达到高性能永磁铁氧体的指标。专利cn108863335a公开一种无la-co取代的永磁铁氧体的生产方法,其主成分由碳酸锶、二氧化硅、硼酸和三氧化二铁组成。材料的性能指标为:剩余磁感应强度br=428mt、磁感矫顽力hcb=256ka/m、内禀矫顽力hcj=262.5ka/m、最大磁能积(bh)max=34.21kj/m3。材料的矫顽力远低于高性能永磁铁氧体的性能指标。基于上述,目前无la-co型永磁铁氧体材料存在其性能无法兼具高br、高hcj和高(bh)max的问题。技术实现要素:本发明针对
背景技术
存在的钴资源匮乏且镧、钴价格昂贵等问题,提出了一种高性能无la-co型永磁铁氧体材料及其制备方法。本发明所要解决的技术问题是,提供一种高性能无la-co型永磁铁氧体材料及其制备方法,该铁氧体材料具有高剩余磁感应强度br>470mt、高磁感矫顽力hcb>340ka/m、高内禀矫顽力hcj>380ka/m、高最大磁能积(bh)max>43.0kj/m3。本发明解决所述技术问题采用的技术方案如下:一种高性能无la-co型永磁铁氧体材料,其特征在于,所述永磁铁氧体材料包括主成分和添加剂,其中,主成分包括:9.9~17.2mol%srco3,82.8~90.1mol%fe2o3;添加剂按主成分重量百分比,以氧化物计算为:0.05~2.20wt%sio2,0.60~2.50wt%caco3,0.15~0.75wt%h3bo3,0.90~1.40wt%zno,0.55~1.20wt%cr2o3,0.20~0.40wt%c6h14o6(山梨糖醇)。一种高性能无la-co型永磁铁氧体材料的制备方法,其特征在于,包括以下步骤:步骤1、配料以srco3和fe2o3作为原料,按照“9.9~17.2mol%srco3、82.8~90.1mol%fe2o3”的比例称料,混料,配制得到初始粉体;步骤2、一次球磨将步骤1得到的初始粉体在球磨机内混合均匀,时间为18~26h;步骤3、预烧将步骤2得到的球磨料烘干,并在烧结炉内进行预烧,预烧温度为1040~1240℃,预烧时间为1~4h,完成后,随炉自然降温至室温,得到预烧粉体;步骤4、掺杂在步骤3得到的预烧粉体中加入添加剂,所述添加剂按主成分重量百分比,以氧化物计算为:0.05~2.20wt%sio2,0.60~2.50wt%caco3,0.15~0.75wt%h3bo3,0.90~1.40wt%zno,0.55~1.20wt%cr2o3,0.20~0.40wt%c6h14o6(山梨糖醇);步骤5、二次球磨将步骤4得到的粉料在球磨机中球磨1.5~4.5h,粉料粒度控制在2.5~4.5μm之间;步骤6、热处理将步骤5得到的粉料进行热处理,热处理温度为800~1000℃,时间为0.5~2h;步骤7、精细球磨将步骤6得到的粉料在球磨机中精细球磨6~10h,粉料粒度控制在0.45~0.70μm之间;步骤8:成型将步骤7得到的球磨浆料脱水,使得浆料中含水量控制在20~33wt%之间;然后,将脱水后的浆料在850ka/m的磁场下湿压成型,得到直径30mm、高15mm的生坯;步骤9、烧结将步骤8制得的生坯置于马弗炉内进行烧结,并在生坯上表面放置承烧板(产生的压强为0~20kpa),烧结温度为1050~1350℃,保温时间为1~3.5h,完成后,随炉冷却至室温即可得到所述无la-co型永磁铁氧体材料。将步骤9烧结后得到的样品进行磨加工,再测试其磁性能参数,包括样品的剩余磁感应强度br、磁感矫顽力hcb、内禀矫顽力hcj、最大磁能积(bh)max。经测试,本发明制备的高性能无la-co型永磁铁氧体材料的磁性能明显优于市面高性能永磁铁氧体,其技术指标如下:剩余磁感应强度br≥470mt;磁感矫顽力hcb≥340ka/m;内禀矫顽力hcj≥380ka/m;最大磁能积(bh)max≥43.0kj/m3。本发明的原理如下:本发明提供的一种高性能无la-co型永磁铁氧体材料,其主成分为仅由srco3和fe2o3制成的锶铁氧体预烧料。为了通过调控晶粒形貌得到高性能材料,在二次球磨前添加sio2、caco3、h3bo3、zno、cr2o3和c6h14o6(山梨糖醇)作为添加剂。采用caco3/sio2可有效提高烧结体密度同时抑制晶粒过快生长,提高材料的剩磁与矫顽力;采用h3bo3作为低熔点助溶剂,促进烧结致密化及降低开始固相反应的温度,同时h3bo3与sio2形成玻璃相分布于晶界处阻止晶粒长大,使得在较低烧结温度下密度显著提高并且晶粒生长均匀,进而大幅提高磁性能;采用zno/cr2o3体系,一方面zn2+择优取代自旋向下的4f1位置的fe3+,适宜的zno添加会提高12k与2b位的fe3+-o2--fe3+之间的超交换作用,增强饱和磁感应强度,另一方面,cr3+的存在会增大单畴临界尺寸rc,更加容易制备单畴尺寸的材料;引入山梨糖醇,利用其空间位阻稳定作用,阻止颗粒团聚,使各组分均匀分散于介质中,提高磁性颗粒的取向度。对传统永磁铁氧体制备工艺进行优化,将二次球磨后的浆料在800~1000℃下热处理,将浆料中的fe2+转化成fe3+,可以有效地控制材料晶粒分布,提高单畴颗粒存在率;在烧结阶段沿磁体c轴取向方向施加应力,一方面提升磁体c轴取向度,另一方面利用应力产生应力各向异性以提高磁体的各向异性。本发明选择无la-co配方,既降低了生产成本,也减轻了对国家战略资源的消耗。为达到高性能永磁体的技术指标,本发明在二次细磨时掺杂阻晶-促晶复合添加剂促进晶粒致密化生长同时阻止大晶粒生成;通过分散剂的空间位阻稳定作用阻止磁性颗粒团聚提高颗粒的取向度;优化球磨工艺控制晶粒尺寸分布,提高单畴颗粒存在率;基于磁应力理论,通过对磁体表面施加应力增强磁体取向和各向异性。与现有技术相比,本发明的有益效果为:本发明提供一种高性能无la-co型永磁铁氧体材料及其制备方法,目的在于在不添加la、co的基础上开发出兼具高br、高hcj及高(bh)max的永磁铁氧体材料,以减少高性能永磁铁氧体的生产成本,并降低对国家战略资源co的依赖。附图说明图1为本发明提供的一种高性能无la-co型永磁铁氧体材料在制备时,加压烧结的示意图;图2为实施例1制得的无la-co型永磁铁氧体材料的扫描电镜图;图3为实施例2制得的无la-co型永磁铁氧体材料的扫描电镜图;图4为实施例3制得的无la-co型永磁铁氧体材料的扫描电镜图;图5为实施例4制得的无la-co型永磁铁氧体材料的扫描电镜图。具体实施方式下面结合附图和实施例,详述本发明的技术方案。为降低高性能永磁铁氧体材料成本同时减少对国家战略资源co的依赖,本发明提供了一种高性能无la-co型永磁铁氧体材料及其制备方法。以高纯度的srco3和fe2o3为原材料,确定最优的配方范围;根据复合添加剂对材料显微结构的影响机制,采用caco3/sio2、h3bo3、zno/cr2o3等添加剂调控烧结样品的微观形貌;采用分散剂山梨糖醇的空间位阻作用使浆料均匀分散,提高样品取向度;通过热处理工艺,控制材料晶粒分布,提高单畴颗粒存在率;基于磁应力理论,增强磁体取向和各向异性。基于上述配方、添加剂及改进的工艺,制备一种高性能无la-co型永磁铁氧体材料。实施例一种高性能无la-co型永磁铁氧体材料的制备方法,具体包括以下步骤:步骤1、配料以srco3和fe2o3作为原料,按照“16.9mol%srco3、83.1mol%fe2o3”的比例称料,混料,配制得到初始粉体;步骤2、一次球磨将步骤1得到的初始粉体在行星式球磨机内混合均匀,时间为22h;步骤3、预烧将步骤2得到的球磨料烘干,并在烧结炉内进行预烧,预烧温度为1200℃,预烧时间为2h,完成后,随炉自然降温至室温,得到预烧粉体;步骤4、掺杂在步骤3得到的预烧粉体中加入添加剂,所述添加剂按主成分重量百分比,以氧化物计算为:0.45wt%sio2,1wt%caco3,0.3wt%h3bo3,1.2wt%zno,0.8wt%cr2o3,0.30wt%c6h14o6(山梨糖醇);步骤5、二次球磨将步骤4得到的粉料在球磨机中球磨4h,粉料粒度控制在2.5~3.0μm之间;步骤6、热处理将步骤5得到的粉料进行热处理,热处理温度为900℃,时间为1h;步骤7、精细球磨将步骤6得到的粉料在球磨机中精细球磨8h,粉料粒度控制在0.55~0.65μm之间;步骤8:成型将步骤7得到的球磨浆料脱水,使得浆料中含水量控制在30wt%左右;然后,将脱水后的浆料在850ka/m的磁场下湿压成型,得到直径30mm、高15mm的生坯;步骤9、烧结将步骤8制得的生坯置于马弗炉内进行烧结,并在生坯上表面放置承烧板,烧结温度为1160℃,保温时间为1h,完成后,随炉冷却至室温即可得到所述无la-co型永磁铁氧体材料。其中,承烧板产生的压力如下所示:实施例实施例1实施例2实施例3实施例4压强/kpa5101520将步骤9烧结后得到的样品进行磨加工,再测试其磁性能参数,包括样品的剩余磁感应强度br、磁感矫顽力hcb、内禀矫顽力hcj、最大磁能积(bh)max。测试结果如下所示:图2~5为实施例1~4制得的无la-co型永磁铁氧体材料的扫描电镜图;显示得到的铁氧体材料大多呈六角片状结构,晶粒细小均匀,且随着压强的增加,气孔略有增多,平均晶粒尺寸略有减小。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1