一种高压陶瓷脉冲电容器、介质材料及其制备方法与流程

文档序号:21843430发布日期:2020-08-14 16:46阅读:261来源:国知局
一种高压陶瓷脉冲电容器、介质材料及其制备方法与流程

本发明属于电介质功能陶瓷材料,具体涉及一种用于高压陶瓷脉冲电容器的介质及其制作方法,以及采用该介质材料制作的陶瓷电容器。



背景技术:

随着科技的发展,多层瓷介电容器越来越广泛运用,逐渐取代原有薄膜电容的应用领域,特别是高压储能领域,作为脉冲功率系统的储能元器件被广泛使用。相对于薄膜电容,陶瓷电容固有特性稳定可靠,耐高温,高功率密度越来越多运用于功率系统中。电介质储能电容器是整个功率系统中不可缺少的重要组成部分,对整个脉冲功率系统起着至关重要的作用,它作为储能器件可以将大量的能量储存集中起来并在极短的时间内释放在负载上,形成强大的脉冲功率及较高的电流。这一系列特性使其在在固体发动机点火系统、卫星电推进系统中都有广泛的应用需求,可大幅提高系统的安全性与可靠性;此外,在中高压储能电路、高压逆变器等民用领域具有推广应用前景,在引爆线路、点火系统、激光系统、能量存储模块、脉冲光电系统、石油勘探、地震评估、缓冲器、电源中断保护电路等诸多领域具有应用潜力。

陶瓷脉冲电容器具有高能量功率和极快的充放电速率,广泛应用于医疗、交通和脉冲功率器件等领域。相对于聚合物或玻璃基储能电解质材料,尽管陶瓷脉冲电容器拥有较好的温度稳定性和高极化强度等优势,但目前面临的主要问题是低能量转换效率以及低击穿场强而导致较低的能量储存密度。近些年来,针对无铅反铁电或铁电陶瓷基材料,科学家们通过掺杂或者固溶的方法,努力在尽可能较少降低极化强度的同时,极大提高能量转换效率和击穿场强。但和聚合物基储能材料相比,过低的材料本征击穿场强极大限制了陶瓷脉冲电容器储存电能的能力。因此,在保持高电场强度和充放电速率的同时,能否控制并提高陶瓷基材料本征的击穿场强,成为是否能获得高储能密度陶瓷基材料的关键。现有的陶瓷脉冲电容器,主要以钛酸钡为主要材料进行制备,钛酸钡材料晶相结构复杂,自发极化强度高,在不同温度下有多重晶相转变,击穿强度低;以锆钛酸铅为主体的脉冲电容器由于制作过程中会产生大量的铅污染,已被大多数国家禁止使用,有待进一步改进。



技术实现要素:

本发明的目的是克服现有技术的缺点,提供一种用于高压陶瓷脉冲电容器的介质及其制作方法,另一目的是提供一种采用该介质材料制作的陶瓷电容器。

本发明采用如下技术方案:

一种用于高压陶瓷脉冲电容器的介质材料,包括以下重量份的原料:

100重量份的srtio3;

35-60重量份的srzro3;

10-20重量份的bix;

0.05-2重量份的mnco3;

0.4-2重量份的mgo;

0.5-3重量份的zn2sio4;

0.5-3.5重量份的bab2o4;

bix为bi2o3与tio2或bi2o3与zro2固相合成的化合物。

进一步的,所述bix为bi2tio5、bi2ti2o7、bi2ti3o9、bi2zro5、bi2zr2o7或bi2zr2o9。

进一步的,所述srtio3由srco3、tio2固相法合成。

进一步的,所述srzro3由srco3、zro2固相法合成。

进一步的,所述zn2sio4由zno、sio2合成。

一种高压陶瓷脉冲电容器,其特征在于:采用以上任一项所述的介质材料制成。

一种用于高压陶瓷脉冲电容器的制作方法,包括以下步骤:

步骤一,将srco3和tio2按摩尔比0.98-1.03:1进行配制,固相法合成srtio3,合成温度1100~1200℃,保温约1~4h;

步骤二,将srco3和zro2按摩尔比0.98-1.03:1进行配制,固相法合成srzro3,合成温度1000~1200℃,保温约1~4h;

步骤三,将zno和sio2按摩尔比1.98-2.04:1进行配制,固相法合成zn2sio4,合成温度800~1000℃,保温约1~2h;

步骤四,依据bix的化学式,选择bi2o3与tio2或zro2按化学式相应摩尔比进行配制,固相法合成,合成温度800~1000℃,保温约1~2h;

步骤五,按原料组成的配比加入各物质,用去离子水作分散介质,球磨、烘干并造粒,得所述介质材料。

一种高压陶瓷脉冲电容器的制作方法,将以上任一项的介质材料在空气气氛中,以1080-1150℃的温度,保温煅烧2-5h。

由上述对本发明的描述可知,与现有技术相比,本发明的有益效果是:通过限制介质材料的原料组成,以srtio3为基础,与srzro3、zn2sio4、bix配合,通过引入zn2sio4并限定srtio3、srzro3、zn2sio4、bix的加入量及bix的具体组成,有效将介质材料的介电常数控制在250±30的范围,适当降低损耗的同时将电容温度系数控制在-2500-(-1600)ppm/k的范围;适当添加bab2o4玻璃化合物作助烧剂,有利于提高介质瓷体的致密度,降低损耗;适量添加mgo在介电材料中既可以作为施主也可以作为受主进行掺杂改性,提高材料系统的绝缘电阻率、抗老化性能和抗还原性能;适当添加mnco3,能够在烧结过程中有效阻止ti4+的还原,在降低介质损耗中起决定作用。

附图说明

图1为单串产品内部结构示意图;

图2为图1等效电路示意图(1500v系列);

图3为两串产品内部结构示意图;

图4为图3等效电路示意图(2000v、3000v系列);

图5为三串产品内部结构示意图;

图6为图5等效电路示意图(4000v系列);

图中,1-陶瓷、2-内电极:70ag30pd、3-ag、4-ni、5-sn/pb。

具体实施方式

以下通过具体实施方式对本发明作进一步的描述。

一种高压陶瓷脉冲电容器,由介质材料烧制而成,介质材料包括以下重量份的原料:100重量份的srtio3、35-60重量份的srzro3、10-20重量份的bix、0.05-2重量份的mnco3、0.4-2重量份的mgo、0.5-3重量份的zn2sio4、0.5-3.5重量份的bab2o4。

bix为bi2o3与tio2或bi2o3与zro2固相合成的化合物,具体的,bix为bi2tio5、bi2ti2o7、bi2ti3o9、bi2zro5、bi2zr2o7或bi2zr2o9。

srtio3由srco3、tio2以固相法合成。

srzro3由srco3、zro2以固相法合成。

zn2sio4由zno、sio2以固相法合成。

一种高压陶瓷脉冲电容器的制作方法,包括以下步骤:

步骤一,将srco3和tio2按摩尔比0.98-1.03:1进行配制,固相法合成srtio3,合成温度1100~1200℃,保温约1~4h;

步骤二,将srco3和zro2按摩尔比0.98-1.03:1进行配制,固相法合成srzro3,合成温度1000~1200℃,保温约1~4h;

步骤三,将zno和sio2按摩尔比1.98-2.04:1进行配制,固相法合成zn2sio4,合成温度800~1000℃,保温约1~2h;

步骤四,依据bix的化学式,选择bi2o3与tio2或zro2按化学式相应摩尔比进行配制,固相法合成,合成温度800~1000℃,保温约1~2h;

步骤五,按原料组成的配比加入各物质,用去离子水作分散介质,球磨、烘干并造粒,得介质材料;

步骤六,将介质材料在空气气氛中,以1080-1150℃的温度,保温煅烧2-5h。

实施例1

一种高压陶瓷脉冲电容器的制作方法,包括以下步骤:

步骤一,按摩尔比1:1,称取64.88重量份srco3,35.12重量份tio2,球磨混合、干燥,破碎过40目筛网,于1150℃温度煅烧2小时合成srtio3;

步骤二,按摩尔比1:1,称取54.51重量份srco3,45.49重量份zro2,球磨混合、干燥,破碎过40目筛网,于1200℃温度煅烧2小时合成srzro3;

步骤三,按摩尔比2:1,称取73.04重量份zno,26.96重量份sio2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成zn2sio4;

步骤四,按摩尔比1:2,称取74.46重量份bi2o3,25.54重量份tio2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成bi2ti2o7;

步骤五,按重量份称取,100重量份srtio3、10.23重量份bi2ti2o7、39.55重量份srzro3、0.19重量份mnco3、0.44重量份mgo、1.5重量份zn2sio4、3.01重量份bab2o4进行配料,以去离子水为球磨介质,采用2mm锆球研磨6h,150℃烘干、破碎,得介质材料;

步骤六,将步骤五制得介质材料,经过mlcc工序,按图3所示结构,以70ag30pd为内电极制成多层陶瓷电容器,在空气气氛中于1100℃烧结保温2h。

实施例2

步骤一,按摩尔比0.99:1,称取64.65重量份srco3,35.35重量份tio2,球磨混合、干燥,破碎过40目筛网,于1200℃温度煅烧1小时合成srtio3;

步骤二,按摩尔比1.01:1,称取54.75重量份srco3,45.25重量份zro2,球磨混合、干燥,破碎过40目筛网,于1050℃温度煅烧3小时合成srzro3;

步骤三,按摩尔比2.01:1,称取73.14重量份zno,26.86重量份sio2,球磨混合、干燥,破碎过40目筛网,于1000℃温度煅烧1小时合成zn2sio4;

步骤四,按摩尔比1:3,称取66.03重量份bi2o3,33.97重量份tio2,球磨混合、干燥,破碎过40目筛网,于1000℃温度煅烧1小时合成bi2ti3o9;

步骤五,按重量份称取,100重量份srtio3、17.30重量份bi2ti3o9、43.26重量份srzro3、0.19重量份mnco3、1.76重量份mgo、0.81重量份zn2sio4、2.44重量份bab2o4进行配料,以去离子水为球磨介质,采用2mm锆球研磨6h,150℃烘干、破碎,得介质材料;

步骤六,步骤五制得的介质材料,经过mlcc工序,按图2所示结构,以70ag30pd为内电极制成多层陶瓷电容器,在空气气氛中于1080℃烧结保温5h。

实施例3

步骤一,按摩尔比1.02:1,称取65.33重量份srco3,34.67重量份tio2,球磨混合、干燥,破碎过40目筛网,于1150℃温度煅烧2小时合成srtio3;

步骤二,按摩尔比0.98:1,称取54.00重量份srco3,46.00重量份zro2,球磨混合、干燥,破碎过40目筛网,于1200℃温度煅烧2小时合成srzro3;

步骤三,按摩尔比2:1,称取73.04重量份zno,26.96重量份sio2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成zn2sio4;

步骤四,按摩尔比1:1,称取85.36重量份bi2o3,14.64重量份tio2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成bi2tio5;

步骤五,按重量份称取,100重量份srtio3、11.90重量份bi2tio5、49.44重量份srzro3、0.16重量份mnco3、0.88重量份mgo、1.62重量份zn2sio4、1.62重量份bab2o4进行配料,以去离子水为球磨介质,采用2mm锆球研磨6h,150℃烘干、破碎,得介质材料;

步骤六,步骤五制得的介质材料,经过mlcc工序,按图1所示结构,以70ag30pd为内电极制成多层陶瓷电容器,在空气气氛中于1120℃烧结保温3h。

实施例4

步骤一,按摩尔比0.98:1,称取64.42重量份srco3,35.58重量份tio2,球磨混合、干燥,破碎过40目筛网,于1150℃温度煅烧2小时合成srtio3;

步骤二,按摩尔比0.98:1,称取54.00重量份srco3,46.00重量份zro2,球磨混合、干燥,破碎过40目筛网,于1200℃温度煅烧2小时合成srzro3;

步骤三,按摩尔比2.04:1,称取73.43重量份zno,26.57重量份sio2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成zn2sio4;

步骤四,按摩尔比1:1,称取79.09重量份bi2o3,20.91重量份zro2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成bi2zro5;

步骤五,按重量份称取,100重量份srtio3、11.24重量份bi2zro5、55.62重量份srzro3、0.09重量份mnco3、1.32重量份mgo、2.52重量份zn2sio4、0.84重量份bab2o4进行配料,以去离子水为球磨介质,采用2mm锆球研磨6h,150℃烘干、破碎,得介质材料;

步骤六,步骤五制得的介质材料,经过mlcc工序,按图1所示结构,以70ag30pd为内电极制成多层陶瓷电容器,在空气气氛中于1150℃烧结保温4h。

实施例5

步骤一,按摩尔比1.03:1,称取65.55重量份srco3,34.45重量份tio2,球磨混合、干燥,破碎过40目筛网,于1150℃温度煅烧2小时合成srtio3;

步骤二,按摩尔比1.03:1,称取55.24重量份srco3,44.76重量份zro2,球磨混合、干燥,破碎过40目筛网,于1200℃温度煅烧2小时合成srzro3;

步骤三,按摩尔比1.98:1,称取72.84重量份zno,27.16重量份sio2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成zn2sio4;

步骤四,按摩尔比1:2,称取65.41重量份bi2o3,34.59重量份zro2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成bi2zr2o7;

步骤五,按重量份称取,100重量份srtio3、11.65重量份bi2zr2o7、43.26重量份srzro3、0.06重量份mnco3、0.44重量份mgo、3.11重量份zn2sio4、3.11重量份bab2o4进行配料,以去离子水为球磨介质,采用2mm锆球研磨6h,150℃烘干、破碎,得介质材料;

步骤六,步骤五制得的介质材料,经过mlcc工序,按图3所示结构,以70ag30pd为内电极制成多层陶瓷电容器,在空气气氛中于1140℃烧结保温3h。

对比例

步骤一,按摩尔比1.03:1,称取65.55重量份srco3,34.45重量份tio2,球磨混合、干燥,破碎过40目筛网,于1150℃温度煅烧2小时合成srtio3;

步骤二,按摩尔比1.03:1,称取55.24重量份srco3,44.76重量份zro2,球磨混合、干燥,破碎过40目筛网,于1200℃温度煅烧2小时合成srzro3;

步骤三,按摩尔比1.98:1,称取72.84重量份zno,27.16重量份sio2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成zn2sio4;

步骤四,按摩尔比1:2,称取65.41重量份bi2o3,34.59重量份zro2,球磨混合、干燥,破碎过40目筛网,于900℃温度煅烧2小时合成bi2zr2o7;

步骤五,按重量份称取,100重量份srtio3、11.65重量份bi2zr2o7、43.26重量份srzro3、0.06重量份mnco3、0.44重量份mgo、3.11重量份bab2o4进行配料,以去离子水为球磨介质,采用2mm锆球研磨6h,150℃烘干、破碎,得介质材料;

步骤六,步骤(5)制得的介质材料,经过mlcc工序,按图3所示结构,以70ag30pd为内电极制成多层陶瓷电容器,在空气气氛中于1140℃烧结保温3h。

将实施例1至实施例5与对比例所制备的mlcc样品烧结后,经过倒角、端银、烧附、电镀后,测试样品的电学性能,其结果列于下表:

其中:k:介电常数;df:损耗角正切值;tcc:电容温度系数。

由上述数据可知本发明提供的适用于高压陶瓷脉冲电容器的介质材料,具有介电损耗低,工作温度区间(-55℃-125℃),良好的温度稳定性(-2500~-1600ppm/k),工作电场>30v/μm,击穿电场>60v/um,利用本发明可设计(-55℃-125℃)温度范围内的高压储能电容器,作为储能器件可以将大量的能量储存集中起来并在极短的时间内释放在负载上,形成强大的脉冲功率及较高的电流,有极高的产业化前景及工业应用价值。

通过对比例与实施例1至实施例5对比,本发明用于制备高压陶瓷脉冲电容器的介质材料,以srtio3为基础,与srzro3、zn2sio4、bix配合,通过引入zn2sio4并限定srtio3、srzro3、zn2sio4、bix的加入量以限定srtio3、srzro3、zn2sio4、bix之间的配比及bix的具体组成,有效将介质材料的介电常数控制在250±30的范围,适当降低损耗的同时将电容温度系数控制在-2500~-1600ppm/k的范围,以使制得的高压陶瓷脉冲电容器可用于设计(-55℃-125℃)温度范围内的高压储能电容器。

以上所述,仅为本发明的较佳实施例而已,故不能以此限定本发明实施的范围,即依本发明申请专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明专利涵盖的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1