兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法

文档序号:26193626发布日期:2021-08-06 18:47阅读:392来源:国知局
兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法

本发明属于高温压电陶瓷材料领域,具体涉及一种兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法。



背景技术:

压电材料是可以实现机械能和电能之间相互转换的一类重要的功能材料。高温压电材料在国防、航空航天、核能以及油井探测等高技术领域具有迫切的应用需求。例如航空航天飞行器内部发动机运动状况,需要高温压电加速度计的实时动态监测;原子核反应堆堆芯液位需要使用高温超声波定位探测器进行监测;汽车工业中的柴油机的燃油压电喷油嘴长期处于高温条件下工作;在深地层油气资源勘探中,需要高温压电测井系统来确定高温地层的地质构造和油井固实程度。高温压电器件的极限工作温度取决于压电材料具有压电性的上限温度,灵敏度取决于陶瓷的压电性能,工作可靠性取决于压电性能的温度稳定性。这相应地对压电材料性能也提出了更高的要求:即要求压电陶瓷具有高居里点、强压电性、低高温介电损耗。

通常,tc≥400℃的压电材料被称之为高温压电材料。高温压电陶瓷按照晶体结构可以分为钙钛矿、钨青铜和铋层状体系。其中,钙钛矿结构压电陶瓷的压电活性高,但是居里温度低。比如,目前市面上商用pzt压电器件受pzt陶瓷居里温度低(≤370℃)、1/2tc温度以上退极化现象和电导的增大等局限,长时间稳定工作温度在~150℃。钨青铜和铋层状结构压电陶瓷的tc高(>400℃),然而压电性能较差(<100pc/n)。因此,现有压电陶瓷材料无法满足200℃以上高温应用要求,那么研制兼具高压电性能和低损耗的高温压电陶瓷材料成为制备高温压电器件的首要任务。

(1-x)bisco3–xpbtio3二元体系陶瓷在准同型相界mpb(x=0.64)附近具有优异的压电性能,压电常数d33=460pc/n,居里温度tc=450℃,其压电常数堪比商用软性pzt材料,居里温度比pzt高出100℃。然而0.36bisco3–0.64pbtio3陶瓷室温下就具有相对高的介电损耗(tanδ~3%),同时导致机械品质因数较低。0.36bisco3–0.64pbtio3室温下的介电损耗是pzt-4或pzt-8陶瓷(tanδ~0.4%)的7倍,这表明将其作为功能元件制备的压电器件在谐振频率下工作时将产生过多的热量,导致电子元器件热失效。因此,探索有效降低bisco3–pbtio3二元体系压电陶瓷介电损耗的途径,使之满足居里温度tc>400℃、介电损耗tanδ<2%@200℃及压电性能d33≥250pc/n,是确保压电材料达到高温200℃应用的关键。



技术实现要素:

本发明提供了一种兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料,本发明通过引入钛酸锶铋(sr0.7bi0.2)tio3作为第三元与钪酸铋—钛酸铅bisco3-pbtio3形成三元系固溶体,并在此三元体系中添加1mol%的mno2,使bisco3-pbtio3陶瓷的介电损耗在室温到高温(25-200℃)范围内大幅度降低,与此同时还保持了高压电性能和高居里温度。

本发明还提供了一种上述高温压电陶瓷材料的制备方法,工艺简单、烧结温度低、成本低、适宜于大规模的工业化生产,具有广泛的应用前景。

本发明为了实现上述目的所采用的技术方案为:

本发明提供了一种兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料,所述高温压电陶瓷材料的通式为x(sr0.7bi0.2)tio3-(1-x-y)bisco3-ypbtio3-1mol%mno2,0.01≤x≤0.04,0.62≤y≤0.64。

本发明制备的高温压电陶瓷材料的介电损耗为tanδ=0.60%~0.85%@25℃、tanδ=1.22%~1.70%@200℃,居里温度为tc=415~450℃,压电性能为d33=250~371pc/n、kp=0.494~0.573、qm=115~171。

本发明还提供了一种上述兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料的制备方法,包括以下步骤:

(1)配料

按照x(sr0.7bi0.2)tio3-(1-x-y)bisco3-ypbtio3-1mol%mno2的化学计量分别称取srco3、过量1%的bi2o3、tio2、sc2o3、过量2%的pbo、mno2,将原料混合后,加入球磨介质,球磨,分离磨球,将原料混合物干燥,研磨后过60目筛;

(2)预烧

将过筛后的原料混合物预烧,预烧结束后冷却至室温,出炉,研磨后过60目筛,得到预烧粉;

(3)造粒及压片

将预烧粉中加入pva水溶液,造粒,过60目筛,制成球状粉粒,称取球状粉粒压制成圆片状坯件;

(4)排胶

将圆片状坯件放在氧化铝平板上,排胶后冷却至室温;

(5)烧结

将排胶后的圆片状坯件放在氧化铝平板上,高温烧结后冷却至室温;

(6)抛光烧银

将烧结后的陶瓷抛光,在陶瓷上下表面涂覆银浆,烧结银浆后自然冷却至室温;

(7)极化

将涂覆银浆的陶瓷放在硅油中施加直流电场进行极化即得。

进一步的,步骤(1)中,所述物料和球磨介质的料液比为2g:5ml;所述球磨为以锆球为磨球、无水乙醇为球磨介质,500~600转/分钟球磨24小时;所述干燥为60℃下干燥5h。

进一步的,步骤(2)中,所述预烧为以4℃/min的升温速率升温至800℃保温2小时;所述冷却的降温速率为5℃/min。

进一步的,步骤(3)中,所述pva水溶液的重量百分比为8%,加入量占预烧粉重量的5%;所述压制为在6mpa的压力下保压1分钟。

进一步的,步骤(4)中,所述排胶为以3℃/min的升温速率升温至600℃保温2小时;所述降温速率为5℃/min。

进一步的,步骤(5)中,所述高温烧结为以4℃/min的升温速率升温至1040℃保温2小时;所述降温速率为5℃/min。

进一步的,步骤(6)中,所述烧结为置于电阻炉中560℃保温30分钟。

进一步的,步骤(7)中,所述极化为在140℃硅油中施加4kv/mm的直流电场保持20分钟。

本发明的有益效果为:

(1)本发明制备的陶瓷材料兼具高压电性能和低损耗,该陶瓷的介电损耗在室温到高温(25-200℃)范围内大幅度降低,与此同时还保持了高压电性能和高居里温度,在高温压电器件领域具有广泛的应用前景。

(2)本发明制备工艺简单、烧结温度低、成本低、适宜于大规模的工业化生产,在高温压电加速度计传感器件、高温压电阀和高温压电马达驱动器、高温压电能量收集和深海油气井探测压电换能器方面具有广泛的应用前景。

附图说明

图1为实施例1和5制备的钛酸锶铋—钪酸铋—钛酸铅系压电陶瓷材料的xrd衍射图谱。

图2为实施例5制备的钛酸锶铋—钪酸铋—钛酸铅系压电陶瓷材料的sem扫描电镜显微图。

图3为实施例1和5制备的钛酸锶铋—钪酸铋—钛酸铅系压电陶瓷材料的介电常数与介电损耗角温谱图。

图4为实施例5制备的钛酸锶铋—钪酸铋—钛酸铅系压电陶瓷材料的常温压电常数d33测试图。

图5为实施例1和5制备的钛酸锶铋—钪酸铋—钛酸铅系压电陶瓷材料的压电常数d33随褪火温度变化图(a)和平面机电耦合系数kp随褪火温度变化图(b)。

具体实施方式

下面通过附图与实施例进一步阐述本发明,仅为解释本发明,并不对其内容进行限定。

实施例1

制备符合化学组成x(sr0.7bi0.2)tio3-(1-x-y)bisco3-ypbtio3-1mol%mn,x=0.03,y=0.62的改性压电陶瓷。

1、配料

按照0.03(sr0.7bi0.2)tio3-0.35bisco3-0.62pbtio3-1mol%mn的化学计量分别称取纯度为99%的srco30.1046g、纯度为99.9%过量1%的bi2o32.8007g、纯度为99%的tio21.7515g、纯度为99.9%的sc2o30.8069g、纯度为99.9%过量2%的pbo4.7192g、纯度为99%的mno20.0293g,将原料装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,物料和球磨介质的料液比为2g:5ml,用罐磨机500~600转/分钟球磨24小时,分离锆球,将原料混合物置于烘箱内在60℃下干燥5小时,用研钵研磨40分钟,过60目筛。

2、预烧

将步骤1过60目筛后的原料混合物置于氧化铝坩埚内,加盖,置于马弗炉内,以4℃/min的升温速率升温至800℃保温2小时,以5℃/min的降温速率冷却至室温,出炉,用研钵研磨30分钟,过60目筛,得到预烧粉。

3、造粒及压片

向步骤2过60目筛后的预烧粉中加入重量百分比为8%的pva水溶液,造粒,过60目筛,制成球状粉粒,称取0.6g球状粉粒将其放入直径为10mm的不锈钢模具内,用压片机在6mpa的压力下保压1分钟将其压制成圆片状坯件。

4、排胶

将步骤3的圆片状坯件放在氧化铝平板上,将氧化铝平板置于马弗炉中,以3℃/min的升温速率升温至600℃保温2小时,以5℃/min的降温速率冷却至室温。

5、烧结

将步骤4排完胶后的圆片状坯件放在氧化铝平板上,将氧化铝平板置于马弗炉中,以4℃/min的升温速率升温至1040℃保温2小时,以5℃/min的降温速率冷却至室温。

6、抛光

将步骤5烧结后的陶瓷两面用颗粒为1000目的砂纸打磨抛光至1mm厚,用酒精搽拭干净。

7、烧银

将步骤6抛光后的陶瓷上下表面涂覆银浆,置于电阻炉中560℃保温30分钟,自然冷却至室温,制备成0.03(sr0.7bi0.2)tio3-0.35bisco3-0.62pbtio3-1mol%mn陶瓷材料。

8、极化

将步骤7上下表面涂覆银浆的陶瓷放在140℃硅油中施加4kv/mm的直流电场保持20分钟,得到的0.03(sr0.7bi0.2)tio3-0.35bisco3-0.62pbtio3-1mol%mn陶瓷的压电性能如下:d33=358pc/n,g33=24.7(10-3vm/n)、kp=0.554、tanδ=0.85%@25℃、tanδ=1.62%@200℃、εr=1635、qm=115、tc=425℃。

本实施例制备的陶瓷的xrd衍射图谱见图1,介电常数与介电损耗角温谱图见图3,压电常数d33随褪火温度变化图(a)和平面机电耦合系数kp随褪火温度变化图(b)见图5。

实施例2

制备符合化学组成x(sr0.7bi0.2)tio3-(1-x-y)bisco3-ypbtio3-1mol%mn,x=0.03,y=0.63的改性压电陶瓷。

本实施例的配料步骤1中,按照0.03(sr0.7bi0.2)tio3-0.34bisco3-0.63pbtio3-1mol%mn的化学计量分别称取纯度为99%的srco30.1046g、纯度为99.9%过量1%的bi2o32.7221g、纯度为99%的tio21.7784g、纯度为99.9%的sc2o30.7838g、纯度为99.9%过量2%的pbo4.7953g、纯度为99%的mno20.0293g,其它步骤与实施例1相同,制备成0.03(sr0.7bi0.2)tio3-0.34bisco3-0.63pbtio3-1mol%mn陶瓷材料,其压电性能如下:d33=285pc/n,g33=22.8(10-3vm/n)、kp=0.496、tanδ=0.60%@25℃、tanδ=1.22%@200℃、εr=1413、qm=160、tc=435℃。

实施例3

制备符合化学组成x(sr0.7bi0.2)tio3-(1-x-y)bisco3-ypbtio3-1mol%mn,x=0.03,y=0.64的改性压电陶瓷。

本实施例的配料步骤1中,按照0.03(sr0.7bi0.2)tio3-0.33bisco3-0.64pbtio3-1mol%mn的化学计量分别称取纯度为99%的srco30.1046g、纯度为99.9%过量1%的bi2o32.6434g、纯度为99%的tio21.8054g、纯度为99.9%的sc2o30.7608g、纯度为99.9%过量2%的pbo4.8714g、纯度为99%的mno20.0293g,其它步骤与实施例1相同,制备成0.03(sr0.7bi0.2)tio3-0.33bisco3-0.64pbtio3-1mol%mn陶瓷材料,其压电性能如下:d33=250pc/n,g33=23.6(10-3vm/n)、kp=0.450、tanδ=0.82%@25℃、tanδ=1.32%@200℃、εr=1195、qm=120、tc=440℃。

实施例4

制备符合化学组成x(sr0.7bi0.2)tio3-(1-x-y)bisco3-ypbtio3-1mol%mn,x=0.01,y=0.62的改性压电陶瓷。

本实施例的配料步骤1中,按照0.01(sr0.7bi0.2)tio3-0.37bisco3-0.62pbtio3-1mol%mn的化学计量分别称取纯度为99%的srco30.0346g、纯度为99.9%过量1%的bi2o32.9050g、纯度为99%的tio21.6851g、纯度为99.9%的sc2o30.8467g、纯度为99.9%过量2%的pbo4.6844g、纯度为99%的mno20.0291g,其它步骤与实施例1相同,制备成0.01(sr0.7bi0.2)tio3-0.37bisco3-0.62pbtio3-1mol%mn陶瓷材料,其压电性能如下:d33=263pc/n,g33=35.7(10-3vm/n)、kp=0.516、tanδ=0.60%@25℃、tanδ=1.30%@200℃、εr=832、qm=171、tc=450℃。

实施例5

制备符合化学组成x(sr0.7bi0.2)tio3-(1-x-y)bisco3-ypbtio3-1mol%mn,x=0.02,y=0.62的改性压电陶瓷。

本实施例的配料步骤1中,按照0.02(sr0.7bi0.2)tio3-0.36bisco3-0.62pbtio3-1mol%mn的化学计量分别称取纯度为99%的srco30.0695g、纯度为99.9%过量1%的bi2o32.8523g、纯度为99%的tio21.7177g、纯度为99.9%的sc2o30.8266g、纯度为99.9%过量2%的pbo4.7004g、纯度为99%的mno20.0292g,其它步骤与实施例1相同,制备成0.02(sr0.7bi0.2)tio3-0.36bisco3-0.62pbtio3-1mol%mn陶瓷材料,其压电性能如下:d33=371pc/n,g33=30.5(10-3vm/n)、kp=0.573、tanδ=0.80%@25℃、tanδ=1.70%@200℃、εr=1376、qm=120、tc=440℃。

本实施例制备的陶瓷的xrd衍射图谱见图1,其sem扫描电镜显微图片见图2,介电常数与介电损耗角温谱图见图3,常温压电常数d33测试图见图4,压电常数d33随褪火温度变化图(a)和平面机电耦合系数kp随褪火温度变化图(b)见图5。

实施例6

制备符合化学组成x(sr0.7bi0.2)tio3-(1-x-y)bisco3-ypbtio3-1mol%mn,x=0.04,y=0.62的改性压电陶瓷。

本实施例的配料步骤1中,按照0.04(sr0.7bi0.2)tio3-0.34bisco3-0.62pbtio3-1mol%mn的化学计量分别称取纯度为99%的srco30.1399g、纯度为99.9%过量1%的bi2o32.7460g、纯度为99%的tio21.7838g、纯度为99.9%的sc2o30.7862g、纯度为99.9%过量2%的pbo4.7333g、纯度为99%的mno20.0294g,其它步骤与实施例1相同,制备成0.04(sr0.7bi0.2)tio3-0.34bisco3-0.62pbtio3-1mol%mn陶瓷材料,其压电性能如下:d33=293pc/n,g33=22.8(10-3vm/n)、kp=0.494、tanδ=0.72%@25℃、tanδ=1.45%@200℃、εr=1450、qm=130、tc=415℃。

(一)实施例1-6制备的陶瓷材料及对比样品的组成及性能测试如表1所示。

表1

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1