一种高性能碱性特种陶瓷及其制备方法与流程

文档序号:28219962发布日期:2021-12-29 07:00阅读:185来源:国知局
一种高性能碱性特种陶瓷及其制备方法与流程

1.本发明涉及特种陶瓷领域,尤其涉及一种高性能碱性特种陶瓷及其制备方法。


背景技术:

2.随着新能源产业的发展,如新能源汽车产量逐年递增,所用锂电池正负极材料的需求也随之大幅度增长,要求材料加工设备向大型、精细、无污染方向发展。
3.在锂电池电极材料加工和处理过程中,有两个极为关键的加工装备,一个是粉体粉碎设备,一个是粉体煅烧所需的窑炉装置。这两个设备均与电极材料进行接触,为了避免给电极材料带来污染,因此设备的衬里需要具有极好的耐磨性能,同时锂电池电池材料具有碱性,衬里材料同时还需就有极好的抗碱性侵蚀能力。
4.特种陶瓷作为一种新材料,近十几年来得到了迅速的发展。我国的特种陶瓷是五六十年代为支撑我国“两弹一星”的研制而发展起来的。经过几十年的发展,特种陶瓷已形成了一个行业。特种陶瓷不仅是发展我国信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,在锂电池行业的也已经广泛应用,全陶瓷无污染高速混合/粉碎一体化装备已经成为锂电行业的核心之一。锂电池电极材料煅烧用窑炉也有采用全陶瓷辊道窑的设计趋势。六铝酸钙作为一种碱性材料,对锂电池电极材料具有极好的耐侵蚀能力。目前六铝酸钙陶瓷的研究较少,如申请号为cn202010199630.1的发明专利“一种六铝酸钙基陶瓷法兰的制备方法”,其技术方案是以86~92重量%氧化铝、6~10重量%的氧化钙、1~2重量%的碳酸钙和0.5~2.5重量%的氧化锆为主要原料,制备出一种适用于电子烟产品中连接和固定金属陶瓷发热针的六铝酸钙基陶瓷法兰;但该专利中的生产方法烧成收缩和膨胀不好控制,如做成大型产品容易开裂。


技术实现要素:

5.本发明的目的是提供一种高性能碱性特种陶瓷及其制备方法。
6.本发明的与传统的先烧成后加工的工艺相比,可以大幅降低加工和精雕成本。
7.本发明专利制备出的高性能碱性特种陶瓷具有耐磨性好、强度高、抗碱性侵蚀能力强等优点,可以广泛应用于锂电池领域,为锂电池电极材料的加工和处理提供了一种极好的衬里材料。
8.为实现上述发明目的,本发明的技术方案是:一种高性能碱性特种陶瓷,包括主料和辅料,所述主料包括以下质量分数的组份,30~50wt%的六铝酸钙微粉、35~55wt%的氧化铝微粉、10~15wt%的碳酸钙微粉、0.1~1.0%的氧化钇;辅料包括促烧剂、分散剂液体结合剂以及水,促烧剂的质量为主料质量的0.1~0.5%、分散剂的质量为主料质量的0.5~1.0%、液体结合剂的质量为主料质量的10~20%,水的质量为主料质量的40~60%。
9.进一步地,所述六铝酸钙微粉的粒径为10μm~50μm;所述六铝酸钙微粉是经过1600℃煅烧生成的。经过1600℃煅烧后其二次煅烧的膨胀比例就基本可以确认了;后面六铝酸钙微粉、氧化铝微粉和碳酸钙微粉的加入量更容易确定。
10.进一步地,所述氧化铝微粉为煅烧氧化铝、活性氧化铝、板状刚玉、白刚玉中的一种或多种混合,所述氧化铝微粉的粒径为5μm~50μm 。
11.进一步地,所述碳酸钙微粉为活性碳酸钙、轻质碳酸、重质碳酸钙中的一种或多种混合,所述碳酸钙微粉的粒径为5μm~10μm 。
12.进一步地,所述氧化钇为纳米级氧化钇,所述氧化钇的纯度≥99.9%。
13.进一步地,所述促烧剂为tio2、mgo、sio2、alf3中的一种或多种。
14.进一步地,所述分散剂为聚丙烯酸铵、聚丙烯酸钠、柠檬酸铵及丙三醇中一种或多种。
15.进一步地,所述液体结合剂为聚乙烯醇溶液、硅溶胶、铝溶胶中的一种或多种,所述液体结合剂的浓度为8~30%。
16.一种高性能碱性特种陶瓷的制备方法,包括以下步骤:(1)按配方取主料并混合均匀,加水后置于球磨装置中球磨5~10小时;(2)将促烧剂、分散剂以及液体结合剂添加到球磨好的溶液中,搅拌0.5~1.5小时,得到混合均匀的料浆,球磨时料浆控制在60~80℃;(3)将混合均匀的料浆,制备成球状的造粒粉;(4)将球状的造粒粉置于具有弹性的模具中,通过等静压方式成型,得到陶瓷生坯;(5)将陶瓷生坯进行精雕,得到所需要的形状;(6)将精雕的后陶瓷生坯在1550~1750℃进行烧成,得到最终产品。
17.进一步地,所述步骤(3)中制备成球状的造粒粉时采用喷雾造粒的方式;所述六铝酸钙微粉经过1600℃煅烧生成的;精雕时采用四轴数控加工机床。
18.本发明的有益效果是 :1、由于原料中氧化铝和碳酸钙合成新的六铝酸钙时,产生的体积膨胀远远大于粉体烧结中产生的体积收缩,所以生坯烧结后体积变化较大,需要先烧结后再进行精雕,烧结后硬度较硬,雕刻难度会大大增加,且残品率也大大增高,本发明中采用煅烧产生的六铝酸钙为主要原料,因其体积膨胀效应在一次煅烧过程中已经发生,二次煅烧时膨胀效益会显著减小;同时利用原料中氧化铝和碳酸钙合成新的六铝酸钙时产生的体积膨胀,用两部分的体积膨胀来抵消粉体烧结中产生的体积收缩,一个体积膨胀小,一个体积膨胀大,综合两方面的调整,可以确保整个制品在烧成过程中的体积变化非常小,由于该方法制备的高性能特种陶瓷在烧成过程中的尺寸变化可控并且很小,生坯可以经过精雕后得到所需要的形状和尺寸,进而在烧成,与传统的先烧成后加工的工艺相比,可以大幅降低加工和烧结成本。
19.2、本发明的中利用氧化钇作为晶体生产抑制剂,使得六铝酸钙晶体在高温煅烧时保持微晶状态,提高烧结后的致密度,进而提高特种陶瓷的耐磨性能和导热性,加上六铝酸钙本身是一种碱性材料,使得本发明专利制备出的高性能碱性特种陶瓷具有耐磨性好、强度高、抗碱性侵蚀能力强等优点,可以广泛应用于锂电池领域,为锂电池电极材料的加工和处理提供了一种极好的衬里材料。
附图说明
20.图1是实施例6中的产品在5μm下的微观结构。
具体实施方式
21.下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述。
22.实施例1:一种高性能碱性特种陶瓷,包括主料和辅料,主料包括以下质量分数的组份,39wt%的六铝酸钙微粉、45wt%的氧化铝微粉、15wt%的碳酸钙微粉、1%的氧化钇;六铝酸钙微粉的粒径为10μm~50μm;六铝酸钙微粉是经过1600℃煅烧生成的。氧化铝微粉为煅烧氧化铝,氧化铝微粉的粒径为5μm~50μm ;碳酸钙微粉为活性碳酸钙,碳酸钙微粉的粒径为5μm~10μm ;氧化钇为纳米级氧化钇,氧化钇的纯度≥99.9%。
23.辅料包括促烧剂、分散剂液体结合剂以及水,促烧剂的质量为主料质量的0.1%、分散剂的质量为主料质量的0.5%、液体结合剂的质量为主料质量的10%,水的质量为主料质量的40%;促烧剂为tio2;分散剂为聚丙烯酸铵;液体结合剂为聚乙烯醇溶液;液体结合剂的浓度为8%。
24.实施例2:一种高性能碱性特种陶瓷,包括主料和辅料,主料包括以下质量分数的组份,30wt%的六铝酸钙微粉、55wt%的氧化铝微粉、14.5wt%的碳酸钙微粉、0.5%的氧化钇;六铝酸钙微粉的粒径为10μm~50μm。氧化铝微粉为活性氧化铝,氧化铝微粉的粒径为5μm~50μm ;碳酸钙微粉为轻质碳酸,碳酸钙微粉的粒径为5μm~10μm ;氧化钇为纳米级氧化钇,氧化钇的纯度≥99.9%。
25.辅料包括促烧剂、分散剂液体结合剂以及水,促烧剂的质量为主料质量的0.3%、分散剂的质量为主料质量的0.8%、液体结合剂的质量为主料质量的15%,水的质量为主料质量的50%。促烧剂为mgo;分散剂为聚丙烯酸钠;液体结合剂为硅溶胶,液体结合剂的浓度为20%。
26.实施例3:一种高性能碱性特种陶瓷,包括主料和辅料,主料包括以下质量分数的组份, 50wt%的六铝酸钙微粉、35wt%的氧化铝微粉、14.9wt%的碳酸钙微粉、0.1%的氧化钇;六铝酸钙微粉的粒径为10μm~50μm;氧化铝微粉为板状刚玉,氧化铝微粉的粒径为5μm~50μm ;碳酸钙微粉为重质碳酸钙,碳酸钙微粉的粒径为5μm~10μm ;氧化钇为纳米级氧化钇,氧化钇的纯度≥99.9%。
27.辅料包括促烧剂、分散剂液体结合剂以及水,促烧剂的质量为主料质量的0.5%、分散剂的质量为主料质量的1.0%、液体结合剂的质量为主料质量的20%,水的质量为主料质量的60%;促烧剂为sio2;分散剂为柠檬酸铵。液体结合剂为铝溶胶,液体结合剂的浓度为30%。
28.实施例4:一种高性能碱性特种陶瓷,包括主料和辅料,主料包括以下质量分数的组份, 50wt%的六铝酸钙微粉、39.2wt%的氧化铝微粉、10wt%的碳酸钙微粉、0.8%的氧化钇;六铝酸钙微粉的粒径为10μm~50μm。氧化铝微粉为白刚玉,氧化铝微粉的粒径为5μm~50μm 。碳酸钙微粉为活性碳酸钙、轻质碳酸、重质碳酸钙中的多种混合,碳酸钙微粉的粒径为5μm~10μm 。氧化钇为纳米级氧化钇,氧化钇的纯度≥99.9%。
29.辅料包括促烧剂、分散剂液体结合剂以及水,促烧剂的质量为主料质量的0.2%、分散剂的质量为主料质量的0.6%、液体结合剂的质量为主料质量的12%,水的质量为主料质量的45%;促烧剂为alf3;分散剂为丙三醇;液体结合剂为聚乙烯醇溶液、硅溶胶、铝溶胶中的
多种混合,液体结合剂的浓度为15%。
30.实施例5:参考实施例4,氧化铝微粉为煅烧氧化铝、活性氧化铝、板状刚玉、白刚玉中的多种混合;促烧剂为tio2、mgo、sio2、alf3中的多种混合;分散剂为聚丙烯酸铵、聚丙烯酸钠、柠檬酸铵及丙三醇的多种混合。
31.实施例6:一种高性能碱性特种陶瓷的制备方法,按实施例1的配方取主料并混合均匀,加水后置于球磨装置中球磨5小时;将促烧剂、分散剂以及液体结合剂添加到球磨好的溶液中,搅拌0.5小时,得到混合均匀的料浆,球磨时料浆控制在60℃;将混合均匀的料浆,采用喷雾造粒的方式制备成球状的造粒粉;将球状的造粒粉置于具有弹性的模具中,通过等静压方式成型,得到陶瓷生坯;将陶瓷生坯进行精雕,得到所需要的形状;将精雕的后陶瓷生坯在1550℃进行烧成,精雕时采用四轴数控加工机床;得到最终产品。
32.实施例7:一种高性能碱性特种陶瓷的制备方法,按实施例2的配方取主料并混合均匀,加水后置于球磨装置中球磨7小时;将促烧剂、分散剂以及液体结合剂添加到球磨好的溶液中,搅拌1小时,得到混合均匀的料浆,球磨时料浆控制在70℃;将混合均匀的料浆,制备成球状的造粒粉;将球状的造粒粉置于具有弹性的模具中,通过等静压方式成型,得到陶瓷生坯;将陶瓷生坯进行精雕,得到所需要的形状;将精雕的后陶瓷生坯在1650℃进行烧成,精雕时采用四轴数控加工机床;得到最终产品。
33.实施例8:一种高性能碱性特种陶瓷的制备方法,按实施例3的配方取主料并混合均匀,主料中的六铝酸钙微粉经过1600℃煅烧生成的;加水后置于球磨装置中球磨10小时;将促烧剂、分散剂以及液体结合剂添加到球磨好的溶液中,搅拌1.5小时,得到混合均匀的料浆,球磨时料浆控制在80℃;将混合均匀的料浆,采用喷雾造粒的方式制备成球状的造粒粉;将球状的造粒粉置于具有弹性的模具中,通过等静压方式成型,得到陶瓷生坯;将陶瓷生坯进行精雕,得到所需要的形状;将精雕的后陶瓷生坯在1750℃进行烧成,精雕时采用四轴数控加工机床;得到最终产品。
34.所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1