一种由铅锌矿直接制备钙钛矿吸光层薄膜的方法与流程

文档序号:31859675发布日期:2022-10-19 04:21阅读:199来源:国知局
一种由铅锌矿直接制备钙钛矿吸光层薄膜的方法与流程

1.本发明涉及钙钛矿太阳电池领域及铅锌冶金领域,尤其涉及一种由铅锌矿直接制备钙钛矿吸光层薄膜的方法。


背景技术:

2.无机卤素钙钛矿太阳电池由于不含有机阳离子,在高温下不容易分解,其结构组成为cspbx3,其中x为卤素原子,具有合适的禁带宽度和非常好的光学、电学性能,元素组成地壳含量丰富,电池制备可以溶液化加工,易于大规模化生产。但是无机卤素钙钛矿由于铯的离子半径太小,使得其容忍度因子很低,在空气中容易发生结构相变,变成无光学活性的黄色相;且制备无机钙钛矿需要使用昂贵的惰性气氛手套箱,制备条件非常苛刻,使得其应用前景非常不乐观。此外,制备钙钛矿薄膜通常需碘化铯、碘化铅、溴化铅等昂贵的金属卤化物材料。其中最重要的原料为碘化铅,需要从铅精矿进行一系列复杂的反应后得到铅,再经过加碘得到碘化铅,其中需要高耗能的火法冶金等过程;碘化铅价格昂贵,制备成本高。
3.铅锌矿,是指富含金属元素铅和锌的矿产。铅锌用途广泛,用电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等领域。此外,铅金属在核工业、石油工业等部门也有较多的用途。我国的铅锌矿主要集中在云南、内蒙古、甘肃、广东、湖南和广西。在地壳中存在大量铅锌矿,铅矿和锌矿一般处于伴生状态,铅锌冶金是分离铅和锌的过程,耗费了大量能源,也存在一定的铅或锌的损失。通过初步浮选之后得到的铅锌精矿中还需要进行精炼,比如火法冶炼、电解精炼等过程,才能得到可以利用的纯铅、纯锌。
4.制备高效稳定的无机钙钛矿太阳电池,是实现太阳能资源高效利用的有效途径,未来钙钛矿大规模生产必将使用大量铅锌矿资源;而更加合理的利用铅锌矿资源,解决冶金过程中的高耗能、高污染、原料浪费问题,将对资源利用、环境保护产生巨大效益。


技术实现要素:

5.本发明的目的在于提出一种由铅锌矿直接制备钙钛矿吸光层薄膜的方法,实现资源高效利用,最大程度利用太阳能资源和铅锌矿资源。
6.为了实现上述目的,本发明提出的一种由铅锌矿直接制备钙钛矿吸光层薄膜的方法包括以下步骤:
7.a:取已经过初步浮选、已知铅和锌含量的铅锌精矿,加入混合酸溶液,加热反应,得到含二氧化硅和不溶杂质的滤渣以及富含锌铅的滤液;
8.b:将所述滤液高温蒸发结晶,得到铅锌混合钙钛矿前驱体原料,将铅锌混合钙钛矿前驱体原料溶于有机强极性溶液中,加入适量卤化铯,配置成钙钛矿前驱体溶液;
9.c:使用所述钙钛矿前驱体溶液沉积成钙钛矿吸光层薄膜,并将所述钙钛矿吸光层薄膜退火。
10.优选地,所取铅锌精矿为铅锌混合精矿、铅精矿、锌精矿中的一种或多种。
11.优选地,按照所需钙钛矿吸光层薄膜成分取铅锌精矿后破碎混合,得到特定铅锌
比例的碎矿,铅锌的摩尔比为1:0.25~1:4。
12.优选地,所述混合酸为醋酸和卤素酸的混合溶液,加入量为铅锌总物质的量的1.1~2倍,其中,所述卤素酸包括盐酸、氢碘酸、氢溴酸中的一种或多种。
13.优选地,加热反应温度为80~120℃,反应时间为30~180分钟。
14.优选地,所述有机强极性溶液为二甲基亚砜、n,n-二甲基亚酰胺、甲氧基乙醇中的一种或多种;钙钛矿前驱体溶液的浓度为0.5~2mol/l。
15.优选地,所述卤化铯物质的量为铅锌物质的量之和的0.9~1.1倍,卤化铯为碘化铯和溴化铯中的一种或两种。
16.优选地,制备铅锌钙钛矿吸光层薄膜的方法为滴涂、刮涂、旋涂、狭缝涂布中的一种或多种。
17.优选地,所述退火温度为150~300℃。
18.本发明采用的技术原理如下:
19.锌的离子半径比铅小,掺锌可以提升无机钙钛矿的容忍度因子,使无机钙钛矿薄膜的相稳定性提升。本发明通过醋酸的混合溶液,将铅锌精矿中的铅和锌加热溶入溶液;而不溶于酸的杂质,如二氧化硅、银等进入到滤渣;不再需要如电解精炼、火法冶金的冶金过程就可以对铅锌资源加以利用。蒸干含铅锌溶液中的水分后,用有机极性溶剂溶解,加入卤化铯,配置成无机钙钛矿前驱体溶液,溶液中的醋酸根可以调节薄膜的结晶过程,使晶粒增大,薄膜更加平整;高温退火后除去醋酸根,得到纯的卤化无机钙钛矿薄膜;铅锌混合的钙钛矿薄膜相稳定性好,根据该薄膜进一步构建的太阳电池光电转换效率高、空气温度性好。
20.本发明与现有的无机钙钛矿太阳电池制备技术和铅锌冶金技术相比具有以下有益效果:
21.铅锌精矿分别提取纯锌、铅困难,再由铅锌金属制备碘化铅、碘化锌工艺复杂、耗能高;而无机钙钛矿容忍度因子低,空气条件下结构稳定性差。本发明通过简单的化学反应,除去了铅锌矿中二氧化硅和杂质,由铅锌矿直接制备了掺锌的无机钙钛矿太阳电池,不再需要高耗能、高污染的火法冶金、电解精炼等过程;所制备的无机钙钛矿太阳电池稳定性好,效率高,工艺简单,同时简化了传统冶金流程,提升了资源利用水平。
附图说明
22.图1为实施例1所制备的钙钛矿吸光层薄膜的扫描电子显微镜图;
23.图2为实施例1所制备的钙钛矿吸光层薄膜的x射线衍射图谱;
24.图3为实施例1所制备的太阳电池器件的截面sem图;
25.图4为实施例2所制备的太阳电池器件的jv曲线图;
26.图5为实施例2所制备的钙钛矿吸光层薄膜的吸收曲线图。
具体实施方式
27.下面通过实施例具体说明本发明的实施方式,以下实施例旨在说明本发明而不是对本发明保护范围进一步限定。
28.实施例1
29.取锌含量65%、铅含量2%的锌精矿10g,铅含量50%、锌含量2%的铅精矿15g,破
碎混合,使用0.1l浓度为1mol/l的醋酸、氢碘酸混合酸(醋酸和氢碘酸的摩尔比为1:1)加热到80℃溶解反应40分钟,使用抽滤装置过滤掉滤渣;得到的滤液后100℃蒸发结晶,得到的晶体60℃烘干12小时;使用0.2l二甲基亚砜/n,n-二甲基甲酰胺(二甲基亚砜和n,n-二甲基甲酰胺的体积比为1:4)的混合溶剂溶解上述晶体,加入36g碘化铯,配置成0.7mol/l的cspb
0.26
zn
0.74
i3的钙钛矿前驱体溶液。
30.在清洗干净的ito导电玻璃基地上制备氧化锡电子传输层,臭氧处理10分钟后,使用旋涂法在ito/sno2上以3000转/分钟、30秒的参数沉积无机钙钛矿薄膜,再将薄膜在空气中200℃退火10分钟;之后在钙钛矿薄膜上制备ptaa传输层材料后通过热蒸发蒸镀银电极,完成太阳电池制备。所制备的薄膜扫描电子显微镜图(sem)如图1,x射线衍射图谱(xrd)如图2,所制备的器件截面sem图如图3。所制备的太阳电池光电转换效率达到13.4%,在空气中存放25天器件效率未发生衰减。
31.实施例2
32.取锌含量25%、铅含量50%的铅锌精矿167g,破碎碾磨,使用1.5l浓度为1.1mol/l的醋酸、氢碘酸、氢溴酸混合酸(醋酸:氢碘酸:氢溴酸(摩尔比)=1:0.7:0.3)加热到80℃溶解反应80分钟,使用抽滤装置过滤掉滤渣;得到的滤液后100℃蒸发结晶,得到的晶体70℃烘干7小时;使用1l二甲基亚砜溶剂溶解上述晶体,加入182g碘化铯和64g溴化铯,配置成1mol/l的cspb
0.38
zn
0.62i2.1
br
0.9
的钙钛矿前驱体溶液;在清洗干净的fto导电玻璃基地上制备氧化镍电子传输层,臭氧处理10分钟后,使用旋涂法在fto/氧化镍上刮涂法制备无机钙钛矿薄膜,再将薄膜在空气中160℃退火15分钟;之后在钙钛矿薄膜上制备pcbm传输层材料后通过热蒸发蒸镀银电极,完成太阳电池制备。所制备的太阳电池光电转换效率达到17.4%,jv曲线见图4,在空气中存放40天器件效率未发生衰减。所制备的钙钛矿吸光层薄膜的吸收曲线如图5,禁带宽度为1.70ev。
33.实施例3
34.取锌含量45%、铅含量4%的锌精矿5g,铅含量60%、锌含量1%的铅精矿25g,破碎混合,使用1l浓度为0.1mol/l的醋酸、氢碘酸混合酸(醋酸:氢碘酸(摩尔比)=1:1)加热到85℃溶解反应100分钟,使用抽滤装置过滤掉滤渣;得到的滤液后蒸发结晶,得到的晶体80℃烘干8小时;使用0.1l二甲基亚砜/甲氧基乙醇(二甲基亚砜和甲氧基乙醇的体积比为1:1)的混合溶剂溶解上述晶体,加入26g碘化铯,配置成1mol/l的cspb
0.64
zn
0.36
i3的钙钛矿前驱体溶液。
35.在清洗干净的ito导电玻璃基地上制备氧化锡电子传输层,臭氧处理10分钟后,使用旋涂法在ito/sno2上以滴涂法制备无机钙钛矿薄膜,再将薄膜在空气中250℃退火10分钟;之后在钙钛矿薄膜上制备cuscn传输层材料,最后通过热蒸发蒸镀金电极,完成太阳电池制备。所制备的太阳电池光电转换效率达到14.4%。
36.对比例1
37.0.461克碘化铅和0.259克碘化铯,用1ml二甲基亚砜/n,n-二甲基甲酰胺(1:1)的混合溶剂溶解,配制得到1mol/l的无掺杂cspbi3钙钛矿前驱体溶液,在手套箱中以4000转每分钟的转速在ito/sno2上旋涂沉积薄膜,之后转移到300℃热台上,薄膜变成黑色,十秒后发生相变转变为黄色相的钙钛矿薄膜,此薄膜不具备吸收太阳能的能力。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1