低分子量聚四氟乙烯粉末及其制造方法

文档序号:3674355阅读:312来源:国知局
专利名称:低分子量聚四氟乙烯粉末及其制造方法
技术领域
本发明涉及低分子量聚四氟乙烯粉末及其制造方法。
背景技术
分子量在60万以下的低分子量聚四氟乙烯〔PTFE〕粉末(也称为PTFE微粉)不仅化学稳定性优异、表面能极低,而且难以产生原纤化,因而作为提高平滑性和涂膜表面质感的添加剂用于塑料、油墨、化妆品、涂料、脂膏等的制造(例如参见专利文献1)。作为低分子量PTFE的制造方法,已知使高分子量PTFE和特定的氟化物在高温下接触反应而热分解的方法(例如参见专利文献2);对高分子量PTFE的粉末或成型体照射电离性放射线的方法(例如参见专利文献3);等方法。对于将高分子量PTFE热分解的方法和对高分子量PTFE照射放射线的方法,从与设备相关的成本和便利性方面来看未必有利。作为低分子量PTFE的制造方法,还已知在链转移剂的存在下将单体TFE直接聚合的方法。例如在专利文献4中提出了一种方案,使用碳原子数为1 3的氟代烷烃或氟氯烷烃作为链转移剂(调聚体)进行聚合。虽然如专利文献4的情况中,使用何种方法进行聚合作为工业上的聚合方法还不明确,但大致分为悬浮聚合和乳液聚合。悬浮聚合中,在链转移剂存在下,不使用表面活性剂或使用有限量的表面活性剂, 使聚合引发剂分散在水性介质中,通过使单体TFE聚合或使能与TFE共聚的单体和TFE聚合,从而直接分离低分子量PTFE的颗粒状粉末(例如参见专利文献5和6)。悬浮聚合方法中,利用搅拌的高剪切,使初期形成的聚合物在聚合早期阶段凝固,在水主要作为热传递介质发挥作用的气体-固体反应中在固体颗粒上接连不断地引起聚合(例如参见专利文献
7)。悬浮聚合的情况下,虽然不使用表面活性剂或使用有限量的表面活性剂能够直接得到低分子量PTFE的粉末,但难以调整粒径。与此相对,乳液聚合中,在链转移剂存在下,使作为聚合引发剂和乳化剂的含氟表面活性剂分散在水性介质中,通过使单体TFE聚合或使能与TFE共聚的单体和TFE聚合,得到低分子量PTFE。这种情况下,与悬浮聚合不同,由于存在含氟表面活性剂,用乳液聚合能得到包含1 μ m以下乳化颗粒(也称为胶束、一次颗粒)的水性分散液(例如参见专利文献
8)。可将所得到的水性分散液直接或将其浓缩后用于水性涂料等用途。由乳液聚合得到的低分子量PTFE作为粉末使用的情况下,通过使上述水性分散液凝析,能够制成粉末颗粒(微粉)。作为通过乳液聚合得到的低分子量PTFE粉末颗粒的特征,与通过悬浮聚合得到的粉末颗粒相比,比表面积大,为7 20m2/g(偶尔为5 20m2/g),颗粒柔软,所以例如提高涂膜表面质感等对表面进行改性的效果强。并且,吸油量也多,可得到对基体材料稳定的分散体。进而,通过乳液聚合得到的低分子量PTFE粉末颗粒可以利用上述的凝析工序的条件来调整粒径,在这方面是优选的。
但是,上述的乳液聚合中,需要使用含氟表面活性剂等昂贵的物质作为乳化剂,所以成本高。并且,PTFE颗粒中残存表面活性剂时,有时导致着色等。由此,需要不添加这些含氟表面活性剂来进行聚合的PTFE的制造方法。作为不添加含氟表面活性剂来进行聚合的方法,已知在水性介质中使用TFE和水溶性过氧化物进行反应的TFE的悬浮聚合法(例如参见非专利文献1)。在专利文献9中也记载了一种方法,其中,不添加表面活性剂,在水性介质中以过氧化丁二酰为聚合引发剂进行TFE聚合,得到水性分散液。但是,对于专利文献9的实施例中所记载的水性分散液,聚合物固体成分浓度也仅仅为6. 5重量%,很稀,如果考虑到生产率,则非常缺乏实用性。并且,专利文献9没有记载任何数据提示链转移剂的添加、所得到的聚合物的乳化粒径和分子量。并且,作为不添加含氟表面活性剂进行聚合的方法,还公开了在水性介质中使用链转移剂和水溶性过氧化物使TFE发生乳液聚合反应、或使能与TFE共聚的单体和TFE发生乳液聚合反应的方法(例如参见专利文献10)。现有技术文献专利文献专利文献1 日本特开平10-147617号公报专利文献2 日本特开昭61-162503号公报专利文献3 日本特开昭48-78252号公报专利文献4 日本特开昭51-41085号公报专利文献5 国际公开第2004/050727号小册子专利文献6 日本特开2005-2322号公报专利文献7 日本特表2006-509072号公报专利文献8 日本特开平7-1658 号公报专利文献9 美国专利第2534058号说明书专利文献10 日本特开2009-1745号公报非专利文献非专利文献1 氟树脂手册编者里川孝臣日刊工业新闻社(1990年)、27页

发明内容
发明要解决的课题但是,对于如专利文献8、10所述通过乳液聚合进行的聚合,所得到的粉末用作涂料等的添加剂的情况下,在分散性、粘度等方面有改善的空间。并且,对于如专利文献5 7所述通过悬浮聚合进行的聚合,在涂膜的外观、透明性、质感等方面有改善的空间。鉴于上述现状,本发明提供一种低分子量聚四氟乙烯粉末及其制造方法,通过将该低分子量聚四氟乙烯粉末用作涂料等的添加剂,能够形成具有优异的质感和平滑性的涂膜,同时能够改善分散性、粘度。用于解决课题的方法本发明涉及一种低分子量聚四氟乙烯粉末的制造方法,其特征在于,该制造方法包括下述工序乳液聚合工序,在聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合,生成乳化颗粒;凝集工序,使上述乳化颗粒凝集,生成凝集粉末;和悬浮聚合工序,在上述凝集粉末、聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合。并且,本发明还涉及由上述低分子量聚四氟乙烯粉末的制造方法得到的低分子量聚四氟乙烯粉末。进而,本发明还涉及含有上述低分子量聚四氟乙烯粉末的添加剂。而且,本发明还涉及含有上述低分子量聚四氟乙烯粉末的组合物。以下详细说明本发明。本发明将乳液聚合和悬浮聚合合用。乳液聚合中得到的粉末能够稳定地生产,用作涂料等的添加剂时,能够提高涂膜表面的质感、平滑性,并且由于吸油量也多,所以容易微分散在基体材料(对象材料)中。悬浮聚合中,不像乳液聚合那样需要凝析工序,所得到的粉末的分散性优异,可得到硬粉末。通过本发明的制造方法得到的低分子量聚四氟乙烯粉末兼具乳液聚合、悬浮聚合各自的优点,能够提高涂膜表面的质感、平滑性,并且能够改善分散性、粘度。本发明的制造方法优选在上述乳液聚合工序和/或悬浮聚合工序中存在链转移剂,更优选通过在乳液聚合工序中添加链转移剂而使链转移剂存在于两工序中。通过添加上述链转移剂,能够调整所得到的低分子量PTFE的分子量,能够用作在各种对象材料中添加的添加剂,并能够提高其分散性。本发明的低分子量聚四氟乙烯粉末(以下也称为“低分子量PTFE粉末”)的制造方法优选包括添加工序,将至少四氟乙烯(TFE)、链转移剂、聚合引发剂和水性介质添加在反应容器中。本发明的制造方法中,将链转移剂与聚合引发剂(其为水溶性过氧化物)合用,通过自乳化作用将TFE乳液聚合,或通过使用表面活性剂进行乳液聚合。即,本发明的制造方法优选聚合引发剂为水溶性过氧化物、和/或上述乳液聚合工序为在表面活性剂的存在下进行聚合的工序。添加在反应容器内的TFE、链转移剂、聚合引发剂和水性介质只要至少在乳液聚合工序之前添加到反应容器内即可,对其添加顺序没有特别限定,通常通过添加聚合引发剂来引发乳液聚合工序。作为上述链转移剂,优选为选自由氢、低级饱和烃、低级卤代烃和低级醇组成的组中的至少一种化合物。作为上述低级饱和烃,优选例如甲烷、乙烷、丙烷、丁烷、己烷、环己烷等碳原子数为1 6的直链状、支链状或环状烷烃。作为上述低级卤代烃,优选例如CH3Cl、CH2Cl2, CH2CF2, CHCF3等卤代烃。作为上述低级醇,优选例如甲醇、乙醇等碳原子数为1 3的醇。从链转移能力的方面出发,上述链转移剂更优选为乙烷或丙烷。上述链转移剂既可以在聚合开始前一次性添加到反应容器中,也可以在聚合中分多次添加,或者还可以在聚合中连续添加。链转移剂的添加量根据其链转移能力、反应温度、聚合压力或聚合引发剂的添加量等聚合条件的不同,其适合的范围不同,所以不能一概而定,但相对于反应容器中存在的 TFE,链转移剂的添加量优选为0. 01 20摩尔%,更优选为02 10摩尔%。如果上述添加量相对于反应容器中存在的TFE小于0. 01摩尔%,则生成高分子量成分,向基体添加时的分散性有可能差。如果上述添加量超过20摩尔%,则有可能生成分子量为数千左右的极低分子量的成分。这种情况下,高温挥发成分多,不适合用于例如向基体分散的分散工序的温度超过300°C的这样的用途,用途有时受限。上述聚合引发剂能够使用一直以来在TFE的聚合中使用的任意聚合引发剂。为了在不存在含氟表面活性剂的条件下进行乳液聚合,优选水溶性过氧化物。在本发明的制造方法中,作为上述水溶性过氧化物,可举出例如过硫酸盐、亚硫酸盐、水溶性有机过氧化物等。作为上述过硫酸盐,没有特别限定,可举出例如过硫酸铵〔APS〕、过硫酸钾〔KPS〕等。作为上述亚硫酸盐,没有特别限定,可举出例如亚硫酸铵、亚硫酸钾等。作为上述水溶性有机过氧化物,可举出例如过氧化苯甲酰、过氧化丁二酰〔DSP〕、 过氧化物二戊二酸等。将上述水溶性过氧化物用于聚合引发剂时,来自于引发剂的聚合物末端基团具有亲水性的末端官能团,例如具有羧基、磺酸基或羟基。在APS、KPS、DSP的情况下,末端基团成为羧基。本发明的制造方法中,如上所述,将过硫酸盐、亚硫酸盐、水溶性有机过氧化物的任一类用于聚合引发剂,来自于引发剂的末端都为亲水性基团,所以即使在不存在含氟表面活性剂的条件下也能够生成乳化颗粒。作为上述聚合引发剂,既可以仅添加一种,也可以添加两种以上。作为聚合引发剂,其中优选使聚合物末端基团为羧基的聚合引发剂。考虑到上述水溶性过氧化物的适合的分解温度、处理的简便性、成本、聚合物末端结构时,作为上述水溶性过氧化物,更优选选自由过硫酸铵、过硫酸钾、亚硫酸铵、亚硫酸钾和过氧化丁二酰组成的组中的至少一种化合物。上述水溶性过氧化物的添加量大大依赖于其种类、合用的链转移剂的种类和添加量、或者聚合温度和聚合压力等聚合条件。因此,适合的添加量根据聚合情况的不同而不同,所以不能一概而定,但在生成具有亲水性末端基团(该基团赋予乳化作用)的聚合物链的方面,上述水溶性过氧化物优选相对于水性介质为10 3000ppm。上述添加量相对于水性介质小于IOppm时,生产率有可能降低。并且,有可能得不到低分子量PTFE的乳化颗粒, 而生成高分子量PTFE,如上所述易于产生在基体中的分散不良。更优选的添加量是相对于水性介质为50 2000ppm。作为上述聚合引发剂,优选将过硫酸盐或亚硫酸盐与水溶性有机过氧化物合用。 这种情况下,作为上述聚合引发剂,选择选自由过硫酸盐和亚硫酸盐组成的组中的至少一种和至少一种水溶性有机过氧化物即可,也可以使用具有聚合引发作用的其他试剂。上述过硫酸盐和亚硫酸盐的半衰期短,从聚合开始时起作为聚合引发剂发挥作用,与此相对,上述有机过氧化物的半衰期较长,与上述过硫酸盐和亚硫酸盐相比,开始作为聚合引发剂发挥作用较晚。因此,通过将两者组合,能够使分子量分布窄小。如此合用聚合引发剂在液温 40°C以上且小于100°C进行聚合时是特别优选的。上述“液温”乃作为聚合反应液的水性介质的温度。
上述聚合引发剂优选含有过硫酸盐或亚硫酸盐和/或水溶性有机过氧化物、以及氧化还原催化剂。由于含有氧化还原催化剂,在低温也能够进行反应。如此合用氧化还原催化剂的方法在例如液温5 40°C进行聚合时是特别优选的。上述“过硫酸盐或亚硫酸盐和/或有机过氧化物、以及氧化还原催化剂”可以为以下5种组合中的任一种组合过硫酸盐与氧化还原催化剂;亚硫酸盐与氧化还原催化剂;有机过氧化物与氧化还原催化剂;过硫酸盐、有机过氧化物和氧化还原催化剂;亚硫酸盐、有机过氧化物和氧化还原催化剂。上述过硫酸盐、亚硫酸盐、有机过氧化物和氧化还原催化剂分别可以使用2种以上。作为上述过硫酸盐、亚硫酸盐和有机过氧化物,能够使用前文已述的各物质。作为上述氧化还原催化剂,没有特别限定,可举出例如羰基金属-四氯化碳混合物、过氧化物-铁(II)化合物的混合物等。并且,作为上述聚合引发剂,只要至少一种是水溶性的即可。上述聚合弓I发剂既可以在聚合开始时一次性地存在于反应容器中,也可以在聚合中分多次添加,或者还可以在聚合中连续添加。对上述水性介质没有特别限定,但是例如优选为经去离子后的高纯度的纯水。上述乳液聚合工序是至少将四氟乙烯聚合而生成乳化颗粒的工序。乳液聚合只要能够生成乳化颗粒就没有特别限定。作为上述乳化颗粒,优选为分散于水性介质中的平均一次粒径为1 μ m以下的低分子量PTFE的颗粒。在上述乳液聚合工序中,以上述乳液聚合工序中生成的低分子量PTFE的总量为 100质量%时,低分子量PTFE的90质量%以上以水性分散液的状态存在。更优选为95质量%以上,进一步优选为98质量%以上以水性分散液的状态存在。上述“以水性分散液的状态存在”意味着在上述乳液聚合工序中生成的低分子量 PTFE不发生凝固而以乳化颗粒的状态存在。即,只要上述低分子量PTFE的90质量%以上以乳化颗粒的状态存在即可。更优选为95质量%以上,进一步优选为98质量%以上以乳化颗粒的状态存在。凝固的低分子量PTFE的固体成分的量优选小于乳液聚合工序中生成的低分子量 PTFE的10质量%,更优选小于5质量%,进一步优选小于2质量%。上述乳液聚合工序中所生成的乳化颗粒(分散颗粒)优选平均一次粒径为50 lOOOnm。更优选为100 lOOOnm,进一步优选为100 300nm。上述平均一次粒径能够如下确定制作水性分散液的单位长度的550nm透射光的透过率与平均一次粒径的标准曲线,所述水性分散液的聚合物浓度被调整为0. 22质量%, 所述平均一次粒径是测定透过型电子显微镜照片中固定方向(fixed direction)的粒径而确定的,对作为测定对象的水性分散液测定上述透过率,基于上述标准曲线能够确定上述平均一次粒径。上述乳液聚合工序还能够如下进行在具备搅拌机的耐压反应容器中投入水性介质和四氟乙烯,并根据需要投入改性单体、根据需要投入链转移剂以及根据需要投入表面活性剂,调整温度和压力后,通过添加聚合引发剂来引发乳液聚合,搅拌下进行聚合。上述乳液聚合工序也能够一边在上述的水性介质中连续供给单体一边进行聚合。
上述乳液聚合工序中,作为上述单体,除TFE外,也可以添加任意的能与四氟乙烯共聚的改性单体。对于上述改性单体见后述。上述乳液聚合工序优选一边搅拌水性介质一边进行,但搅拌过强时,机械剪切力导致乳化颗粒凝集,在气相-液相界面进行聚合反应,结果聚合以悬浮聚合方式进行,有可能得不到由低分子量PTFE构成的乳化颗粒。因而,优选在聚合条件(反应规模、聚合温度和聚合压力)相同时,使上述乳液聚合的搅拌速度小于一般的含氟聚合物的悬浮聚合。通过确认在气相-液相界面不生成凝集颗粒,从而可根据聚合规模和其他的聚合条件能够适宜选择上述乳液聚合中的搅拌速度,对搅拌速度没有特别限定,只要如上所述低分子量PTFE的90质量%以上以乳化颗粒的状态存在,就能够在慢搅拌速度下进行乳液
壞入水口 ο在上述乳液聚合工序中,对聚合温度、聚合压力等聚合条件没有特别限定,能够根据使用的TFE的量、根据需要添加的改性剂的种类和量、或者生产率等适宜选择,但作为聚合温度优选为5 100°C,更优选为50 90°C。作为聚合压力,优选为0. 03 3. OMPa0上述乳液聚合工序中能够通过自乳化聚合生成乳化颗粒。本说明书中“自乳化”是指不添加表面活性剂也能进行的、基于使用链转移剂和水溶性过氧化物而发生的与TFE单体的乳化。即,自乳化聚合是指如下聚合在聚合开始时和聚合中不添加现有的TFE乳液聚合中所使用的氟碳系乳化剂、含氟表面活性剂等,而进行乳液聚合。对于不添加表面活性剂仅使用TFE和水溶性过氧化物在水性介质中进行反应的 TFE的乳液聚合,在反应最初的聚合体系中与进行乳液聚合时同样地产生核(乳化颗粒), 从而生成稳定的乳化颗粒。上述乳液聚合工序中,即使在反应容器中不添加表面活性剂,在聚合初期也会生成具有来自水溶性过氧化物的亲水性末端基团的聚合物链,由于其具有乳化作用,所以认为在水性介质中可形成乳化颗粒。上述自乳化聚合中,推测由于如下原因可得到TFE聚合物以乳化颗粒的形式稳定分散于其中的水性分散液(1)通过链转移剂、水溶性过氧化物和TFE反应,生成具有来自水溶性过氧化物的亲水性末端基团并具备乳化作用的聚合物链,但在该聚合物链的生长过程中,由于链转移剂与聚合物链间的链转移导致该聚合物链的生长末端失活,所以生成短链的TFE聚合物, 不会引发乳化作用随聚合度的增加而降低的情况;(2)由于作为上述链转移剂所使用的上述的化合物的链转移能力高,所以上述的短链TFE聚合物的聚合度低,显示更高的乳化效果;(3)由于聚合初期之后水溶性过氧化物也继续发生分解,所以持续生成上述的具有亲水性末端基团的短链TFE聚合物。上述自乳化聚合由于使用赋予聚合物末端以亲水性基团的水溶性过氧化物作为聚合引发剂,并使用链转移能力较高的化合物作为链转移剂进行聚合,所以不添加表面活性剂也能够得到分散稳定性高的低分子量PTFE的水性分散液。上述自乳化聚合由于如上所述在聚合开始时和聚合中不混合表面活性剂也能够进行乳液聚合,所以能够降低制造成本。进而,对于所得到的低分子量PTFE,从不存在表面活性剂引起的着色等问题的方面考虑也是优选的。
在上述乳液聚合工序中不添加表面活性剂来进行乳液聚合时,以本发明的制造方法得到的低分子量PTFE粉末实质上不含有例如全氟辛酸〔PF0A〕及其盐、全氟磺酸〔PF0S〕 及其盐等表面活性剂。本说明书中,“实质上不含有”意味着不使用这些物质作为原料,并且这些物质的量在相当于聚合物固体成分量的Ippm的量以下。上述乳液聚合工序也可以在表面活性剂的存在下进行。在表面活性剂的存在下进行时,聚合引发剂既可以为水溶性过氧化物,也可以为其他的聚合引发剂。上述乳液聚合工序为在表面活性剂的存在下至少将四氟乙烯聚合以生成乳化颗粒的工序是一种优选方式。在表面活性剂的存在下进行乳液聚合时,表面活性剂的添加量根据使用的表面活性剂的乳化能力、聚合条件等来酌情设定合适的添加量即可,但例如相对于水性介质,优选为500ppm以下。添加量超过500ppm时,有可能难以顺利地向悬浮聚合转换,例如由于强制性地使乳化颗粒凝集,所以有时必须增加酸或电解质的添加量。另外, 通过使用表面活性剂,也能够控制乳化颗粒的粒径。进而,由于使用的表面活性剂的量比一般的乳液聚合时少,所以能够实现削减制造成本,进而,不易产生使用表面活性剂所带来的着色等。作为上述表面活性剂的用量,更优选为300ppm以下。作为上述表面活性剂,没有特别限定,能够使用例如含氟表面活性剂、烃系表面活性剂、硅系表面活性剂等。并且,上述表面活性剂也可以为分子中具有不饱和键的聚合性表面活性剂。例如,既可以为分子中具有不饱和键的含氟表面活性剂或硅系表面活性剂,也可以为分子中具有不饱和键的烃系表面活性剂。上述表面活性剂为含氟表面活性剂是本发明的一种优选方式。上述含氟表面活性剂是指分子结构中含至少1个氟原子的、显示表面活性的含氟化合物。作为上述含氟表面活性剂,没有特别限定,然而优选为含氟阴离子型表面活性剂, 例如可举出由至少1个氢原子被氟原子取代的碳原子数为7 12的烃与羧酸、羧酸盐、磺酸、磺酸基等亲水基团构成的化合物,工业上可举出全氟辛酸铵、全氟辛酸锍盐;全氟代羧酸及其盐;等。并且,作为上述含氟表面活性剂,优选以通式(I)表示的含氟阴离子型表面活性剂。Rf1-Y1 (I)(式中,Rf1表示没有插入或插入有2价氧原子的碳原子数为2 12的直链或带支链的氟代烷基,Y1 表示-COOM1、-SO3M2、-SO2NM3M4 或-PO3M5M6。上述 Μ1、Μ2、Μ3、M4、M5 和 M6 相同或不同,表示H或一价阳离子。)作为上述一价阳离子,可举出例如-Na、-K、-NH4等。上述Rf1更优选为没有插入或插入有2价氧原子的碳原子数为2 6的直链或带支链的氟代烷基。作为通式(I)中的Y1,优选-C00H、-COONa, -COOK 或-COONH4,更优选 _C00NH4。作为含氟表面活性剂,更优选为通式(II)表示的含氟阴离子型表面活性剂、通式 (III)表示的含氟阴离子型表面活性剂。CF3-(CF2)nl-Y1 (II)(式中,nl表示1 5的整数,Y1的含义与上述相同。)Rf2O-Rf3O-Rf4-Y1 (III)
10
(式中,Rf2表示碳原子数为1 3的氟代烷基,Rf3和Rf4各自独立地表示直链或带支链的碳原子数为1 3的氟代亚烷基,Rf2、Rf3和Rf4的碳原子数合计为6以下。Y1的含义与上述相同。)作为通式(II)表示的含氟阴离子型表面活性剂,可举出例如CF3(CF2)4C00NH4、 CF3 (CF2) 3C00NH4、CF3 (CF2) 2C00NH4、CF3 (CF2) 3S03Na、CF3 (CF2) 3S02NH2 等。作为通式(III)表示的含氟阴离子型表面活性剂,可举出例如通式CF3O-CF (CF3) CF2O-CX1 (CF3) -Y1(式中,X1表示H或F,Y1的含义与上述相同)表示的含氟阴离子型表面活性剂、 通式CF3O-CF2CF2CF2O-CF X1CF2-Y1(式中,X1表示H或F,Y1的含义与上述相同)表示的含氟阴离子型表面活性剂、 通式CF3CF2O-CF2CF2O-CF X1-Y1(式中,X1表示H或F,Y1的含义与上述相同)表示的含氟阴离子型表面活性剂等。上述含氟表面活性剂既可以使用一种,也可以合用两种以上。上述表面活性剂为烃系表面活性剂也是一种优选方式。作为上述烃系表面活性剂,只要是不含氟原子的表面活性剂就没有特别限定,可举出例如月桂基硫酸铵所代表的烷基硫酸盐、聚氧乙烯烷基醚硫酸盐、脂肪酸和它们的盐等阴离子型表面活性剂;聚氧化烯烷基醚系非离子表面活性剂、聚氧乙烯烷基苯基醚系非离子表面活性剂等非离子型表面活性剂;等。作为上述非离子型表面活性剂,更优选由下述通式(IV)表示的聚氧化烯烷基醚系非离子表面活性剂、由下述通式(V)表示的聚氧乙烯烷基苯基醚系非离子表面活性剂。R1-O-A1-H (IV)(式中,R1为碳原子数为8 18的直链状或带支链的伯或仲烷基,A1为由氧化乙烯和氧化丙烯的共聚链构成的聚氧化烯链或氧化烯链。)R2-C6H4-O-A2-H (V)(式中,R2是碳原子数为4 12的直链状或支链状的烷基,A2为聚氧化烯链。)本发明的制造方法包括使乳化颗粒凝集而生成凝集粉末的凝集工序和在凝集粉末、聚合引发剂和水性介质的存在下至少将四氟乙烯聚合的悬浮聚合工序。能够在进行凝集工序后或进行凝集工序的同时开始悬浮聚合工序。凝集工序和悬浮聚合工序既可以在乳液聚合工序中所使用的反应容器内实施,也可以在与其不同的反应容器内实施。凝集工序也能够使用具备使乳化颗粒凝集的装置的特殊设备来进行。上述凝集粉末是指乳化颗粒通过凝集而生成的乳化颗粒的凝集体。上述凝集只要使用能够强制性地使乳液聚合工序中生成的乳化颗粒凝集的方法即可,例如优选将电解质和/或酸添加在反应容器中、和/或与乳液聚合工序相比加快搅拌速度。上述凝集工序优选为在反应容器中添加电解质来使乳化颗粒凝集的工序。通过添加电解质,能够容易地使乳化颗粒凝集。从更有效地进行上述凝集的观点出发,上述电解质优选为选自由碳酸铵、碳酸氢铵、氢氧化钠和硫酸铵组成的组中的至少一种化合物。据此,能够更有效地进行乳化颗粒的凝集。优选相对于水性介质添加50 IOOOOppm上述电解质。特别是在添加有表面活性剂的情况下,由于乳化颗粒的稳定性高,所以电解质的添加量小于50ppm时,有时不能充分凝集。如果添加量超过lOOOOppm,则电解质有可能残留于聚合物中。电解质添加量更优选为100 5000ppm。通过添加上述范围内的电解质,能够更有效地进行乳化颗粒的凝集。上述电解质优选为实质上不具有链转移性的物质。作为实质上不具有链转移性的电解质,优选无机盐,可举出例如碳酸铵、碳酸氢铵、氢氧化钠、硫酸铵、硫酸铝等,但并不限于这些。 上述电解质既可以添加一种,也可以添加两种以上。并且,既可以在悬浮聚合工序开始前或开始时一次性添加,也可以在悬浮聚合工序中酌情分批添加,还可以在悬浮聚合工序期间连续添加。上述凝集工序优选为在反应容器中添加酸的工序。通过添加酸,能够容易地使乳化颗粒凝集。从更有效地进行上述凝集的观点出发,上述酸为选自由硝酸、硫酸和草酸组成的组中的至少一种化合物。优选相对于水性介质添加50 IOOOOppm上述酸。特别是在添加有表面活性剂的情况下,由于乳化颗粒的稳定性高,所以如果酸的添加量小于50ppm,则有时不能充分凝集。 如果添加超过IOOOOppm的量,则在聚合物中有可能残留酸。酸的添加量更优选为100 5000ppm。通过添加上述范围内的酸,能够更有效地进行乳化颗粒的凝集。上述酸既可以添加一种,也可以添加两种以上。并且,既可以在悬浮聚合工序开始前或开始时一次性添加,也可以在悬浮聚合工序中酌情分批添加,还可以在悬浮聚合工序中连续添加。上述悬浮聚合工序能够在具备搅拌机的耐压反应容器中调整温度和压力后一边搅拌水性介质一边进行。上述悬浮聚合也能够一边在上述的水性介质中连续供给单体一边进行。上述悬浮聚合中,作为上述单体,除TFE外,也可以添加后述的改性单体。在上述悬浮聚合工序中,对聚合温度、聚合压力等聚合条件没有特别限定,能够根据使用的TFE的量、改性单体的种类和量、或者生产率等适宜选择,但作为聚合温度,优选为5 100°C,更优选为50 90°C。作为聚合压力,优选为0. 03 3. OMPa0上述悬浮聚合工序优选为使聚合工序中生成的低分子量PTFE的90质量%以上凝固(solidification)的工序。只要悬浮聚合工序后的水性分散液中将90质量%以上的低分子量PTFE凝固,就能够认为如上所述进行了强制性地使乳液聚合工序中生成的乳化颗粒凝集的凝集工序和至少将TFE聚合的悬浮聚合工序。更优选为95质量%以上,进一步优选为98质量%以上。液相中残留的低分子量PTFE的固体成分量优选相对于水性介质小于 2. 5质量%,更优选小于0. 5质量%。在上述悬浮聚合工序中优选充分进行搅拌,以使90质量%以上的低分子量PTFE凝固。由于在乳液聚合工序中弓丨发单体的聚合,所以连续进行上述乳液聚合工序和悬浮聚合工序,由此能够缩短工序。具体地说,通过在乳液聚合的进行中将上述电解质或酸添加在水性介质中、和/或与乳液聚合工序相比加快搅拌速度,从而在强制性地使乳化颗粒凝集的同时或强制性地使乳化颗粒凝集后,开始悬浮聚合。通过加快搅拌速度,能够顺利地从乳液聚合转换为悬浮聚合。作为上述强制性地凝集的方法,优选将加快搅拌速度的方法和在水性介质中添加电解质或酸的方法合用,该合用的方法在添加表面活性剂的情况下是特别优选的。在上述乳液聚合工序和悬浮聚合工序中,以相对于聚合单体的总消耗量的质量比计,聚合单体的消耗量优选乳液聚合工序悬浮聚合工序=(3 80) (20 97)。通过将乳液聚合工序和悬浮聚合工序所消耗的聚合单体的量设定为上述范围内,能够进一步发挥本发明的效果,例如在用作涂料等的添加剂时,能够使形成的涂膜的质感和光泽性优异, 同时能够改善分散性和粘度。更优选乳液聚合工序的聚合单体的消耗量悬浮聚合工序的聚合单体的消耗量=(5 60) (40 95),进一步优选乳液聚合工序悬浮聚合工序= (10 50) (50 90)。在包含上述乳液聚合工序和悬浮聚合工序的本发明的聚合方法中,聚合终止时刻的聚合物产量从生产率的方面出发,相对于水性介质,优选为10 %以上,更优选为20 %以上。本发明的制造方法优选包括回收工序,在将至少四氟乙烯悬浮聚合并生成低分子量PTFE粉末的悬浮聚合工序后,从反应容器中回收低分子量聚四氟乙烯粉末。上述回收工序只要是从反应容器中回收通过悬浮聚合生成的低分子量PTFE粉末的工序即可,对回收方法没有特别限定。例如,可通过将反应容器内的浮在水性介质上的低分子量PTFE粉末撇出等来回收。本发明的制造方法为包括下述工序也是一种优选方式投料工序,将水性介质和至少四氟乙烯投入反应容器;聚合引发工序,投入聚合引发剂引发聚合;乳液聚合工序,在聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合,生成乳化颗粒;凝集工序,一边继续进行聚合,一边使乳化颗粒凝集,生成凝集粉末;悬浮聚合工序,在凝集工序后或凝集工序的同时,在凝集粉末、聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合;和回收工序,从反应容器中回收低分子量聚四氟乙烯粉末。本发明的制造方法为包括下述工序也是一种优选方式将水性介质和至少四氟乙烯投入反应容器中的投料工序;投入聚合引发剂,引发聚合的聚合引发工序;在聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合,生成乳化颗粒的乳液聚合工序;从上述反应容器中回收含有乳化颗粒的水性分散液的回收工序;将回收的水性分散液投入上述反应容器或与上述反应容器不同的反应容器中的投入工序;将水性介质和至少四氟乙烯投入该反应容器中的投入工序;使水性分散液中的乳化颗粒凝集,生成凝集粉末的凝集工序;在凝集粉末、聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合的悬浮聚合工序;和从反应容器中回收低分子量聚四氟乙烯粉末的回收工序。本发明的制造方法包括下述工序也是一种优选方式将水性介质和至少四氟乙烯投入反应容器中的投料工序;投入聚合引发剂,引发聚合的聚合引发工序;在聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合,生成乳化颗粒的乳液聚合工序;使乳化颗粒凝集,生成凝集粉末的凝集工序;从反应容器中回收凝集粉末的回收工序;将凝集粉末、水性介质和至少四氟乙烯投入上述反应容器或与上述反应容器不同的反应容器中的投入工序; 在凝集粉末、聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合的悬浮聚合工序;和从反应容器中回收低分子量聚四氟乙烯粉末的回收工序。本发明的制造方法包括下述工序也是一种优选方式将水性介质和至少四氟乙烯投入反应容器中的投料工序;投入聚合引发剂,引发聚合的聚合开始工序;在聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合,生成乳化颗粒的乳液聚合工序;从上述反应容器中回收含有乳化颗粒的水性分散液的回收工序;将回收的水性分散液投入凝集设备的工序;在凝集设备内使乳化颗粒凝集,生成凝集粉末的凝集工序;回收凝集粉末的工序;将凝集粉末、水性介质和至少四氟乙烯投入上述反应容器或与上述反应容器不同的反应容器中的投入工序;在凝集粉末、聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合的悬浮聚合工序;和从反应容器中回收低分子量聚四氟乙烯粉末的回收工序。悬浮聚合工序中存在的聚合引发剂既可以为用于引发乳液聚合工序而投入的聚合引发剂,也可以为在乳液聚合工序完成后新追加投入的聚合引发剂,还可以为在悬浮聚合工序中追加投入的聚合引发剂。通过本发明的制造方法得到的低分子量聚四氟乙烯粉末(以下也称为“低分子量 PTFE粉末”)是由低分子量聚四氟乙烯(以下也称为“低分子量PTFE”)构成的。本发明还涉及通过上述制造方法得到的低分子量PTFE粉末。上述低分子量PTFE的数均分子量为60万以下。如果该数均分子量超过60万,则表现出原纤化特性,易于凝集,所以微分散性有时较差。上述低分子量PTFE的数均分子量只要在上述范围内,就能够将优选的下限设定为例如1万。如果小于1万,则高温下的挥发性高,有时不适合用于需要烧制的涂料等耐热涂料。上述低分子量PTFE的数均分子量是由使用流动试验仪法测定得到的熔融粘度计算出的值。上述低分子量PTFE在380°C的熔融粘度优选为70万1 · s以下。通过设定为上述范围内的熔融粘度,能够制成数均分子量为60万以下的低分子量PTFE。对于上述熔融粘度,更优选380°C的熔融粘度为IOOOOPa · s以下,进一步优选为 5000Pa.s以下。如果熔融粘度过高,则用作涂料用的添加剂时,涂膜的透明性有可能降低。上述熔融粘度是基于ASTM D 1238,使用流动试验仪(岛津制作所社制造)和 2 Φ-SL的模头,对预先在380°C加热了 5分钟的2g试样施加0. 7MPa的负荷,保持上述温度进行测定得到的值。上述数均分子量是由通过上述测定方法测定得到的熔融粘度计算出的值。上述低分子量PTFE的熔点优选为324 333°C。上述熔点如下设定使用SII Nanotechnology社制造的差示扫描热量测定机 RDC220 (DSC),事先使用铟、铅作为标准样品进行温度校正后,将约3mg的低分子量PTFE粉末放入铝制盘(压盖容器)中,在200ml/分钟的空气气流下、在250 380°C的温度区域以 IO0C /分钟的速度进行升温,将上述区域中的熔解热的极小点作为熔点。上述制造方法中至少将四氟乙烯聚合并生成乳化颗粒,也可以将四氟乙烯和能与四氟乙烯共聚的改性单体(以下也称为“改性剂”)聚合。S卩,上述低分子量PTFE为四氟乙烯均聚物〔TFE均聚物〕和/或改性聚四氟乙烯〔 改性PTFE〕。本说明书中,上述“TFE均聚物和/或改性PTFE”意味着由TFE均聚物构成的不包含改性PTFE的聚合物、由改性PTFE构成的不包含TFE均聚物的聚合物、或者由TFE均聚物和改性PTFE构成的聚合物中的任一种。上述术语“低分子量PTFE”中的“聚四氟乙烯” 一般表示上述TFE均聚物,但本说明书中,明显可知上述“低分子量PTFE”包括TFE均聚物和/或改性PTFE,因此“聚四氟乙烯”的含义并不限于TFE均聚物,TFE均聚物不过是上述“低分子量PTFE”这一术语的一部分。上述“低分子量PTFE”作为一个术语,表示TFE均聚物和/或改性PTFE整个范围。上述TFE均聚物是通过仅将作为单体的四氟乙烯〔TFE〕聚合得到的。上述改性PTFE是指将TFE与改性剂聚合得到的聚合物。作为上述改性PTFE的改性剂,只要能与TFE共聚,就没有特别限定,可举出例如六氟丙烯〔HFP〕等全氟烯烃;三氟氯乙烯〔CTFE〕等氟氯烯烃;三氟乙烯、偏二氟乙烯〔VdF〕等含氢的氟代烯烃;全氟乙烯基醚;全氟丁基乙烯等全氟烷基乙烯;乙烯等。并且,使用的改性剂既可以为一种,也可以为两种以上。作为上述全氟乙烯基醚,没有特别限定,可举出例如下述通式(VI)表示的全氟不饱和化合物等。CF2 = CF-ORf (VI)(式中,Rf表示全氟有机基团。)本说明书中,上述“全氟有机基团”是指键合在碳原子上的氢原子全都被取代为氟原子而成的有机基团。上述全氟有机基团也可以具有醚氧。作为上述全氟乙烯基醚,例如可举出全氟(烷基乙烯基醚)〔PAVE〕,其中,上述通式(VI)中Rf表示碳原子数为1 10的全氟烷基。上述全氟烷基的碳原子数优选为1 5。作为上述PAVE中的全氟烷基,可举出例如全氟甲基、全氟乙基、全氟丙基、全氟丁基、全氟戊基、全氟己基等,优选全氟丙基。并且,作为上述全氟乙烯基醚,可举出上述通式(VI)中Rf表示碳原子数为4 9 的全氟(烷氧基烷基)基、下式
权利要求
1.一种低分子量聚四氟乙烯粉末的制造方法,其特征在于,该制造方法包含下述工序乳液聚合工序,其中,在聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合,生成乳化颗粒;凝集工序,其中,使上述乳化颗粒凝集,生成凝集粉末;和悬浮聚合工序,其中,在上述凝集粉末、聚合引发剂和水性介质的存在下,至少将四氟乙i布聚合。
2.如权利要求1所述的低分子量聚四氟乙烯粉末的制造方法,其中,在所述乳液聚合工序和/或悬浮聚合工序中,存在链转移剂。
3.如权利要求1或2所述的低分子量聚四氟乙烯粉末的制造方法,其中,所述聚合引发剂为水溶性过氧化物。
4.如权利要求1、2或3所述的低分子量聚四氟乙烯粉末的制造方法,其中,所述乳液聚合工序是在表面活性剂的存在下进行聚合的工序。
5.如权利要求4所述的低分子量聚四氟乙烯粉末的制造方法,其中,所述表面活性剂为含氟表面活性剂。
6.如权利要求4所述的低分子量聚四氟乙烯粉末的制造方法,其中,所述表面活性剂为烃系表面活性剂。
7.如权利要求1、2、3、4、5或6所述的低分子量聚四氟乙烯粉末的制造方法,其中,所述凝集工序是添加电解质使乳化颗粒凝集的工序。
8.如权利要求7所述的低分子量聚四氟乙烯粉末的制造方法,其中,所述电解质为选自由碳酸铵、碳酸氢铵、氢氧化钠和硫酸铵组成的组中的至少一种化合物。
9.如权利要求1、2、3、4、5、6、7或8所述的低分子量聚四氟乙烯粉末的制造方法,其中, 所述凝集工序是添加酸使乳化颗粒凝集的工序。
10.如权利要求9所述的低分子量聚四氟乙烯粉末的制造方法,其中,所述酸为选自由硝酸、硫酸和草酸组成的组中的至少一种化合物。
11.如权利要求2、3、4、5、6、7、8、9或10所述的低分子量聚四氟乙烯粉末的制造方法, 其中,所述链转移剂为乙烷或丙烷。
12.如权利要求3、4、5、6、7、8、9、10或11所述的低分子量聚四氟乙烯粉末的制造方法, 其中,所述水溶性过氧化物为选自由过硫酸铵、过硫酸钾和过氧化丁二酰组成的组中的至少一种化合物。
13.如权利要求1、2、3、4、5、6、7、8、9、10、11或12所述的低分子量聚四氟乙烯粉末的制造方法,该制造方法还包括将低分子量聚四氟乙烯粉末粉碎的粉碎工序。
14.一种低分子量聚四氟乙烯粉末,其是通过权利要求1、2、3、4、5、6、7、8、9、10、11、12 或13所述的制造方法得到的。
15.如权利要求14所述的低分子量聚四氟乙烯粉末,其中,该低分子量聚四氟乙烯粉末的熔融粘度为70万1 · s以下。
16.如权利要求14或15所述的低分子量聚四氟乙烯粉末,其中,该低分子量聚四氟乙烯粉末的比表面积为4m2/g 8m2/g。
17.如权利要求14、15或16所述的低分子量聚四氟乙烯粉末,该低分子量聚四氟乙烯粉末的平均粒径为0. 5 μ m 30 μ m。
18.—种添加剂,其特征在于,该添加剂含有权利要求14、15、16或17所述的低分子量聚四氟乙烯粉末。
19.如权利要求18所述的添加剂,其用于涂料组合物、用于脂膏组合物、用于化妆品组合物、用于镀覆液组合物、用于色调剂组合物或用于塑料组合物。
20.一种组合物,其特征在于,其含有权利要求14、15、16或17所述的低分子量聚四氟乙烯粉末。
21.如权利要求20所述的组合物,其为涂料、脂膏、化妆品、镀覆液、色调剂或塑料。
全文摘要
提供一种低分子量聚四氟乙烯粉末及其制造方法,通过将该低分子量聚四氟乙烯粉末用作涂料等的添加剂,能够形成具有优异的质感和平滑性的涂膜,同时能够改善分散性、粘度。所述低分子量聚四氟乙烯粉末的制造方法的特征在于,包含下述工序乳液聚合工序,在聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合,生成乳化颗粒;凝集工序,使上述乳化颗粒凝集,生成凝集粉末;和悬浮聚合工序,在上述凝集粉末、聚合引发剂和水性介质的存在下,至少将四氟乙烯聚合。
文档编号C08F2/16GK102369221SQ20108001442
公开日2012年3月7日 申请日期2010年3月31日 优先权日2009年3月31日
发明者山中拓, 泽田又彦, 笠井俊二, 辻雅之 申请人:大金工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1