GM-CSF和IL-4轭合物、组合物以及与其相关的方法与流程

文档序号:15603523发布日期:2018-10-09 17:01阅读:2505来源:国知局
GM-CSF和IL-4轭合物、组合物以及与其相关的方法与流程

本申请要求于2012年10月23日提交的美国临时申请号61/717,129的优先权,将其通过引用以其全文结合在此。

背景

癌症被认为是由于免疫系统未恰当地除去不受控制的增殖癌细胞的结果而发生。刺激免疫系统识别并消除癌性细胞已经成为用于治疗性治疗的有希望的策略。(阿地白介素)包含被认为促进免疫系统对抗癌细胞的重组人白介素2(IL-2)并且被指定用于治疗成人的转移性肾细胞癌(转移性RCC)。在推荐的剂量下,严重的不良事件通常伴随这一疗法。因此,需要鉴定改进的方法。

细胞因子粒细胞巨噬细胞集落刺激因子(GM-CSF)通过增强经由树突细胞(DC)进行的抗原呈递和共刺激来增强适应性免疫系统。归因于其免疫刺激作用,GM-CSF已经用于增加抗癌的宿主免疫系统并且对于化疗后患者而言,用于提升白细胞计数。ProvengeTM是一种FDA批准的自体细胞癌症免疫疗法治疗剂。经由白细胞去除术收获受试者的周围血液白细胞。将这些富集的单核细胞用前列腺酸性磷酸酶(PAP)孵育,该磷酸酶被轭合至粒细胞巨噬细胞集落刺激因子(PAP-GM-CSF)。GM-CSF被认为将靶抗原引导至DC前体上的受体,这些DC前体然后将其细胞表面上的PAP在足以活化T细胞的背景下呈递给表达PAP的细胞。向受试者给予活化的PAP呈递DC,以引发阻碍癌症生长的免疫应答。这一策略需要从受试者分离并扩增细胞,并且典型地,治疗不能完全清除受试者的癌症或肿瘤。因此,需要鉴定改进的方法。

白介素4(IL-4)是一种γ-链细胞因子。它通过B淋巴细胞而作为活化并引发抗体类别转换的信号并且将天然辅助性T淋巴细胞转化为活化的T淋巴细胞并且然后扩增其群体。美国专利6,838,081报道了通过给予IL-4和GM-CSF的组合而增强从前体细胞形成抗原呈递细胞。还参见美国专利申请2004/0072299和Hikino(引野)等人,ANTICANCER RESEARCH(抗癌研究)24:1609-1616(2004)。

GIFT融合因子(fusokine)是来源于GM-CSF和常见γ-链白介素融合转基因的融合蛋白并且可以抑制或增强宿主免疫应答。Stagg(斯塔格)等人,Molecular Therapy(分子疗法),2004,9,S133-S133披露了一种GM-CSF/IL-2融合物(GIFT2)。还参见Penafuete(佩纳弗艾特)等人,Cancer Res.(癌症研究)2009,69(23):9020-8;Rafei(拉菲)等人,Nat Med.(自然医学)2009,15(9):1038-45;Williams(威廉姆斯)和Park(帕克),Cancer(癌症),1991,67(增刊10):2705-7;WO 2005/0053579;WO 2005/026820;WO 2008/0014612;以及美国专利号7,323,549;7,217,421;6,617,135;以及5,108,910。

概述

在某些实施例中,本披露涉及包括GM-CSF的多肽和IL-4多肽的轭合物。典型地,该GM-CSF和IL-4经由连接物(例如,多肽)而连接。在某些实施例中,本披露涉及编码这些多肽轭合物的分离的核酸、包括编码多肽轭合物的核酸的载体以及包括这些载体的蛋白表达系统,例如包括此类核酸的感染性病毒颗粒和宿主细胞。

在某些实施例中,本披露涉及以下药物组合物,这些药物组合物包括在此披露的轭合物和载体以及一种药学上可接受的赋形剂。在某些实施例中,本披露涉及以下疫苗,这些疫苗包括在此披露的轭合物和载体以及一种抗原以及任选地一种佐剂。典型地,该抗原被包含在减毒活病毒、被杀死的病毒、病毒样颗粒、病毒体、癌性细胞、具有表面抗原的脂质双层结构中,并且该抗原典型地是病毒蛋白或糖蛋白、细菌或细菌性抗原或肿瘤相关抗原。在某些实施例中,该抗原轭合至树突细胞标志物。

在某些实施例中,本披露考虑了一种将在此的轭合物与B细胞在使得活化的正常B细胞可以产生趋化因子CCL3或升高水平的INF-γ的条件下相混合的方法。在某些实施例中,这些B细胞是慢性淋巴样白血病B细胞。在某些实施例中,该混合是在体外或在体内。在某些实施例中,将体外活化的B细胞以有效治疗或预防癌症的量给予给受试者,例如这些B细胞最初获得自其中的受试者。

在某些实施例中,本披露涉及治疗或预防病毒、细菌或寄生虫感染的方法,这些方法包括给予有效量的、任选地与一种抗原以及任选地一种佐剂组合的药物组合物,该药物组合物包括在此披露的轭合物或载体。在某些实施例中,该受试者处于病毒感染的风险之中或展现出病毒感染的症状或诊断患有病毒感染,该病毒感染是例如慢性病毒感染。

在某些实施例中,本披露涉及治疗或预防病毒感染的方法,这些方法包括向对其有需要的受试者给予有效量的疫苗,该疫苗包括在此披露的轭合物。

在某些实施例中,该受试者被诊断患有甲型流感病毒(包括亚型H1N1),乙型流感病毒,丙型流感病毒,轮状病毒A,轮状病毒B,轮状病毒C,轮状病毒D,轮状病毒E,SARS冠状病毒,人类腺病毒类型(HAdV-1至55),人乳头瘤病毒(HPV)类型16、18、31、33、35、39、45、51、52、56、58及59,细小病毒B19,触染性软疣病毒,JC病毒(JCV),BK病毒,默克尔(Merkel)细胞多瘤病毒,甲型柯萨奇病毒,诺如病毒,风疹病毒,淋巴细胞性脉络丛脑膜炎病毒(LCMV),黄热病毒,麻疹病毒,腮腺炎病毒,呼吸道合胞病毒,牛瘟病毒,加利福尼亚脑炎病毒,汉坦病毒,狂犬病病毒,埃博拉病毒,马尔堡病毒,单纯性疱疹病毒-1(HSV-1),单纯性疱疹病毒-2(HSV-2),水痘带状疱疹病毒(VZV),EB病毒(Epstein-Barr virus)(EBV),巨细胞病毒(CMV),疱疹淋巴细胞病毒,玫瑰疹病毒(roseolovirus),或卡波氏肉瘤相关疱疹病毒,甲型肝炎病毒,乙型肝炎病毒,丙型肝炎病毒,丁型肝炎病毒,戊型肝炎病毒或人类免疫缺陷病毒(HIV)。

在某些实施例中,本披露涉及给予与另一种抗病毒剂组合的、在此披露的轭合物或载体,该抗病毒剂是例如阿巴卡韦、阿昔洛韦、阿昔洛韦、阿德福韦、金刚胺、安普那韦、安普利近、阿比朵尔、阿扎那韦、立普妥(atripla)、波普瑞韦、西多福韦、双汰芝、达芦那韦、地拉韦啶、去羟肌苷、二十二醇、依度尿苷(edoxudine)、依非韦伦、恩曲他滨、恩夫韦地、恩替卡韦、泛昔洛韦、福米韦生、福沙那韦、膦甲酸钠、膦乙酸钠、更昔洛韦、伊巴他滨、伊姆诺韦(imunovir)、碘苷、咪喹莫特、茚地那韦、肌苷、III型干扰素、II型干扰素、I型干扰素、拉米夫定、洛匹那韦、洛韦胺、马拉韦罗、吗啉胍、美替沙腙、奈非那韦(nelfmavir)、奈韦拉平、奈沙韦(nexavir)、奥司他韦、聚乙二醇干扰素α-2a、喷昔洛韦、帕拉米韦、普利康那利(pleconaril)、鬼臼毒素、雷特格韦、利巴韦林、金刚乙胺、利托那韦、嘧啶、沙奎那韦、司他夫定、替诺福韦、替诺福韦酯、替拉那韦、三氟尿苷、三协唯(trizivir)、曲金刚胺、特鲁瓦达(truvada)、伐昔洛韦、缬更昔洛韦、韦克利韦洛克(vicriviroc)、阿糖腺苷、韦拉米啶(viramidine)、扎西他滨、扎那米韦和/或齐多夫定。

在某些实施例中,本披露涉及治疗或预防癌症的方法,这些方法包括向对其有需要的受试者给予一种药物组合物,该药物组合物包括在此披露的轭合物或载体。

在某些实施例中,本披露涉及治疗或预防癌症的方法,这些方法包括向对其有需要的受试者给予与在此披露的轭合物组合的自体血细胞,这些自体血细胞已用轭合至GM-CSF的癌症抗原活化。

在某些实施例中,本披露涉及活化外周血细胞的方法,这些方法包括将外周血细胞与在此披露的轭合物在使得可以出现CD54的表达增加的条件下相混合,该轭合物包括一种肿瘤相关抗原/癌症标志物。在某些实施例中,本披露涉及一种产品,该产品是通过将外周血细胞与在此披露的轭合物在使得可以出现CD54的表达增加的条件下相混合而产生的。在某些实施例中,本披露涉及治疗或预防癌症的方法,这些方法包括向外周血细胞获得自其的受试者给予有效量的产品,该产品是通过将这些外周血细胞与在此披露的轭合物相混合而制备。

在某些实施例中,本披露涉及产生包括分离的骨髓和/或骨髓干细胞的组合物的方法,这些方法包括向受试者给予任选地与B细胞组合的在此披露的轭合物和组合物,例如GIFT4、与B细胞组合的GIFT4或用GIFT4活化的分离的细胞。在某些实施例中,本披露涉及治疗或预防辐射引起的骨髓衰竭,包括向对其有需要的受试者给予在此披露的轭合物和组合物。

在某些实施例中,本披露涉及增加骨髓和/或骨髓干细胞的产生的方法,这些方法包括向受试者给予有效量的在此披露的轭合物。在某些实施例中,本披露涉及一种产品,该产品是通过从给予在此披露的轭合物的受试者体内分离骨髓和/或骨髓干细胞的过程而制备的。

在某些实施例中,本披露涉及增加骨髓干细胞的产生的方法,这些方法包括向缺乏B细胞的受试者给予有效量的与B细胞组合的在此披露的轭合物。

在某些实施例中,该受试者被诊断患有B细胞免疫缺陷、B细胞发育/免疫球蛋白产生的缺陷、过度/不受控制的B细胞增殖、白血病、慢性淋巴细胞白血病、淋巴瘤、滤泡性非霍奇金淋巴瘤、弥漫性大B细胞淋巴瘤或狼疮。

在某些实施例中,本披露涉及一种产品,该产品是通过从给予与B细胞组合的在此披露的轭合物的受试者体内分离骨髓和/或骨髓干细胞的过程而制备的。

在某些实施例中,本披露涉及一种组合物,该组合物包括分离的骨髓细胞和/或骨髓干细胞以及一种在此披露的轭合物,例如GM-CSF和IL-4轭合物。在某些实施例中,这些骨髓细胞和/或骨髓干细胞获得自一个受试者,该受试者先前在使得骨髓细胞和/或骨髓干细胞增殖增加的条件下给予该轭合物。

在某些实施例中,本披露涉及治疗或预防骨髓衰竭的方法,这些方法包括向受试者给予有效量的产品,该产品是通过将骨髓细胞与在此披露的轭合物相混合而制备。在某些实施例中,该骨髓衰竭由辐射引起。在某些实施例中,向受试者给予与在此披露的轭合物组合的、通过将骨髓细胞与在此披露的轭合物相混合而制备的产品。在某些实施例中,该轭合物是GIFT4。在某些实施例中,这些骨髓细胞获得自该受试者。

在某些实施例中,本披露涉及治疗或预防癌症的方法,这些方法包括向受试者给予有效量的产品,该产品是通过将骨髓细胞与在此披露的轭合物相混合而制备。在某些实施例中,向受试者给予与在此披露的轭合物组合的、通过将骨髓细胞与在此披露的轭合物相混合而制备的产品。在某些实施例中,该轭合物是GIFT4。在某些实施例中,这些骨髓细胞获得自该受试者。

在一些实施例中,本披露涉及一种治疗或预防癌症的方法,该方法包括向诊断患有癌症、展现出癌症的症状或处于癌症的风险之中的受试者给予一种药物组合物,该药物组合物包括在此披露的轭合物或载体,其中该癌症是恶性血液病,例如白血病或淋巴瘤、急性成淋巴细胞白血病(ALL)、急性骨髓性白血病(AML)、慢性淋巴细胞白血病(CLL)、小淋巴细胞淋巴瘤(SLL)、慢性骨髓性白血病、急性单核细胞性白血病(AMOL)、霍奇金淋巴瘤和非霍奇金淋巴瘤(例如伯基特淋巴瘤、B细胞淋巴瘤)以及多发性骨髓瘤。其他考虑到的癌症包括子宫颈癌、卵巢癌、结肠癌、乳腺癌、胃癌、肺癌、皮肤癌、卵巢癌、胰腺癌、前列腺癌、头颈癌以及肾癌。

在于此披露的癌症管理方法的任一方法中,该轭合物或载体可以与一种抗癌剂组合给予,该抗癌剂是例如吉非替尼、厄洛替尼、多西他赛、顺铂、5-氟尿嘧啶、吉西他滨、替加氟、雷替曲塞、甲氨蝶呤、阿糖胞苷、羟基脲、阿霉素、博莱霉素、多柔比星、柔红霉素、表柔比星、伊达比星、丝裂霉素C、放线菌素D和光辉霉素、长春新碱、长春碱、长春地辛、长春瑞滨紫杉醇、泰索帝、依托泊苷、替尼泊苷、安吖啶、拓扑替康、喜树碱、硼替佐米、阿那格雷、他莫昔芬、托瑞米芬、雷洛昔芬、屈洛昔芬、吲哚昔芬(iodoxyfene)、氟维司群、比卡鲁胺、氟他胺、尼鲁米特、环丙孕酮、戈舍瑞林、亮丙瑞林、布舍瑞林、甲地孕酮、阿那曲唑、来曲唑、伏氯唑(vorazole)、依西美坦、非那雄胺、马立马司他、曲妥珠单抗、西妥昔单抗、达沙替尼、伊马替尼、贝伐单抗、考布他汀、沙利度胺和/或来那度胺(enalidomide)或其组合。在某些实施例中,考虑了与proleukin(重组人IL-2)和/或干扰素α的联合疗法。

在某些实施例中,本披露涉及基因疗法,这些疗法包括向对其有需要的受试者给予以下载体,这些载体包括编码在此披露的轭合物的核酸。在某些实施例中,这些核酸分离和/或纯化自其天然状态或被翻译为非天然发生的形式(例如cDNA)。

在某些实施例中,本披露考虑了将在此披露的轭合物掺入颗粒的表面中,这些颗粒是例如细胞、脂质体、胶束、囊泡、双层结构、病毒体以及病毒样颗粒。可以将这些轭合物连接至亲脂部分,例如脂肪酸和GPI。在一个实例中,本披露考虑了一种GPI锚定轭合物,该轭合物包括GPI、GM-CSF、IL-4以及任选地一种抗原、佐剂或其他多肽。在此考虑了这些颗粒可以包含其他表面多肽、抗原和共刺激分子,例如B7-1、B7-2、ICAM-1和/或IL-2。在此考虑了这些颗粒可以用于提及的在此披露的轭合物的所有应用中。

在某些实施例中,可以将在此披露的轭合物中的任一轭合物进一步轭合至一种佐剂、细胞因子、共刺激分子、抗原、蛋白质或糖蛋白。在某些实施例中,该抗原是一种病毒蛋白或癌症标志物。

在某些实施例中,该癌症标志物选自PAP(前列腺酸性磷酸酶)、前列腺特异性抗原(PSA)、(PSMA)前列腺特异性膜抗原、早期前列腺癌抗原-2(EPCA-2)、AKAP-4(A激酶[PRKA]锚定蛋白4)、NGEP(表达于前列腺中的新基因)、PSCA(前列腺干细胞抗原)、STEAP(前列腺的六次跨膜上皮抗原)、MUC 1(粘蛋白1)、HER-2、BCL-2、MAGE抗原(例如CT7、MAGE-A3和MAGE-A4)、ERK5、G蛋白偶联雌激素受体1、CA15-3、CA19-9、CA72-4、CA-125、癌胚抗原、CD20、CD31、CD34、PTPRC(CD45)、CD99、CD117、黑色素瘤相关抗原(TA-90)、外周髓鞘蛋白22(PMP22)、上皮膜蛋白(EMP-1、EMP-2和EMP-3)、HMB-45抗原、MART-1(Melan-A)、S100A1以及S100B或其片段或突变形式。

在某些实施例中,该病毒抗原选自流感病毒血球凝集素和神经氨酸酶;巨细胞病毒糖蛋白gB、p28、p38、p50、p52、p65及p150;疏螺旋体p41;HIV nef、整合酶、gag、蛋白酶、tat、env、p31、p17、p24、p31、p55、p66、gp32、gp36、gp39、gp41、gp120及gp160;SIV p55;HBV核、表面抗原和澳大利亚抗原(australian antigen);HCV壳包核酸(core nucleocapsid)、NS3、NS4及NS5;登革热env和NS1;EBV早期抗原、p18、p23、gp125、核抗原(EBNA)-1、EBNA-2、EBNA-3A、EBNA-3B、EBNA-3C、EBNA-前导蛋白(EBNA-LP)、隐匿性膜蛋白(LMP)-1、LMP-2A及LMP-2B;以及单纯性疱疹病毒gD和gG或其片段或突变形式。

在某些实施例中,该佐剂或细胞因子选自IL-2、IL-12、IL-15、IL-7、IL-18、IL-21、IL-27、IL-31、IFN-α、鞭毛蛋白、未甲基化的CpG寡核苷酸、脂多糖、脂质A以及热稳定抗原(HSA)。

在某些实施例中,本披露考虑了给予包括在此披露的轭合物的药物产品,通过静脉内(IV)、皮下(SC)或腹膜内(IP)给予。

附图概述

图1示例了GIFT4蛋白。(A)鼠类GIFT4蛋白的氨基酸序列-GM-CSF氨基酸(SEQ ID NO:1)、连接物S和IL-4氨基酸(SEQ ID NO:2)(B)GIFT4蛋白的预测的三维结构。(C)由293T细胞表达的完整的GIFT4蛋白(50KDa),用抗小鼠GM-CSF和IL-4两种抗体通过蛋白质印迹检测。(D-E)用GIFT4或重组GM-CSF或IL-4将GM-CSF-应答JAWSII细胞(D)或IL-4-应答CT.h4S细胞(E)处理72小时,培养基作为对照。通过MTT测定分析细胞生长。

图2示出了GIFT4处理的B细胞的表型数据。(A)通过GIFT4刺激诱导B细胞增殖。将细胞培养4天。组合使用重组GM-CSF和IL-4作为对照。(B)将B细胞用CFSE染料标记。将细胞分裂周期表示为单独的峰。(C)将GIFT4处理的B细胞(填充的黑色)的表面标志物与未处理的B细胞(填充的灰色)或抗体同种型对照(黑线)相比较。(D)BCR与抗小鼠IgM抗体在GIFT4(填充的黑色)的存在下交联后,B细胞中的共刺激分子CD80和CD86的下调以及免疫球蛋白从IgM向IgG的切换。组合的重组GM-CSF和IL-4(填充的灰色)作为对照。仅有黑线的是抗体同种型对照。

图3示出了GIFT4活化的B细胞的分泌组(secretome)数据。(A)通过GIFT4刺激(20分钟)活化的STAT1、STAT3、STAT5和STAT6的磷酸化,通过蛋白质印迹检测。(B-C)由GIFT4处理的B细胞分泌细胞因子和趋化因子;通过路明克斯(luminex)测定分析细胞因子浓度。(D-E)通过FACS描绘的GM-CSF+固有反应活化剂(IRA,#42)B细胞的诱导(D);计算产GM-CSF的B细胞的百分比(E)。呈现的数据来自三个独立实验。

图4示出了GIFT4对体内黑色素瘤生长的抑制数据。(A)用GIFT4处理的C57BL/6J小鼠中的脾肿大。将重组GM-CSF和IL-4的给予作为对照。(B)分离并计数每个脾的脾细胞。通过FACS分析描绘B细胞和T细胞。计算总的脾B细胞或T细胞。(C)将B16F0黑色素瘤细胞皮下地植入C57BL/6J小鼠中。在第5天,通过静脉注射用GIFT4蛋白处理小鼠;将给予GM-CSF和IL-4的小鼠或未处理的小鼠作为对照。(D)将表达GIFT4的B16F0黑色素瘤细胞皮下地植入B6小鼠中。将B16F0-GMCSF和B16F0-IL-4黑色素瘤细胞的混合物或野生型B16F0细胞作为对照细胞。测量肿瘤尺寸。每个处理组中五只小鼠;呈现的数据来自三个独立实验。

图5示出了由GIFT4引出的B细胞依赖性杀肿瘤活性的数据。(A)将B16F0-GIFT4黑色素瘤细胞皮下地植入Ragl敲除小鼠(A)、B细胞缺陷小鼠(μMT)、CD4或CD8T细胞缺陷小鼠(B)或野生型B6小鼠中。在不存在获得性免疫的情况下观察到黑色素瘤迅速生长。(C)将T细胞与用GIFT4、单独的或组合的细胞因子刺激的B细胞共培养。用ELISA试剂盒测量培养物上清液中的IFN-γ产生。(D)将B16F0-GIFT4肿瘤细胞皮下地注入IFN-γ-/-、IL-10-/-、IL-12-/-或野生型小鼠体内。每组中五只小鼠;呈现的数据来自三个独立实验。

图6示出了通过GIFT4增强的抗原-黑色素瘤特异性抗体的产生数据。(A)在C57BL/6J小鼠中OVA给予的时间表。将OVA注入小鼠体内,补充有GIFT4蛋白或组合的重组GM-CSF和IL-4。将未进行细胞因子处理的小鼠作为空白对照。(B)从小鼠收获脾,并从脾细胞中纯化B细胞。通过ELISpot测定确定每50,000个B细胞中的OVA-特异性IgG-分泌细胞。(C)将C57BL/6J小鼠(填充的灰色)或B细胞缺陷小鼠(未填充的灰线)用B16F0-GIFT4细胞免疫。将PBS处理的小鼠作为对照(未填充的黑线)。将来自小鼠的血清用作第一抗体,用于通过B16F0黑色素瘤细胞进行的FACS分析,随后孵育PE轭合的抗小鼠IgG第二抗体。(D)每个组中的用来自小鼠的血清处理的B16F0黑色素瘤细胞的平均荧光强度。每组中五只小鼠;呈现的数据来自三个独立实验。(E)将B16F0-GIFT4黑色素瘤细胞植入FcγR-/-、B-细胞缺陷μMT小鼠或野生型C57BL/6J小鼠。监测并测量肿瘤生长。每组中五只小鼠;呈现的数据来自三个独立实验。

图7示出了由过继性转移的B细胞对黑色素瘤生长的抑制数据。(A)在第30天,用B16F0黑色素瘤细胞激发免疫的小鼠或未免疫的对照C57BL/6J小鼠,并且监测并测量肿瘤生长。(B)用分离自免疫的C57BL/6J小鼠的B细胞过继性地转移植入B16F0-GIFT4肿瘤细胞的μMT小鼠。未进行B细胞转移的小鼠作为对照。每个处理组中五只小鼠;呈现的数据来自三个独立实验。

图8示出了通过GIFT4刺激对脾细胞增殖的诱导数据。(A)用GIFT4或组合的重组GM-CSF和IL-4将分离自C57BL/6J小鼠的脾细胞处理5天。脾细胞的扩增聚集为簇。(B)收集细胞并使其经受用抗小鼠B220和抗-CD3抗体进行的FACS,上述抗体是用于鼠类B细胞和T细胞的典型抗体。

图9示出了GIFT4触发的GM-CSF+IRA样细胞在体内的扩增数据。(A)使纯化自用GIFT4或组合使用GM-CSF和IL-4处理的小鼠的脾B细胞经受GM-CSF细胞内染色,随后进行FACS。(B)计算产GM-CSF的B细胞的百分比。呈现的数据来自两个独立实验。

图10示例了GIFT4对CLL细胞的免疫功能的建议模型。GIFT4通过将白血病B细胞再编程进抗-CLL效应物和辅助细胞而具有有效的抗-CLL免疫功能,这些效应物和辅助细胞驱动IFN-γ、NK和T细胞以及NKT细胞的扩增。

图11示例了人类GIFT4蛋白(A)GM-CSF的多肽MWLQSLLLLGTV ACSISAPARS PSPSTQPWEHVNAI QEARRLLN LSRDTAAEMN ETVEVISE MFDLQEPTC LQTRLELYKQGL RGSLTKLKGPLTMMASH YKQHCPPTPETSCATQ TITFESF KENLKDFLLVIPFDCWEPVQE(SEQ ID NO:6)、S连接物和IL-4的人类同种型1(SEQ ID NO:3),连同人类GIFT4蛋白的3D结构(B)。通过蛋白质印迹检测由遗传修饰的293T-GIFT4细胞表达的GIFT4蛋白(C)。GIFT4对IL-4信号转导具有较强的生物信号转导活性并诱导IL-4-应答物CT.h4S细胞的增殖(D)。

图12示出了人类GIFT4蛋白对CLL-B细胞的活化数据。(A)用人类GIFT4蛋白或组合的GM-CSF和IL-4刺激纯化的CLL B细胞。(B)GIFT4触发CLL B细胞中的STAT5超磷酸化,但是不触发STAT1、3和6。

图13示出了以下数据:GIFT4转化的CLL B细胞具有独特的表面标志物和分泌组。GIFT4将白血病B细胞再编程为抗原呈递细胞,这些抗原呈递细胞是CD5+、CD19+、CD23+、CD40+、CD54+、CD80+、CD86+、MHC I/II+,但是CD124(A)。GIFT4处理的CLL B细胞分泌IL-1β、IL-6、ICAM1以及大量的IL-2(B)。

图14示出了数据,指示GIFT4再编程的CLL B细胞使自体NK和T细胞免疫应答运行。CD5+CD19+B细胞是CLL细胞的主要组分,CD3+T细胞和CD16+NK细胞是次要群体(A,上图)。GIFT4处理强力地推进NK和T细胞以及CD3+CD16+NKT细胞的扩增(A,中间图),上述细胞产生大量的IFN-γ(A,下图,和B)。将GIFT4处理的CLL细胞与来自患者的初级自体CLL细胞共培养,从而在体外杀死初级pCLL细胞(C)。

图15示出了数据,指示GIFT4处理在B6小鼠中增加骨髓干细胞(BMSC)(Lin-SCA-1+CD117+)。将GIFT4(20ng/天)或对照细胞因子注入B6小鼠中,持续6天。分离骨髓细胞并使其经受用谱系标志物和干细胞标志物进行的FACS分析。基于作为Lin-Sca-1+Ckit的表面标志物(B),计算每个股骨的BMSC数目(A)。将实验重复三次,每组5只小鼠。

图16示出了数据,指示B细胞缺陷在μMT小鼠中终止BMSC的增加。将GIFT4(20ng/天)或对照细胞因子注射入μMT B细胞缺陷小鼠中,持续6天。分离骨髓细胞并使其经受用谱系标志物和干细胞标志物进行的FACS分析(参见图15)。计算每个股骨的BMSC数目。将实验重复两次,每组5只小鼠。

图17示出了数据,指示在GIFT4处理后,B细胞的过继性转移促进BMSC在μMT小鼠中扩增。将B细胞过继性转移进μMT B细胞缺陷小鼠中(2x l07个细胞/小鼠),与GIFT4处理组合,持续6天。分离骨髓细胞并使其经受用谱系标志物和干细胞标志物进行的FACS分析(参见图15)。计算每个股骨的BMSC数目。将实验重复两次,每组5只小鼠。

图18示出了数据,指示GIFT4编程的BMSC与来自首次接受试验的小鼠的BMSC具有类似功能。将B6小鼠在11Gy下辐射(5.5+5.5Gy,3hr间隔),然后i.v.注射BMSC,该BMSC纯化自mGIFT4处理的小鼠或首次接受试验的小鼠。监测小鼠体重减轻和存活。将实验重复两次,每组5只小鼠。

图19示出了数据,指示递送GIFT4和B细胞改善辐射引起的骨髓衰竭。将B6小鼠在11Gy下辐射(5.5+5.5Gy,3hr间隔),然后i.v.注射mGIFT4(20ng/小鼠/天,持续6天)或mGIFT4和B细胞(2x106个细胞/小鼠)。将未进行处理的小鼠作为对照。监测小鼠体重减轻和存活。将实验重复两次,每组5只小鼠。

详细说明

常见的γ链白介素细胞因子包括IL-2、IL-4、IL-7、IL-9、IL-15以及IL-21,并且在淋巴细胞的活化与分化中具有重要作用。IL-2对T细胞具有较强的免疫调节特性,并且已被FDA批准为第一种用于治疗患者的晚期肾癌和转移性黑色素瘤的白介素免疫治疗剂。不幸的是,即使与多种化疗药物组合,IL-2免疫疗法也在癌症患者的存活时间方面未显示出显著改善。此外,归因于毛细血管渗漏,IL-2具有频繁的、经常严重的并且有时致命的副作用。

GIFT2通过诱导肿瘤杀伤细胞NK细胞而显示出抗肿瘤活性。GIFT2影响杀肿瘤树突细胞。相比之下,GIFT15(来源于GM-CSF和IL-15)具有终止多发性硬化中的炎症反应的免疫抑制功能。在本文中,一种来源于GM-CSF和IL-4的融合因子(GIFT4)被证明是癌症免疫治疗剂。在功能上区别于在体外诱导单核细胞分化为树突细胞的GM-CSF和IL-4,GIFT4直接引发获得性B细胞免疫应答并且随之引发T细胞免疫。

GM-CSF-IL-4融合因子(GIFT4)

图1提供了本披露的一个实施例,该实施例包括GM-CSF序列和鼠类IL-4序列并且图11提供了人类序列。在某些实施例中,本披露考虑了一种重组人类形式的融合因子,例如同种型1,它是氨基酸序列MGLTSQLLPP LFFLLACAGN FVHGHKCDIT LQEIIKTLNS LTEQKTLCTE LTVTDIFAAS KNTTEKETFC RAATVLRQFY SHHEKDTRCL GATAQQFHRH KQLIRFLKRL DRNLWGLAGL NSCPVKEANQ STLENFLERL KTIMREKYSK CSS(SEQ ID NO:3),或同种型2,它是氨基酸序列MGLTSQLLPP LFFLLACAGN FVHGHKCDIT LQEIIKTLNS LTEQKNTTEK ETFCRAATVL RQFYSHHEKD TRCLGATAQQ FHRHKQLIRF LKRLDRNLWG LAGLNSCPVK EANQSTLENFLERLKTIMRE KYSKCSS(SEQ ID NO:4)。与变体1相比,同种型2在5'区中缺少一个框内外显子,从而产生一种与同种型1相比,缺少内部区域的同种型(2)。

本披露涵盖以下融合蛋白,这些融合蛋白包括具有连接物氨基酸的GM-CSF和IL-4实体(包括等位基因变体以及非天然发生的变体)中的每者或两者的全长预加工形式及其成熟的加工形式、片段和变体。除可以存在于群体中的GM-CSF和IL-4实体的天然发生的等位基因变体之外,熟练的技术人员应该进一步意识到可以使用经典或重组技术实现随机或定向诱变而通过突变引入变化(即一个或多个氨基酸的一个或多个缺失、添加和/或取代)。用于本披露中的适合的变体典型地具有与对应的天然细胞因子的氨基酸序列有高度的同源性的氨基酸序列。在一个实施例中,用于本披露的融合蛋白中的变体细胞因子的氨基酸序列与对应的天然序列(例如,SEQ ID NO:3或4)至少70%、至少约75%、至少约80%、至少约90%,典型地至少约95%,更典型地至少约97%并且甚至更典型地至少约99%一致。在某些实施例中,这样的天然序列属于人类GM-CSF和/或人类IL-4。

可以使用本领域的普通技术人员已知的标准方法确定氨基酸或核酸序列之间的百分比一致性。例如,为了确定两个氨基酸序列之间的同源性百分比,将这些序列进行比对用于最优比较的目的。然后比较相应的氨基酸位置处的氨基酸残基。用于最优比对,可以在一个氨基酸序列或两个氨基酸序列序列中引入空位,并且出于比较的目的,可以不考虑非同源序列。当第一序列中的一个位置被与在第二序列中的相应位置相同的氨基酸残基占据时,则这些序列在那个位置是一致的。两个序列之间的百分比一致性是由这些序列共享的一致位置的数目的函数,考虑了空位的数目和每个空位的长度,需要引入空位以用于最优比对。可以使用数学算法(例如,Computational Molecular Biology(计算分子生物学),1988,编辑Lesk(莱斯克)A M,Oxford University Press(牛津大学出版社),纽约;Biocomputing:Informatics and Genome Projects(生物计算:信息学与基因组计划),1993,编辑Smith(史密斯)D.W.,Academic Press(学术出版社),纽约;Computer Analysis of Sequence Data(序列数据的计算机分析),1994,编辑Griffin(格里芬)A.M.和格里芬H.G.,Human Press(人类出版社),新泽西州;Sequence Analysis Primer(序列分析入门),1991,编辑Griskov(格里斯科夫)M.和Devereux(德弗罗)J.,Stockton Press(斯托克顿出版社),纽约)完成序列的比较和两个序列之间的百分比一致性和相似性的确定。此外,多种计算机程序可用于确定氨基酸序列之间的百分比一致性和核酸序列之间的百分比一致性,例如GCGTM程序(可获得自遗传学计算机集团(Genetics Computer Group),麦迪逊,威斯康星州)、DNAsisTM程序(可获得自日立软件公司(Hitachi Software),圣布鲁诺,加州)或Mac VectorTM程序(可获得自伊士曼柯达公司(Eastman Kodak Company),纽黑文,康涅狄格州)。

用于在本披露中使用的GM-CSF和IL-4实体的适合的变体具生物活性并且保留至少一种结合对应的多肽而在此描述的活性。典型地,尽管可能在一定程度上积极地或消极地影响这种或这些多肽的给定功能,但是可以例如用展现出减少的细胞毒性或增强的生物活性的变体维持治疗效果(例如,抗肿瘤活性、绕过肿瘤诱导的免疫能量)。可以通过本领域已知的方法(例如通过定点诱变)鉴定为给定功能所必需的氨基酸。还可以通过结构分析(例如结晶、核磁共振和/或光亲和标记)确定对于结合配偶体/底物(例如,受体)而言关键的氨基酸。可以在例如上文描述的那些测定中测试所得变体的生物活性。

例如,在一类功能性变体中,保守地取代一个或多个氨基酸残基。“保守性氨基酸取代”是这样的取代,其中用具有相似侧链的氨基酸残基替换天然多肽中的氨基酸残基。具有相似侧链的氨基酸残基的家族已在本领域中定义。典型地,当一个氨基酸对另一个氨基酸的替换是在脂肪族氨基酸Ala、Val、Leu及Ile;羟基残基Ser和Thr;酸性残基Asp和Glu;酰胺残基Asn和Gin;碱性残基Lys和Arg;或芳香族残基Phe和Tyr之间时,则将取代认为是保守的。可替代地,在另一个实施例中,可以将突变连同细胞因子编码序列的全部或部分一起随机地引入(例如通过饱和诱变),并且可以针对其如在此描述的生物活性筛选所得突变体,以鉴定至少保留治疗活性的突变体。

尽管可以将GM-CSF和IL-4实体直接融合在本披露的融合蛋白中,但是典型的是使用连接物连接GM-CSF和IL-4。连接物的目的在于允许GM-CSF和IL-4实体各自正确地形成、折叠和/或发挥功能。它应该足够柔韧并且足够长,以实现此目的。典型地,可以这样选择连接物的编码序列,使得它促进翻译暂停并且因此GM-CSF和IL-4实体独立地折叠。本领域的普通技术人员根据本披露将能够设计适合的连接物。然而,本披露并不受限于所使用的连接物序列的形式、尺寸或数目。可以在GM-CSF与IL-4之间插入选择的连接物序列的多个拷贝。对连接物序列的唯一要求是它在功能上不会不利地干扰融合蛋白的单独实体的折叠和/或发挥功能。例如,适合的连接物是1至5或5至50个氨基酸长并且可以包括以下氨基酸,如甘氨酸、丝氨酸、苏氨酸、天冬酰胺、丙氨酸以及脯氨酸(参见例如Wiederrecht(韦德莱施特)等人,1988,Cell(细胞)54,841;Dekker(德克尔)等人,1993,Natur(自然)362,852;Sturm(斯特姆)等人,1988,Genes and Dev.(基因与发育)2,1582;Aumailly(奥买利)等人,1990FEBS Lett.(欧洲生化学会联合会快报)262,82)。包括丝氨酸和甘氨酸残基的重复序列在本披露的背景下是典型的。适合的连接物的特定实例由序列Gly-Gly-Gly-Gly-Ser(GGGGS)(SEQ ID NO:5)的两个或三个或更多个(例如,多达八个或更多个)拷贝组成。应该明显的是,本披露不限于使用这些具体的连接物。

本披露进一步包括以下融合蛋白,这些融合蛋白包括以下氨基酸序列,或可替代地基本由其组成,或可替代地由其组成,该氨基酸序列与在SEQ ID NO:1-6中列举的氨基酸序列中的任一氨基酸序列的全部或部分至少70%、75%、80%、90%、95%、97%、99%同源或甚至更好地100%同源(一致)。

在本披露的背景下,当一种蛋白质不包含除列举的氨基酸序列之外的任何氨基酸时,该蛋白质由该氨基酸序列“组成”。当一个氨基酸序列与仅仅几个另外的氨基酸残基(典型地从约1至约50个左右的另外残基)一起存在时,一种蛋白质“基本”由这样的一个氨基酸序列“组成”。当一个氨基酸序列是一种蛋白质的最终(即,成熟)氨基酸序列的至少一部分时,该蛋白质“包括”该氨基酸序列。这样的一种蛋白质可以具有几个直到几百个另外的氨基酸残基。这样的另外的氨基酸残基可以与包含在该融合蛋白中的每个实体或两个实体天然地相关或是异源的氨基酸/肽序列(相对于对应的实体是异源的)。除了其他方面,这样的另外的氨基酸残基可以在将融合蛋白从前体加工为成熟形式中发挥一定作用,可以有助于蛋白质运输,延长或缩短蛋白质半衰期或有助于将融合蛋白用于测定或生产的操纵。典型地,本披露的融合蛋白在NH2-末端处包括信号肽,以便促进在宿主细胞或生物体中的分泌。例如,可以使用内源性信号肽(即,天然地存在于细胞因子中,存在于所述融合蛋白的NH2末端处)或可替代地,可以将适合的异源性(相对于所讨论的细胞因子)信号肽序列添加至存在于融合蛋白的NH2末端处的细胞因子实体或插入从而代替内源性信号肽序列。

在本披露的背景下,本披露的融合蛋白可以包括任何起源的细胞因子实体,即任何人类或动物来源(包括犬、禽、牛、鼠、羊、猫、猪等)。尽管“嵌合的”融合蛋白也被本披露所涵盖(例如,一个人类起源的细胞因子实体和另一个动物来源的细胞因子实体),但是典型的是每个实体都属于相同起源(例如,两者都来自人类)。

可以通过标准技术产生本披露的融合蛋白。被包括在本披露的融合蛋白中的每种细胞因子的多肽和DNA序列被公开于本领域中,用于通过重组或化学合成技术获得其表达的方法也被公开于本领域中。在另一个实施例中,可以通过常规技术(包括DNA自动合成仪)合成编码融合蛋白的DNA序列。然后,可以在载体中构建编码该融合蛋白的DNA序列并将其可操作地连接至一个调节区,该调节区能够控制该融合蛋白在宿主细胞或生物体中的表达。用于例如在病毒载体或质粒中克隆DNA序列的技术是本领域的普通技术人员已知的(Sambrook(萨姆布鲁克)等人,2001,“Molecular Cloning.A Laboratory Manual(分子克隆:实验室手册)”,Laboratory Press(实验室出版社),冷泉港,纽约)。本披露的融合蛋白可以纯化自已经被转化成表达该融合蛋白的细胞。

本披露还提供了一种编码本披露的融合蛋白的核酸分子。在本披露的背景下,术语“核酸”和“多核苷酸”可互换使用并且定义了具有任何长度的核苷酸的聚合物,脱氧核糖核苷酸(DNA)分子(例如,cDNA或基因组DNA)和核糖核苷酸(RNA)分子(例如,mRNA)以及使用核苷酸类似物产生的DNA或RNA的类似物(参见美国专利号5,525,711和美国专利号4,711,955,作为核苷酸类似物的实例)。如果存在的话,可以在该聚合物组装之前或之后对核苷酸结构进行修饰。还可以由非核苷酸元件中断核苷酸的序列。可以在聚合后进一步修饰该核酸分子,例如通过与标记组分轭合。该核酸(尤其是DNA)可以是双链的或单链的,但是典型地是双链DNA。单链核酸可以是编码链(正义链)或非编码链(反义链)。

本披露的核酸分子包括但不限于单独地编码融合蛋白的序列,但是可以包括另外的非编码序列,例如在转录、mRNA加工(包括剪接和多聚腺苷酸化信号)、核糖体结合以及mRNA稳定性中发挥一定作用的内含子和非编码5'和3'序列。例如,本披露的核酸分子可以包含少于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核苷酸序列,这些核苷酸序列天然地侧翼于(即,位于5'和3'端的序列)或存在于编码GM-CSF和IL-4实体的基因组DNA中。

根据一个典型的实施例,本披露提供了以下核酸分子,这些核酸分子包括编码以下氨基酸序列的全部或部分的核苷酸序列,或可替代地基本由其组成,或可替代地由其组成,该氨基酸序列编码一种融合蛋白,该氨基酸序列与SEQ ID NO:1-6中所示的氨基酸序列中的任一氨基酸序列至少约70%、至少约75%、至少约80%、至少约90%、至少约95%,典型地至少约97%,更典型地至少约99%同源或甚至更典型地100%同源。

在另一个实施例中,本披露的核酸分子包括以下核酸分子,该核酸分子与编码示于SEQ ID NO:1-6的任一项中的融合蛋白的核苷酸序列的全部或部分互补。与本披露的核苷酸序列互补的核酸分子是一种足够互补的核酸分子,这样使得它可以与编码融合蛋白的核苷酸序列在严格条件下杂交,从而形成稳定的双链体。这样的严格条件是本领域的普通技术人员已知的。严格杂交条件的一个典型的非限制性实例是在约45℃下在6X氯化钠/柠檬酸钠(SSC)中杂交,随后在50℃-65℃下在0.2X SSC、0.1%SDS中洗涤一次或多次。在一个实施例中,本披露涉及与本披露的核酸分子反义的核酸。该反义核酸可以与整个编码链互补,或仅与其一部分互补。

在仍另一个实施例中,本披露涵盖本披露的上述核酸分子的变体,上述核酸分子是例如编码上述融合蛋白的变体的核酸分子。可以经由标准技术(例如定点诱变和PCR介导的诱变)通过向核苷酸序列中引入一个或多个核苷酸取代、添加和/或缺失而产生由本披露涵盖的一种或多种变化。诱变后,可以如在此描述地重组地表达变体核酸分子并且可以使用例如在此描述的测定确定所得蛋白的活性。可替代地,可以改变本披露的核酸分子,以针对特定的宿主细胞提供优先的密码子使用(例如大肠杆菌;Wada(瓦达)等人,1992,Nucleic Acids Res.(核酸研究)20,2111-2118)。本披露进一步涵盖核酸分子,这些核酸分子由于遗传密码的简并性而不同并且因此编码例如与示于SEQ ID NO:1-6中的那些融合蛋白的任一种相同的融合蛋白。

本披露的另一个实施例涉及本披露的核酸分子的片段,例如限制性内切核酸酶和PCR产生的片段。可以将这样的片段用作探针、引物或编码融合蛋白的免疫原性部分的片段。

可以使用在此提供的序列信息产生本披露的核酸分子。可以基于本领域可及的序列数据(如结合本披露的融合蛋白而提供的那些或提供于实例部分的那些),根据标准分子生物学技术(例如,如描述于Sambrook(萨姆布鲁克)等人,“Molecular Cloning:A Laboratory Manual(分子克隆:实验室手册)”,Cold Spring Harbor Laboratory Press(冷泉港实验室出版社),冷泉港,纽约,2001中)或标准PCR扩增技术使用cDNA或可替代地基因组DNA作为模板以及适当的探针或寡核苷酸引物克隆或扩增编码GM-CSF和IL-4实体中的每个实体的核酸。可以如描述于下文中的实验部分或通过常规技术将GM-CSF序列融合至IL-4序列。例如,可以直接地或经由编码肽连接物的序列将GM-CSF和IL-4编码序列一起连接在框内。还可以将GM-CSF编码序列直接插入包含IL-4编码序列的载体中,或反之亦然。可替代地,可以使用产生互补突出端的引物进行GM-CSF和IL-4编码序列的PCR扩增,这些互补突出端随后可以被退火和再扩增,以产生融合基因序列。

GM-CSF和IL-4融合细胞因子触发B细胞向杀肿瘤效应物的转化

本文的研究指示,GIFT4融合因子具有将天然B细胞转化为杀肿瘤效应物的强大能力。鉴于其对宿主B细胞免疫功能的潜在影响,融合因子GIFT4为对抗多种多样的癌症的免疫疗法提供了一种策略,例如使用基于B细胞的癌症免疫疗法。

在某些实施例中,本披露考虑了用作癌症免疫治疗剂的融合因子GIFT4(来源于GM-CSF和IL-4)。在功能上区别于在体外诱导单核细胞分化为树突细胞的GM-CSF和IL-4,GIFT4直接引发获得性B细胞免疫应答并且随之引发T细胞免疫。参见Gluckman(格鲁克曼)等人,Cytokines,cellular and molecular therapy(细胞因子、细胞疗法与分子疗法),1997,3:187-196。GIFT4融合因子是一种触发强力的对抗肿瘤的B细胞免疫的有效的活化剂。独特地,GIFT4-B细胞分泌大量的固有细胞因子(如IL-1β、IL-6、IL-12、VEGF、GM-CSF)和趋化因子CCL3,但是不分泌IL-10和IFN-γ。促Th1细胞因子IL-12、IL-1β和IL-6可以促进T细胞产生IFN-γ并增强宿主抗肿瘤免疫。作为GIFT4的亲代分子,IL-4刺激在B细胞中仅诱导STST6的强烈磷酸化,其他STAT没有或有弱的磷酸化。然而,当与B细胞连接时,GIFT4蛋白显示出触发STAT1、STAT3、STAT5及STAT6的超磷酸化的获得性功能,前两种STAT是其他IL-2常见γ链家族成员(包括IL-2、IL-7、IL-9、IL-15及IL-21)的主要下游信号转导途径。STAT3的磷酸化与IL-1β和IL-6的产生有关。没有报道STAT磷酸化导致正常B细胞分泌CCL3;然而,BCR刺激活化白血病B细胞,以产生趋化因子CCL3。参见Miyauchi(宫内)等人,Cancer science(癌症科学),2011,102:1236-1241。尽管GIFT4蛋白具有GM-CSF和IL-4两种组分的功能性活性,但是仍不清楚STAT的磷酸化如何使得GIFT4-B细胞分泌GM-CSF和CCL3。

GIFT4-B细胞具有表达表面标志物B220、CD19、CD40、CD80、CD86及IgM,但是不表达CD23的独特表型。GIFT4-B细胞分泌高量的GM-CSF。不同于分泌高量的GM-CSF的IRA-B细胞(参见Rauch(劳奇)等人,Science(科学),2012,335:597-601),GIFT4-B细胞是的CD80+CD86+,其是抗原呈递细胞的典型标志物。GIFT4-B细胞的表型也不同于B1细胞和B2细胞,其中B1细胞是B220,并且B2细胞是CD23+。不同于IRA B细胞,GIFT4-B细胞还分泌IL-1β、IL-5、IL-6、IL-12、VEFG以及大量的CCL3,但是不分泌由IRA B细胞独特地产生的IL-3。据我们所知,它是第一篇报道活化的正常B细胞可以产生趋化因子CCL3。因此,GIFT4-B细胞具有可以增强IFN-γ介导的T细胞抗肿瘤免疫的不同的细胞因子分泌特性,但是与IRA-B细胞共用一些常见的表面标志物。明显地,当与BCR交联时,GIFT4-B细胞具有将IgM同种型切换为IgG的可塑性;类似于IL-4和抗小鼠IgM处理的B细胞。因此,GIFT4-B细胞可以作为对抗多种癌症并且可能对抗感染性病原体的固有效应物和获得性应答物两者而起功能。

GIFT4融合因子先前在黑色素瘤鼠类模型中触发未描述的B细胞依赖性抗肿瘤免疫。B细胞包括具有双侧免疫活性的B淋巴细胞的异质亚群,该双侧免疫活性是经由分泌B细胞细胞因子、产生抗体和细胞相互作用而增强或抑制宿主免疫。早期的研究显示,B细胞经由IL-10介导的途径通过抑制T细胞的杀肿瘤活性而抑制对抗肿瘤的宿主免疫应答。然而,新出现的证据表明,B细胞在抗肿瘤免疫中发挥重要的保护作用。在此披露的研究证明,GIFT4诱导B细胞启动的抗黑色素瘤免疫应答。

在体内给予GIFT4蛋白导致扩增总体的B细胞(包括GM-CSF分泌IRA样B细胞)而不扩增产IL-10的调节性B细胞,由于GIFT4-B细胞不分泌IL-10。已经显示,GM-CSF增加抗原活化的细胞毒性T细胞的增殖;趋化因子CCL3对于在抗肿瘤免疫中募集CCR5+T细胞而言是重要的,从而表明产GM-CSF和CCL3的GIFT4-B细胞具有促进对抗肿瘤的T细胞免疫的有效的功效。此外,产VEGF的B细胞有助于树突细胞在体内移动。将GIFT4-B细胞与T细胞共培养显著增加由T细胞产生的IFN-γ,进一步证实GIFT4-B细胞通过增加IFN-γ+T细胞反应的幅值而积极地参与细胞免疫。B16F0黑色素瘤在具有正常的T细胞功能的B细胞缺陷小鼠中强力生长,确认GIFT4触发的抗肿瘤免疫是B细胞依赖性的。B细胞可以充当真正的抗原呈递细胞以直接许可细胞毒性T细胞并建立持久的抗肿瘤免疫的事实指示,GIFT4-B细胞像树突细胞一样发挥功能以引发对抗肿瘤的T细胞免疫。

产生抗原特异性抗体是B效应细胞对抗感染性病原体和癌症的重要保护方面。已经显示,当连接抗原-BCR时,IL-4参与记忆B细胞的产生与扩增;然而,IL-4刺激不能增加浆细胞的数目。参见Choe(崔)等人,Journal of immunology(免疫学杂志),1997,159:3757-3766。TLR配体CpG寡脱氧核苷酸和LPS可以活化记忆B细胞并在体外分化为浆细胞,但是在体内失去分化能力。通过GIFT4刺激而在体内急剧扩增抗原特异性浆细胞并增加抗原特异性抗体的产生指示,GIFT4蛋白对于B细胞抗肿瘤体液反应而言是一种有效的刺激物。在黑色素瘤小鼠模型中,用GIFT4分泌B16F0细胞进行免疫使得在免疫的小鼠中分泌肿瘤特异性抗体,表明GIFT4对于诱导抗黑色素瘤特异性抗体而言是一种强大的佐剂。在B16F0-GIFT4细胞免疫的B6小鼠中完全抑制黑色素瘤生长指示,GIFT4引发获得性抗肿瘤B细胞免疫。Fc受体实质上通过抗体依赖性细胞介导的细胞毒作用途径(ADCC)而促进细胞毒抗体对抗肿瘤的作用。缺乏Fcγ受体的小鼠不能阻止分泌GIFT4的B16F0肿瘤的生长的数据进一步强调ADCC参与GIFT4触发的B细胞抗黑色素瘤免疫。在一个预建立的黑色素瘤模型中,肿瘤预致敏的B细胞的过继性转移显著地抑制黑色素瘤在B细胞缺陷小鼠中的生长,进一步确认GIFT4的抗黑色素瘤作用是依赖过继性B细胞活性的。

药物组合物

如在此使用的,语言“药学上可接受的赋形剂”旨在包括与药物给予相容的任何和所有载体、溶剂、稀释剂、赋形剂、佐剂、分散介质、包衣、抗细菌剂和抗真菌剂以及吸收延迟剂等。

适合地,本披露的药物组合物包括适于通过注入人类或动物生物体内而递送它的载体和/或稀释剂。这样的载体和/或稀释剂在使用的剂量和浓度下是无毒的。它选自通常用于配制处于单位剂量或多剂量形式的用于胃肠外给药或用于通过连续或周期性输注而直接输注的组合物的那些。它典型地是等渗、低渗或弱高渗的并且具有相对较低的离子强度,例如由糖、多元醇和等渗盐水溶液提供。代表性实例包括无菌水、生理盐水(例如氯化钠)、抑菌水、林格氏溶液、葡萄糖或蔗糖溶液、汉克氏溶液(Hank's solution,)以及其他水性生理学平衡盐溶液(参见例如最新版本的Remington:The Science and Practice of Pharmacy(雷明顿:药学科学与实践),A.Gennaro(热纳罗),Lippincott,Williams and Wilkins(利平科特,威廉姆斯和威尔金斯出版社))。将本披露的组合物的pH适合地加以调节和缓冲,以便适于在人类和动物中使用,典型地处于生理或略碱性pH(与pH 8至约pH 9之间,特别优选的是pH 8.5)。适合的缓冲液包括磷酸盐缓冲液(例如PBS)、碳酸氢盐缓冲液和/或Tris缓冲液。在1M蔗糖、150mM NaCl、1mM MgCl2、54mg/1Tween 80、10mM Tris(pH 8.5)中配制典型的组合物。在10mg/ml甘露醇、1mg/ml HSA、20mM Tris(pH 7.2)以及150mM NaCl中配制另一种典型的组合物。

本披露的组合物可以处于多种形式,例如处于固体(例如粉末、冻干形式)或液体(例如水性的)形式。在固体组合物的情况下,典型的制备方法是真空干燥和冷冻干燥,该真空干燥和冷冻干燥从其先前无菌过滤的溶液中产生活性剂和任何另外的希望的成分的粉末。希望的话,可以将这样的溶液存储于无菌安瓿瓶中,准备好用于通过添加准备注射的无菌水而重构。

喷雾或雾化配制品也构成本披露的一部分。鼻内给药方法在本领域是熟知的,包括将液滴、喷雾或干粉形式的组合物从加压容器或分药器或喷雾器给予进有待治疗的个体的鼻咽中,该加压容器或分药器包含适合的推进剂,例如气体,如二氧化碳(参见例如WO 95/11664)。用于口服给药的肠溶配制品(如耐胃液胶囊剂和颗粒剂)、用于直肠或阴道给药的栓剂也构成本披露的一部分。用于非胃肠外给药,这些组合物还可以包括增加粘膜孔径的吸收增强剂。这样的吸收增强剂包括脱氧胆酸钠、甘氨胆酸钠、二甲基-β-环糊精、月桂酰基-1-溶血磷脂酰胆碱以及与粘膜的磷脂结构域具有相似性的其他物质。

该组合物还可以包含用于提供令人希望的药物或药效特性的其他药学上可接受的赋形剂,包括例如修饰或维持配制品的pH、渗透性、粘度、透明度、颜色、无菌性、稳定性、溶解速率,修饰或维持释放进或吸收进人类或动物生物体。例如,可以使用聚合物(如聚乙二醇)获得溶解度、稳定性、半衰期的令人希望的特性以及其他药学上有利的特性(Davis(戴维斯)等人,1978,Enzyme Eng.(酶工程)4,169-173;Burnham(伯罕姆)等人,1994,Am.J.Hosp.Pharm.(美国医院药学杂志)51,210-218)。稳定化组分的代表性实例包括聚山梨酯80、L-精氨酸、聚乙烯吡咯烷酮、海藻糖及其组合。尤其适于基于质粒的组合物的其他稳定化组分包括透明质酸酶(它被认为使宿主细胞的细胞外基质不稳定,如描述于WO 98/53853中)、氯喹、质子化合物(如丙二醇、聚乙二醇、甘油、乙醇、1-甲基L-2-吡咯烷酮或其衍生物)、非质子化合物(如二甲亚砜(DMSO)、二乙亚砜、二-正丙亚砜、二甲基砜、环丁砜、二甲基甲酰胺、二甲基乙酰胺、四甲基脲、乙腈)(参见EP 890 362)、核酸酶抑制剂(如肌动蛋白G)(WO 99/56784)以及阳离子盐(如镁(Mg2+)(EP 998 945)和锂(Li+)(WO 01/47563))及其衍生物中的任一种。本披露的组合物中的阳离子盐的量典型地在从约0.1mM至约100mM的范围内,并且仍更典型地,在从约0.1mM至约10mM的范围内。粘度增强剂包括羧甲基纤维素钠、山梨醇和右旋糖酐。该组合物还可以包含本领域中已知用于促进穿过或运过血屏障或具体器官的膜的物质(例如转铁蛋白受体的抗体;Friden(弗里登)等人,1993,Science(科学)259,373-377)。可以使用聚赖氨酸和乳糖的凝胶复合物(Midoux(米多克斯)等人,1993,Nucleic Acid Res.(核酸研究)21,871-878)或泊洛沙姆407(Pastore(帕斯托雷),1994,Circulation(循环)90,1-517)来有助于在动脉细胞中的给药。

本披露的组合物还可以包括一种或多种适于人类全身或粘膜施用的佐剂。有用的佐剂的代表性实例包括但不限于明矾、矿物油乳剂(如弗氏完全佐剂和不完全佐剂)、脂多糖或其衍生物(Ribi(里贝)等人,1986,Immunology and Immunopharmacology of Bacterial Endotoxins(细菌内毒素的免疫学与免疫药理学),Plenum Publ.Corp.(普莱农出版公司),纽约,p407-419)、皂苷(如QS21(Sumino(住野)等人,1998,J.Virol.(病毒学杂志)72,4931-4939;WO 98/56415)、七叶皂苷、洋地黄皂苷、满天星皂苷或昆诺阿藜(Chenopodium quinoa)皂苷)以及CpG寡脱氧核苷酸。可替代地,可以用常规疫苗载体配制本披露的组合物,这些常规疫苗载体由以下构成:壳聚糖或其他聚阳离子聚合物、聚丙交酯和聚丙交酯共乙交酯颗粒、聚-N-乙酰氨基葡糖基聚合物基质、由多糖或化学修饰的多糖构成的颗粒以及脂质基颗粒等。还可以在胆固醇的存在下配制该组合物,以形成微粒结构,例如脂质体。

可以将该组合物以尤其有效增强动物或人类生物体内的免疫应答的量给予该患者。如在此使用的,术语“有效量”是指足以实现希望的生物效应的量。例如,用于增强免疫应答的有效量可以是引起免疫系统的活化所必需的量,例如使得癌症患者体内形成抗肿瘤反应(例如该组合物已经注入其中的患者体内的肿瘤的尺寸减少或消退和/或远离肿瘤)。适当的剂量可以取决于已知的因素而变化,这些已知的因素是例如具体活性剂的药效学特征,宿主生物体的年龄、健康和体重;有待治疗的一种或多种病症、症状的性质和程度、并行治疗的种类、治疗频率、用于预防或治疗的需要和/或希望的效果。还应该依赖所选的具体给药途径而计算剂量。根据相关情况,常规地由从业者进一步细化确定供治疗用的适当剂量所必需的计算结果。可以通过常规技术确定效价。基于载体质粒的组合物可以被配制为剂量在1微克至100mg之间,有利地在10微克与10mg之间并且典型地在100微克与1mg之间的形式。基于蛋白质的组合物可以被配制为剂量在10ng至100mg之间的形式。典型的剂量是从约1微克至约10mg的治疗性蛋白/kg体重。给药可以按单次剂量或在一定时间间隔后重复一次或若干次的剂量发生。在一个典型的实施例中,使用常规注射器和针头或设计用于弹道递送固体组合物的装置(WO 99/27961)或无针压力液体喷射装置(美国专利号4,596,556;美国专利号5,993,412)通过注射而给予本披露的组合物。

可以将本披露的组合物封装在安瓿瓶、一次性注射器或由玻璃或塑料制成的多剂量小瓶中。在所有情况下,该组合物必须是无菌的并且应该具有达到容易注射的程度的流动性。它在制备和存储的条件下必须是稳定的并且必须抗微生物(如细菌和真菌)的污染作用而保存。可以通过将需要量的活性剂(例如,融合蛋白或感染性颗粒)与上面列举的成分之一或其组合进行合并,随后过滤灭菌而制备无菌可注射溶液。

使用方法

本披露的药物组合物可以用于治疗或预防多种疾病和病理性病症的方法中,包括遗传性疾病、先天性疾病和获得性疾病,如感染性疾病(例如病毒和/或细菌感染)、癌症、免疫缺陷病以及自身免疫性疾病。相应地,本披露还涵盖本披露的融合蛋白、载体、感染性病毒颗粒、宿主细胞或组合物用于制备旨在治疗或预防这样的疾病(尤其是癌症或感染性疾病)的药物的用途。

本披露的组合物具体旨在预防性或治愈性治疗与癌症相关的障碍、病症或疾病。术语“癌症”涵盖任何癌性病症,包括扩散性或局部肿瘤、转移、癌性息肉以及癌前病变(例如发育不良)连同由不想要的细胞增殖造成的疾病。根据在此描述的方法,可以选择多种肿瘤进行治疗。一般而言,实体瘤是典型的。在本披露的背景下被考虑的癌症包括但不限于胶质母细胞瘤、肉瘤、黑色素瘤、肥大细胞瘤、癌连同乳腺癌、前列腺癌、睾丸癌、卵巢癌、子宫内膜癌、子宫颈癌(具体而言、由乳头瘤病毒诱导的那些)、肺癌(lung cancer)(例如、肺癌(lung carcinomas)、包括大细胞癌、小细胞癌、鳞癌和腺癌)、肾癌、膀胱癌、肝癌、结肠癌、肛门癌、胰腺癌、胃癌、胃肠癌、口腔癌、喉癌、脑和中枢神经系统癌症、皮肤癌(例如黑色素瘤和非黑色素瘤)、血癌(淋巴瘤、白血病、尤其是如果它们已经发展为实体肿块)、骨癌、视网膜母细胞瘤以及甲状腺癌。在本披露的用途的一个典型实施例中,将该组合物给予进实体瘤或非常接近于实体瘤。

在某些实施例中,本披露考虑了在此披露的轭合物在自体免疫增强疗法(AIET)中的用途。AIET是这样一种治疗方法,其中从受试者的体内取出免疫或癌细胞,例如淋巴因子活化的杀伤(LAK)细胞、自然杀伤(NK)细胞、细胞毒T淋巴细胞(CTL)、树突细胞(DC),将其培养并加工以活化它们,直到它们对癌症的抗性被加强,并且然后将这些细胞放回体内。免疫系统的细胞、抗体和器官起作用,以保护身体对抗肿瘤细胞并防御肿瘤细胞。在某些实施例中,本披露考虑了将收获的细胞与GM-CSF和IL-4的轭合物混合,以活化这些细胞。在某些实施例中,本披露考虑了当将这些细胞给予回受试者时,给予GM-CSF和IL-4的轭合物。

在某些实施例中,本披露考虑了给予与GM-CSF和IL-4的轭合物组合的西普鲁塞-T(sipuleucel-T)(PROVENGE)。PROVENGE由自体外周血单核细胞(包括抗原呈递细胞(APC))组成,这些单核细胞已经在培养期过程中用一种重组人类蛋白PAP-GM-CSF活化,该重组人类蛋白由连接至GM-CSF的前列腺酸性磷酸酶(PAP)组成,该磷酸酶是一种表达于前列腺癌组织中的抗原。在某些实施例中,本披露涉及一种轭合物,该轭合物包括PAP、GM-CSF和IL-4,以及在活化外周血单核细胞中的抗原呈递细胞中的用途。在输注之前,可以经由标准白细胞去除术程序获得受试者的外周血单核细胞。在培养过程中,该重组抗原可以结合至抗原呈递细胞(APC)并被其加工。认为该重组抗原指导对PAP的免疫应答。认为该输注产品包含抗原呈递细胞、树突细胞、T细胞、B细胞、自然杀伤(NK)细胞以及其他细胞。典型地,每个剂量都包含多于5000万个用PAP-GM-CSF或PAP-GM-CSF-IL-4活化的自体CD54+细胞。典型地,通过在用PAP-GM-CSF或PAP-CM-CSF-IL-4培养后,测量CD54分子(亦称ICAM-1)在APC的表面上的增加的表达来评估效价。CD54是一种细胞表面分子,在APC与T细胞之间的免疫相互作用中发挥作用,并且被认为是免疫细胞活化的标志物。

在某些实施例中,本披露考虑了用于治疗癌症的方法,这些方法包括给予与一种载体组合的作为免疫佐剂的在此披露的任何GM-CSF和IL-4轭合物,该载体编码肿瘤相关抗原/癌症标志物(例如PSA、PAP),并且任选地编码其他选自B7-1、B7-2、ICAM-1、GM-CSF、白细胞功能相关抗原-3(LFA-3)的共刺激分子。考虑了癌症的治疗的其他实施例包括向受试者给予有效量的载体,该载体编码在此披露的GM-CSF和IL-4轭合物并且任选地进一步编码肿瘤相关抗原/癌症标志物并且任选地编码其他共刺激分子。PROSTVAC是一种编码共刺激分子以及作为疫苗靶标的PSA的重组载体。借助包装细胞系将质粒DNA掺入牛痘或禽痘病毒中。将亲本用已接触抗原的牛痘(vaccinia prime)处理,随后进行一系列禽痘基的加强(boost)。

在某些实施例中,本披露涉及治疗癌症的方法,这些方法包括给予与抗CTLA-4抗体组合的GM-CSF和IL-4轭合物。将抗CTLA-4抗体考虑为与在此披露的方法中的任一方法组合给予。相信它结合至T细胞表面上的CTLA-4表面糖蛋白,从而最小化免疫自调节并潜在地增强抗肿瘤活性。抗原呈递细胞上的B7分子与肿瘤特异性T细胞上的CTLA-4之间的相互作用是抑制性的。因此,CTLA-4衔接负面地调节这样的T细胞的增殖和功能。在某些条件下,用单克隆抗体(伊匹单抗或特米里姆单抗(tremilimumab))阻断CTLA-4恢复T细胞功能。

考虑了癌症的治疗的其他实施例包括以下方法,这些方法利用从受试者体内提取癌细胞并将糖基-磷脂酰肌醇(GPI)锚定的共刺激分子(例如B7-1和B7-2)掺入肿瘤细胞膜中,任选地与轭合物GM-CSF和IL-4锚定的GPI一起,并与GM-CSF和IL-7的轭合物组合地向该受试者给予这些修饰的细胞,以引发免疫应答。参见例如,McHugh(麦克休)等人,Cancer Res.(癌症研究),1999,59(10):2433-7;Poloso(波洛索)等人,Mol Immunol(分子免疫学),2002,38(11):803-16;和Nagarajan(纳卡拉占)和Selvaraj(塞瓦拉吉),癌症研究,2002,62(10):2869-74。

其他病理性疾病和病症也被考虑在本披露的背景下,尤其是与病原体(例如真菌、细菌、原生动物及病毒)引起的感染相关的感染性疾病。病毒性病原体的代表性实例包括但不限于人类免疫缺陷病毒(例如HIV-1或HIV-2)、人疱疹病毒(例如HSV1或HSV2)、巨细胞病毒、轮状病毒、EB病毒(EBV)、肝炎病毒(例如乙型肝炎病毒、甲型肝炎病毒、丙型肝炎病毒和戊型肝炎病毒)、水痘-带状疱疹病毒(VZV)、副粘病毒、冠状病毒;呼吸道合胞病毒、副流感病毒、麻疹病毒、腮腺炎病毒、黄病毒(fiavivirus)(例如黄热病毒、登革病毒、蜱传脑炎病毒、日本脑炎病毒)、流感病毒以及典型的人乳头瘤病毒(例如HPV-6、11、16、18、31、33)。细菌性病原体的代表性实例包括奈瑟氏菌属(例如,淋病奈瑟氏菌和脑膜炎奈瑟氏菌);博代氏杆菌属(例如,百日咳博代氏杆菌、副百日咳博代氏杆菌和支气管败血性博代氏杆菌(B.bronchiseptica));分枝杆菌属(例如,结核杆菌、牛分枝杆菌(M.bovis)、麻风分枝杆菌(M.leprae)、禽分枝杆菌(M.avium)、副结核分枝杆菌(M.paratuberculosis)、耻垢分枝杆菌);军团菌属(例如,嗜肺军团菌);埃希氏杆菌属(例如,肠毒性大肠杆菌、肠出血性大肠肝菌、肠致病性大肠杆菌);弧菌属(例如,霍乱弧菌);志贺菌属(例如,宋内志贺菌、痢疾志贺菌、弗氏志贺菌);沙门氏菌属(例如,伤寒沙门氏菌、副伤寒沙门氏菌、猪霍乱沙门菌、肠炎沙门氏菌);李斯特菌属(例如,产单核细胞李斯特菌(L.monocytogenes));螺杆菌属(例如,幽门螺杆菌);假单胞菌属(例如,铜绿假单胞菌);葡萄球菌属(例如,金黄色葡萄球菌、表皮葡萄球菌);肠球菌属(例如,粪肠球菌(E.faecalis)、屎肠球菌(E.faecium))、梭菌属(例如,破伤风梭菌、肉毒梭菌、艰难梭菌);芽孢杆菌属(例如,炭疽芽孢杆菌);棒状杆菌属(例如,白喉棒状杆菌)以及衣原体属(例如,沙眼衣原体、肺炎衣原体、鹦鹉热衣原体)。寄生虫病原体的代表性实例包括疟原虫属(例如,恶性疟原虫)、弓形虫属(例如,刚地弓形虫)、利什曼原虫属(例如,硕大利什曼原虫(L.major))、肺孢子虫属(例如,卡氏肺孢子虫)、毛滴虫属(例如,阴道毛滴虫)、裂体吸虫属(例如,曼氏裂体吸虫)。真菌的代表性实例包括假丝酵母属(例如白色假丝酵母)和曲霉属。

自身免疫性疾病的实例包括但不限于多发性硬化(MS)、硬皮病、类风湿关节炎、自身免疫性肝炎、糖尿病、溃疡性结肠炎、重症肌无力、系统性红斑狼疮、格雷夫斯病、特发性血小板减少性紫癜、溶血性贫血、多发性肌炎/皮肌炎、桥本氏病、自身免疫性垂体炎(autoimmune hypocytosis)、斯耶格伦氏综合征、脉管炎综合征以及药物诱发的自身免疫性疾病(例如、药物性狼疮)。

此外,如以上提及的,可以将本披露的融合蛋白、核酸分子、载体、感染性颗粒、宿主细胞和/或组合物用作佐剂,以增强动物或人类生物体对具体抗原的免疫应答。本披露的这一具体用途可以与一种或多种如以上定义的转基因或转基因产品组合进行,例如用于免疫疗法的目的。典型地,将活性剂(例如,本披露的融合蛋白、感染颗粒或药物组合物)与一种或多种转基因或转基因产品组合给予。相应地,还典型地提供了一种组合物,该组合物组合地包括转基因产品(例如,病毒抗原或自杀式基因产品)和融合蛋白,以及一种组合物,该组合物包括一种或多种编码转基因产品和融合蛋白的载体或病毒颗粒。编码转基因和融合蛋白的核酸序列可以表达自同一载体或表达自分开的载体,其具有相同起源(例如,腺病毒载体)或不同起源(例如,编码具体抗原的MVA载体和编码融合蛋白的腺病毒载体)。可以经由粘膜和/或全身性途径将融合蛋白和转基因产品(或其对应的编码载体)同时或顺序地引入宿主细胞或生物体中。

联合疗法

在此披露的癌症治疗可以应用为唯一的疗法或可以涉及常规手术或放射疗法、荷尔蒙疗法或化疗。此类化疗可以包括一种或多种以下类别的抗肿瘤剂:

(i)如用于内科肿瘤学中的抗增殖/抗肿瘤药及其组合,如烷基化剂(例如顺铂、卡铂、环磷酰胺、氮芥、美法仑、苯丁酸氮芥、白消安及亚硝基脲);抗代谢物(例如抗叶酸剂如氟嘧啶(像5-氟尿嘧啶和吉西他滨)、替加氟、雷替曲塞、甲氨蝶呤、阿糖胞苷及羟基脲);抗肿瘤抗生素(例如蒽环,像阿霉素、博莱霉素、阿霉素、柔红霉素、表阿霉素、伊达比星、丝裂霉素-C、更生霉素及光辉霉素);抗有丝分裂剂(例如长春花生物碱(像长春新碱,长春碱,长春地辛及长春瑞滨)和紫杉烷(像紫杉醇和泰索帝));以及拓扑异构酶抑制剂(例如表鬼臼毒素(像依托泊苷和替尼泊苷)、安吖啶,托泊替康及喜树碱);以及蛋白酶体抑制剂(例如硼替佐米);以及药剂阿那格雷(anegrilide)和药剂α-干扰素

(ii)细胞生长抑制剂,如抗雌激素药(例如他莫昔芬、托瑞米芬、雷洛昔芬、屈洛昔芬及碘酰芬(iodoxyfene)),雌激素受体负调节物(例如氟维司群),抗雄激素药(例如比卡鲁胺、氟他胺、尼鲁米特及醋酸环丙孕酮),LHRH拮抗剂或LHRH激动剂(例如戈舍瑞林、亮丙瑞林和布舍瑞林),孕激素(例如醋酸甲地孕酮),芳香酶抑制剂(例如,如阿那曲唑、来曲唑、伏氯唑(vorazole)及依西美坦)以及5α-还原剂的抑制剂(如非那雄胺);

(iii)抑制癌细胞侵染的药剂(例如金属蛋白酶抑制剂(像马立马司他)和尿激酶纤维蛋白溶酶原激活剂受体功能的抑制剂);

(iv)生长因子功能的抑制剂,例如此类抑制剂包括生长因子抗体、生长因子受体抗体(例如抗-Her2抗体曲妥珠单抗和抗-表皮生长因子受体(EGFR)抗体西妥昔单抗)、法尼基转移酶抑制剂、酪氨酸激酶抑制剂以及丝氨酸/苏氨酸激酶抑制剂,例如表皮生长因子家族的抑制剂,例如EGFR家族酪氨酸激酶抑制剂,如:N-(3-氯-4-氟苯基)-7-甲氧基-6-(3-吗啉代丙氧基)喹唑啉-4-胺(吉非替尼)、N-(3-乙炔基苯基)-6,7-双(2-甲氧基乙氧基)喹唑啉-4-胺(厄洛替尼)和6-丙烯酰胺基-N-(3-氯-4-氟苯基)-7-(3-吗啉代丙氧基)喹唑啉-4-胺(CI 1033),例如血小板衍生的生长因子家族的抑制剂以及例如肝细胞生长因子家族的抑制剂,例如磷脂酰肌醇3-激酶(PI3K)的抑制剂和例如促分裂原活化蛋白激酶激酶(MEK1/2)抑制剂以及例如蛋白激酶B(PKB/Akt)的抑制剂,例如Src酪氨酸激酶家族和/或阿贝尔森(Abelson)(AbI)酪氨酸激酶家族的抑制剂如达沙替尼(BMS-354825)和甲磺酸伊马替尼(GleevecTM);以及修饰STAT信号传导的任何药剂;

(v)抗血管生成剂,如抑制血管内皮生长因子的作用的那些,(例如抗-血管内皮细胞生长因子抗体贝伐单抗[AvastinTM])以及通过其他机制起作用的化合物(例如利诺胺、整合素ocvβ3功能的抑制剂和血管抑素);

(vi)血管损伤剂,如康普瑞汀A4;

(vii)反义疗法,例如针对上文列出的靶标的那些,如抗-RAS反义疗法;以及

(viii)免疫疗法途径,包括例如用于增加受试肿瘤细胞的免疫原性的离体和体内途径,如用细胞因子(如白介素2、白介素4或粒细胞巨噬细胞集落刺激因子)进行转染,用于降低T细胞能量的途径,使用转染的免疫细胞(如细胞因子转染的树突细胞)的途径,使用细胞因子转染的肿瘤细胞系的途径和使用抗个体基因型抗体的途径,以及使用免疫调节药物沙利度胺和来那度胺的途径。

联合疗法还考虑了与放射疗法或手术一起使用披露的药物组合物作为对第二治疗剂或化疗剂的替代方案或补充的用途。

典型的慢性淋巴细胞白血病(CLL)化疗计划包括将化疗与苯丁酸氮芥或环磷酰胺组合,外加皮质类固醇(如强的松或强的松龙)。使用皮质类固醇具有抑制一些相关自身免疫性疾病的另外的益处,该自身免疫性疾病是如免疫溶血性贫血(immunohemo lytic anemia)或免疫介导的血小板减少。在抗药病例中,与核苷药物(如氟达拉滨、喷司他丁或克拉屈滨)的单药剂治疗可以是成功的。患者可以考虑异源或自体骨髓移植。在某些实施例中,本披露考虑了使用在此披露的轭合物与苯丁酸氮芥、环磷酰胺、强的松、强的松龙、氟达拉滨、喷司他丁和/或克拉屈滨或其组合进行组合的联合治疗。

急性成淋巴细胞白血病的治疗典型地包括化疗,以带来骨髓缓解。典型的方案包括强的松、长春新碱以及蒽环药物左旋天冬酰胺酶或环磷酰胺。其他选择包括强的松、左旋天冬酰胺酶和长春新碱。用于消除任何残留白血病的巩固疗法或强化疗法可以包括抗代谢药,如甲氨蝶呤和6-巯基嘌呤(6-MP)。在某些实施例中,本披露考虑了使用在此披露的轭合物与COP、CHOP、R-CHOP、伊马替尼、阿仑单抗、长春新碱、左旋天冬酰胺酶或环磷酰胺、甲氨蝶呤和/或6-巯基嘌呤(6-MP)组合的联合治疗。COP是指用于淋巴瘤的治疗中的环磷酰胺、长春新碱和强的松或强的松龙和任选地羟基柔红霉素(CHOP)以及任选地利妥昔单抗(R-CHOP)的化疗方案。

在一些实施例中,本披露涉及通过给予与第二抗病毒剂组合的GM-CSF和IL-4轭合物而治疗病毒感染。在另外的实施例中,将GM-CSF和IL-4轭合物与一种或多种以下药剂组合给予:阿巴卡韦、阿昔洛韦、阿昔洛韦、阿德福韦、金刚烷胺、安普那韦、安普利近(ampligen)、阿比朵尔、阿扎那韦、立普妥(atripla)、波西普韦、西多福韦、双汰芝、达芦那韦、地拉韦啶、去羟肌苷、二十二烷醇、依度尿苷(edoxudine)、依非韦伦、恩曲他滨、恩夫韦地、恩替卡韦、泛昔洛韦、福米韦生、福沙那韦、膦甲酸钠、磷乙酸钠(fosfonet)、更昔洛韦、伊巴他滨(ibacitabine)、imunovir、碘苷、咪喹莫特、茚地那韦、肌苷、III型干扰素、II型干扰素、I型干扰素、拉米夫定、洛匹那韦、洛韦胺、马拉韦罗、吗啉胍、美替沙腙、奈非那韦(nelfmavir)、奈韦拉平、nexavir、奥司他韦(达菲)、聚乙二醇干扰素α-2a、喷昔洛韦、帕拉米韦、普利康那利(pleconaril)、鬼臼毒素、雷特格韦、利巴韦林、金刚乙胺、利托那韦、嘧啶、沙奎那韦、司他夫定、替诺福韦、替诺福韦酯、替拉那韦、三氟胸苷、三协唯(trizivir)、醋胺金刚烷、特鲁瓦达、伐昔洛韦(valaciclovir/Valtrex)、缬更昔洛韦、vicriviroc、阿糖腺苷、扎西他滨韦拉米啶(viramidine zalcitabine)、扎那米韦(瑞乐沙(Relenza))和/或齐多夫定(AZT)。

抗病毒剂包括但不限于蛋白酶抑制剂(PIs)、整合酶抑制剂、进入抑制剂(融合抑制剂)、成熟抑制剂以及逆转录酶抑制剂(抗逆转录病毒剂(anti-retroviral))。抗病毒剂的组合为病毒复制设立了多重障碍,即用于保持后代的低的数目和减少上位突变的可能性。如果出现赋予对正在服用的药剂之一的抗药性的突变,则其他药剂继续抑制该突变的再现。例如,已经证明单一抗逆转录病毒药剂不能长久抑制HIV感染。这些药剂典型地组合服用,以便具有持久效果。其结果是,护理标准是使用抗逆转录病毒剂的组合。

逆转录病毒使用逆转录进行复制,即由RNA模板形成DNA。逆转录病毒经常将通过逆转录产生的DNA整合进宿主基因组。它们易受抑制逆转录酶的抗病毒药的影响。在某些实施例中,本披露涉及通过给予GM-CSF和IL-4轭合物和逆转录病毒剂而治疗病毒感染的方法,该逆转录病毒剂是如核苷和核苷酸逆转录酶抑制剂(NRTI)和/或非核苷逆转录酶抑制剂(NNRTI)。核苷逆转录酶抑制剂的实例包括齐多夫定、去羟肌苷、扎西他滨、司他夫定、拉米夫定、阿巴卡韦、恩曲他滨、恩替卡韦、阿普瑞西他滨(apricitabine)。核苷酸逆转录酶抑制剂的实例包括替诺福韦和阿德福韦。非核苷逆转录酶抑制剂的实例包括依非韦伦、奈韦拉平、拉韦啶以及依曲韦林。

在某些实施例中,本披露涉及通过给予与抗病毒药(例如,2’,3’-双脱氧肌苷)和细胞生长抑制剂(例如,羟基脲)组合的GM-CSF和IL-4轭合物(任选地与抗原一起)而治疗病毒感染的方法。

据信,人类免疫球蛋白G(IgG)抗体具有对抗某些病毒的调理和中和效应。有时将IgG给予给诊断患有继发于病毒感染的免疫性血小板减少性紫癜(ITP)的受试者,因为某些病毒(如,HIV和肝炎)引起ITP。在某些实施例中,本披露涉及治疗或预防病毒感染的方法,这些方法包括向受试者给予与免疫球蛋白组合的GM-CSF和IL-4轭合物。IgG典型地由大量的人类血浆制造,该人类血浆被筛选为减少不希望的病毒传播的风险。IgG分子的Fc和Fab功能通常被保留。治疗性IgG包括Privigen、Hizentra和WinRho。WinRho是包含Rho(D)抗原(D抗原)的抗体的免疫球蛋白(IgG)部分。已经显示,这些抗体在患有ITP的Rho(D)阳性受试者中增加血小板计数。该机制被认为是由于形成抗-Rho(D)(抗-D)包衣的RBC复合物,这些复合物使得Fc受体阻断,从而给出抗体包衣的血小板。

在一些实施例中,本披露涉及通过给予与抗生素药物组合的GM-CSF和IL-4轭合物而治疗细菌感染。在另外的实施例中,共给予给受试者一种选自下组的抗生素,该组由以下各项组成:磺胺、二氨基嘧啶、喹诺酮、β-内酰胺抗生素、头孢菌素、四环素、硝基苯衍生物、氨基糖苷、大环内酯抗生素、多肽抗生素、硝基呋喃衍生物、硝基咪唑、烟酸衍生物、多烯抗生素、咪唑衍生物或糖肽、环脂肽、甘氨酰环素(Glycylcycline)以及噁唑烷酮。在另外的实施例中,这些抗生素包括但不限于,磺胺嘧啶、砜-[氨苯砜(DDS)和对氨基水杨酸(Paraaminosalicyclic)(PAS)]、磺胺、磺胺甲二唑、磺胺甲噁唑、磺胺吡啶、甲氧苄啶、乙胺嘧啶、萘啶酸、诺氟沙星、环丙沙星、西诺沙星、依诺沙星、加替沙星、吉米沙星、格帕沙星、左氧氟沙星、洛美沙星、莫西沙星、氧氟沙星、培氟沙星、司帕沙星、曲伐沙星、青霉素(阿莫西林、氨苄西林、阿洛西林、羧苄西林、氯唑西林、双氯西林、氟氯西林、海他西林、苯唑西林、美洛西林、青霉素G、青霉素V、哌拉西林)、头孢菌素(头孢乙腈(Cefacetrile)、头孢羟氨苄、头孢氨苄、头孢来星(Cefaloglycin)、头孢洛宁(Cefalonium)、头孢噻啶(Cefaloridin)、头孢噻吩、头孢匹林(Cefapirin)、头孢三嗪(Cefatrizine)、头孢氮氟、头孢西酮、头孢唑啉、头孢拉定、头孢沙定(Cefroxadine)、头孢替唑、头孢克洛、头孢尼西、头孢雷特、头孢丙烯、头孢呋辛、头孢唑喃、头孢美唑、头孢替坦(Cefoteta)、头孢西丁、头孢卡品(Cefcapene)、头孢达肟、头孢地尼、头孢妥仑、头孢他美、头孢克肟、头孢甲肟、头孢地嗪、头孢哌酮、头孢噻肟、头孢替安、头孢咪唑、头孢匹胺、头孢泊肟、头孢特仑、头孢布烯、头孢噻呋、Ceftiolen、头孢唑肟、头孢曲松、头孢哌酮、头孢他啶、头孢吡肟)、拉氧头孢(Moxolactam)、碳青霉烯(亚胺培南、厄他培南、美罗培南)、单胺菌素(氨曲南)、土霉素、金霉素、氯莫环素、去甲金霉素、四环素、强力霉素、赖甲环素、甲氯环素、美他环素、米诺环素、吡甲四环素、氯霉素、丁胺卡那霉素、庆大霉素、新霉素B、卡那霉素、Neomicin、新霉素、奈替米星、链霉素、妥布霉素、阿奇霉素、克拉霉素、地红霉素、红霉素、罗红霉素、泰利霉素、多粘菌素B、粘菌素、杆菌肽、短杆菌素呋喃妥因、痢特灵、甲硝唑、替硝唑、异烟肼、吡嗪酰胺、乙硫烟胺、制霉菌素、两性霉素B、哈霉素(Hamycin)、咪康唑、克霉唑、酮康唑、氟康唑、利福平、林可霉素、克林霉素、大观霉素、氯霉素、克林霉素、多粘菌素、磷霉素、劳拉卡帕、甲硝唑、呋喃妥因、多粘菌素B、硫酸多粘菌素B、普鲁卡因、大观霉素、替硝唑、甲氧苄啶、雷莫拉宁、替考拉宁、万古霉素、甲氧苄啶、磺胺甲噁唑和/或呋喃妥因。

载体

如在此所使用的术语“载体”是指表达和非表达载体两者并且包括病毒以及非病毒载体,包括自主地自我复制环状质粒。在重组微生物或细胞培养物被描述为“表达载体”的宿主的情况下,这包括染色体外环状DNA和已被掺入宿主的一个或多个染色体中的DNA两者。本披露的典型载体是表达载体。表达载体包含多个在位置和顺序上定向的遗传元件,即可操作地与其他必需元件连接,这样使得载体中的编码本披露的融合蛋白的核酸分子可以被转录,并且必要时,在这些宿主细胞中进行翻译。

可以在本披露的背景下使用任何类型的载体,无论具有质粒还是病毒来源,无论它是整合的还是非整合的载体。此类载体是可商购的或描述于文献中。在本披露的背景下考虑了用于在基因疗法中使用的载体(即能够将核酸分子递送至靶细胞的载体)以及用于在重组技术中使用的表达载体(即例如能够在培养的宿主细胞中表达本披露的核酸分子的表达载体)。

本披露的载体可以在原核或真核细胞或两者(穿梭载体)中发挥功能。适合的载体包括但不限于,来源于细菌质粒、噬菌体、酵母附加体、人工染色体(如BAC、PAC、YAC或MAC)的载体以及来源于病毒的载体,这些病毒是如杆状病毒、乳多空病毒(例如SV40)、疱疹病毒、腺病毒、腺病毒伴随病毒(AAV)、痘病毒、泡沫病毒以及逆转录病毒。载体还可以来源于这些来源的组合,如来源于质粒和噬菌体遗传元件(例如粘粒和噬菌粒)的那些。病毒载体可以是有复制能力的、条件复制型或复制缺陷型。在病毒复制缺陷的情况下,复制将发生在宿主细胞中,从而提供补充这些缺陷的功能。

适合的质粒的实例包括但不限于来源于以下项的那些:pBR322(Gibco BRL)、pUC(Gibco BRL)、pBluescript(Stratagene)、p Poly(Lathe(莱斯)等人,1987,Gene(基因)57,193-201)、pTrc(Amann(阿曼)等人,1988,基因69,301-315)以及pET 11d(Studier(斯图迪尔)等人,1990,Gene Expression Technology:Methods in Enzymology(基因表达技术:酶学方法)185,60-89)。众所周知的是,这些质粒中的四种可以影响表达效率,并且典型的是,载体的一大部分处于超螺旋形式。在酵母(例如酿酒酵母)中表达的载体的实例包括pYepSecl(Baldari(巴尔达利)等人,1987,EMBO J.(欧洲分子生物学学会杂志)6,229-234)、pMFa(Kujan(矩让)等人,1982,Cell(细胞)30,933-943)、pJRY88(Schultz(舒尔茨)等人,1987,Gene(基因)54,113-123)以及pYES2(英杰公司(Invitrogen Corporation),圣地亚哥,加州)。本披露的载体还可以来源于有待在培养的昆虫细胞(例如Sf 9细胞)中表达的杆状病毒。

根据本披露的一个典型实施例,通过使用哺乳动物表达载体表达在此描述的核酸分子。哺乳动物表达载体的实例包括pREP4、pCEP4(Invitrogene公司)、pCI(普洛麦格公司(Promega))、pCDM8(Seed(锡德),1987,Nature(自然)329,840)以及pMT2PC(Kaufman(考夫曼)等人,1987,EMBO J.(欧洲分子生物学学会杂志)6,187-195)。仅仅通过举出一些为本领域的普通技术人员可得的熟知载体的方式提供在此列出的表达载体。本领域的普通技术人员应该了解适于维持、繁殖或表达在此描述的核酸分子的其他载体。

此外,本披露的载体还可以包括标志物基因,以便选择或以便鉴定转染的细胞(例如提供补充细胞营养缺陷型或提供抗生素抗性)、稳定化元件(例如cer序列;Summers(萨莫斯)和Sherrat(萨拉特),1984,Cell(细胞)36,1097-1103)、整合型元件(例如LTR病毒序列和转座子)以及提供自主复制功能并且使得载体可以独立于细胞中的载体的拷贝数而稳定地维持在细胞中的元件。标志物包括用于原核宿主细胞的四环素或氨苄西林抗性基因以及用于真核宿主细胞的二氢叶酸还原酶或新霉素抗性基因。然而,提供针对表型性状的选择的任何标志物都将是有效的。可以通过使用病毒复制起点并提供一个或多个由该具体病毒起点介导的复制所需的病毒复制因子而提供自主复制功能(WO 95/32299)。复制起点和任何复制因子都可以获得自多种病毒,包括EB病毒(EBV),人和牛乳头瘤病毒以及乳多空病毒BK。

本披露的典型载体是病毒载体并且尤其是腺病毒载体,这些腺病毒载体具有许多作为基因疗法的载体的充分证明的优势。腺病毒基因组由大约36kb的、携带超过约三十个完成病毒周期所必需的基因的线性双链DNA分子组成。将早期基因分为4个对于病毒复制而言必需的区(E1至E4)(Pettersson(彼得森)和Roberts(罗伯茨),1986,在Cancer Cells(癌细胞)(第4卷):DNA Tumor Viruses(DNA肿瘤病毒)中,Botchan(博特占)和Glodzicker Sharp(格洛德斯科尔夏普)编辑,第37-47页,Cold Spring Harbor Laboratory(冷泉港实验室),Cold Spring Harbor(冷泉港),纽约;Halbert(哈尔伯特)等人,1985,J.Virol.(病毒学杂志)56,250-257),E3区除外,基于在E3区内缺失的天然发生的突变体或杂交病毒在培养的细胞中仍像野生型病毒那样复制的观察现象,据信E3区对于病毒复制而言是可有可无的(Kelly(凯利)和Lewis(路易斯),1973,病毒学杂志12,643-652)。E1基因产物编码负责病毒基因组的转录的调节的蛋白质。E2基因产物为病毒DNA合成的起始和链延长所需要。由E3编码的蛋白质阻止由细胞毒性T细胞和肿瘤坏死因子进行的细胞溶解(Wold(沃尔德)和Gooding(古丁),1991,Virology(病毒学)184,1-8)。由E4区编码的蛋白质涉及DNA复制、晚期基因表达和剪接以及宿主细胞关闭(Halbert(哈尔伯特)等人,1985,J.Virol.(病毒学杂志)56,250-257)。晚期基因(L1至L5)中的大多数编码构成病毒衣壳的结构蛋白。它们至少部分地与早期转录单元重叠并且转录自独特的启动子(MLP是指主要晚期启动子(Major Late Promoter))。另外,腺病毒基因组在两个末端处都携带顺式作用5'和3'ITR(反向末端重复序列)和衣壳化区,上述两者都为DNA复制所必需。ITR具有DNA复制起点,而衣壳化区为将腺病毒DNA包装进感染颗粒所需要。

用于根据本披露使用的腺病毒载体典型地感染哺乳动物细胞。它可以来源于任何人类或动物来源,特别是犬(例如CAV-1或CAV-2;分别为Genbank ref CAV1GENOM和CAV77082)、禽(Genbank ref AAVEDSDNA)、牛(如BAV3;Seshidhar Reddy(塞施达尔雷迪)等人,1998,J.Virol.(病毒学杂志)72,1394-1402)、鼠(Genbank ref ADRMUSMAV1)、羊、猫、猪或猿腺病毒或可替代地来源于其杂交体。可以利用从腺病毒血清型1至51中的任何血清型。例如,腺病毒可以属于亚组A(例如血清型12、18及31)、亚组B(例如血清型3、7、11、14、16、21、34及35)、亚组C(例如血清型1、2、5及6)、亚组D(例如血清型8、9、10、13、15、17、19、20、22-30、32、33、36-39及42-47)、亚组E(血清型4)、亚组F(血清型40和41)或任何其他腺病毒血清型。然而,B或C亚组的人类腺病毒是典型的并且尤其是腺病毒2(Ad2)、5(Ad5)和35(Ad35)。一般而言,可以用作举出的腺病毒的来源的腺病毒原种当前可以获得自美国典型培养物保藏中心(ATCC,罗克维尔,马里兰州)或获得自任何其他来源。此外,此类腺病毒已经成为描述其序列、组织和生物学,从而允许技术人员应用它们的的众多出版物的主题。腺病毒载体、产生腺病毒载体的方法以及使用腺病毒载体的方法披露于例如针对C组腺病毒载体的美国专利号6,133,028、美国专利号6,040,174、美国专利号6,110,735、美国专利号6,399,587、WO 00/50573及EP 1016711中以及披露于例如针对非C组腺病毒载体的美国专利号6,492,169和WO 02/40665。

在某些实施例中,本披露的腺病毒载体是有复制能力的。如在此所使用的术语“有复制能力”是指腺病毒载体能够在不存在任何反式互补的情况下在宿主细胞中复制。在本披露的背景下,这一术语还涵盖复制选择型或条件复制型腺病毒载体,它们被工程化为在癌症或过度增殖宿主细胞中更好地或选择性地复制。此类有复制能力的腺病毒载体的实例在本领域是众所周知的并且可以为本领域的普通技术人员容易地获得(参见例如,Hernandez-Alcoceba(埃尔南德斯-艾可塞巴)等人,2000,Human Gene Ther.(人类基因治疗)11,2009-2024;Nemunaitis(奈姆纳迪斯)等人,2001,Gene Ther.(基因治疗)8,746-759;Alemany(阿莱马尼)等人,2000,Nature Biotechnology(自然生物技术)18,723-727)。

根据本披露的有复制能力的腺病毒载体可以是野生型腺病毒基因组或可以通过向该病毒基因组中引入修饰而来源于其中,例如出于产生条件复制型腺病毒载体的目的。这样的一种或多种修饰包括编码序列和/或调节序列中的一个或多个核苷酸的缺失、插入和/或突变。典型的修饰是使得所述有复制能力的腺病毒载体依赖于具体存在于肿瘤或癌性细胞中的细胞活性的那些。在此方面,可以将一个或多个病毒基因完全或部分地缺失或突变,这一个或多个病毒基因在肿瘤细胞中变得可有可无,如负责经由p53或Rb结合而活化细胞周期的基因。通过说明的方式,可以通过完全缺失编码55kDa蛋白的腺病毒MB基因或完全缺失MB区以终止p53结合而将此类条件复制型腺病毒载体工程化(参见例如美国专利号5,801,029和美国专利号5,846,945)。这阻止病毒在正常细胞中钝化肿瘤抑制,这意味着病毒不能复制。然而,病毒将复制并通过致癌性转化而溶解已经关闭p53或Rb表达的细胞。作为另一个实例,E1A区的完全缺失使得腺病毒载体依赖于固有的或IL-6诱导的E1A样活性。任选地,还可以在E1A区中引入钝化突变,以终止结合至Rb。典型地,将Rb缺陷突变/缺失引入E1A CR1和/或CR2结构域内(参见例如WO 00/24408)。在第二个策略中,任选地或与第一途径组合,可以将控制病毒基因的转录的天然病毒启动子替换为组织或肿瘤特异性启动子。通过说明的方式,可以将E1A和/或E1B基因的调节置于肿瘤特异性启动子,如PSA、激肽释放酶、前列腺碱性蛋白(probasin)、AFP、a-甲胎蛋白或端粒酶逆转录酶(TERT)启动子(参见例如美国专利号5,998,205、WO 99/25860、美国专利号5,698,443及WO 00/46355)或细胞周期特异性启动子,如E2F-1启动子(WO 00/15820和WO 01/36650)的控制之下。在此背景下典型的是被指定为ONYX-411的示例性载体,该载体将MA CR2结构域内的8个氨基酸残基的Rb缺陷型缺失与E2F-1启动子的使用组合,以控制E1A和E4两种病毒基因的表达。

在某些实施例中,本披露的腺病毒载体是复制缺陷型的。复制缺陷型腺病毒载体在本领域是已知的并且可以被定义为在病毒复制所必需的腺病毒基因组的一个或多个区(例如,E1、E2或E4或其组合)中有缺陷,并且因此不能在不存在反式互补(例如,由互补细胞或辅助病毒提供)的情况下繁殖。通过在病毒基因组中引入修饰以终止病毒复制所必需的一个或多个病毒基因的功能而获得复制缺陷型表型。典型的复制缺陷型载体是E1缺失的,并且因此在E1功能方面是缺陷型的。此类E1缺失的腺病毒载体包括描述于美国专利号6,063,622;美国专利号6,093,567;WO 94/28152;WO 98/55639以及EP 974 668中的那些(将所有这些出版物的披露通过引用而特此结合在此)。通过参考人5型腺病毒的序列,典型的E1缺失大约覆盖核苷酸(nt)459至3328或459至3510(在登录号M 73260下披露于Genbank中以及披露于Chroboczek(施罗博泽克)等人,1992,Virol.(病毒学)186,280-285中)。

此外,载体的腺病毒骨架可以在另外的一个或多个病毒区中包括修饰(例如缺失、插入或突变),以废止病毒抗原的残余合成和/或以改善核酸分子在转导的细胞中的长期表达(参见例如WO 94/28152;Lusky(卢斯凯)等人,1998,J.Virol(病毒学杂志)72,2022-2032;Yeh(叶)等人,1997,FASEB J.(美国实验生物学会联合会会志)11,615-623)。在此背景下,本披露考虑使用缺少E1、或E1和E2、或E1和E3、或E1和E4、或E1和E2和E3、或E1和E2和E4、或E1和E3和E4、或E1和E2和E3和E4功能的腺病毒载体。可以将E2功能缺陷的腺病毒载体缺失E2区的全部或部分(典型地,在E2A内或可替代地,在E2B内或在E2A和E2B两个区内)或包括一个或多个突变,如DBP(DNA结合蛋白)编码基因的热敏突变(Ensinger(恩辛格)等人,J.Virol.(病毒学杂志)10(1972),328-339)。还可以将腺病毒载体缺失E4区的全部或部分(参见例如,EP 974 668和WO 00/12741)。通过参考人5型腺病毒的序列,示例性E4缺失大约覆盖从位置32994至位置34998的核苷酸。另外,非必需E3区内的缺失(例如从Ad5位置28597至位置30469)可以增加克隆能力,但是保留编码允许逃避宿主免疫系统的gp19k、14.7K和/或RID的E3序列(Gooding(古丁)等人,1990,Critical Review of Immunology(免疫学关键评论)10,53-71)和炎性反应(EP 00 440 267.3)可能是有利的。还可以想到的是利用最少的(或无)腺病毒载体,这些载体缺少所有的功能基因,包括早期(E1、E2、E3及E4)和晚期基因(L1、L2、L3、L4及L5),顺式作用序列除外(参见例如Kovesdi(科夫斯迪)等人,1997,Current Opinion in Biotechnology(生物技术当前观点)8,583-589;Yeh(叶)和Perricaudet(佩里科德),1997,FASEB 11,615-623;WO 94/12649;以及WO 94/28152)。考虑到所需的最少序列,复制缺陷的腺病毒载体可以由本领域的普通技术人员容易地工程化,并且不限于这些示例性实施例。

本披露的核酸分子可以插入腺病毒基因组的任何位置中,顺式作用序列除外。典型地,将它插入以替换缺失区(E1、E3和/或E4),其中优选的是缺失的E1区。另外,可以将表达盒相对于所讨论的区的天然转录方向而定向正义或反义取向。

在本披露的背景下,逆转录病毒载体也是适合的。逆转录病毒是一类整合型病毒,它们使用病毒编码的逆转录酶进行复制,以将病毒RNA基因组复制进双链DNA中,该双链DNA被整合进感染的细胞的染色体DNA中。描述于文献中的众多载体可以在本披露的框架内使用并且尤其是来源于鼠白血病病毒的那些,尤其是莫洛尼(Moloney)(Gilboa(吉尔博)等人,1988,Adv.Exp.Med.Biol.(实验医学与生物学进展)241,29)或弗兰德(Friend)的FB29株(WO 95/01447)。通常,逆转录病毒载体缺失病毒基因gag、pol和env的全部或部分并且保留5'和3'LTR以及衣壳化序列。可以将这些元件修饰为增加逆转录病毒载体的表达水平或稳定性。此类修饰包括将逆转录病毒衣壳化序列替换为逆转录转座子中的一种,如VL30(美国专利号5,747,323)。可以将本披露的核酸分子插入在衣壳化序列的下游,典型地以相对于逆转录病毒基因组的相反的方向。

在本披露的背景下,痘病毒载体也是适合的。痘病毒是一组复杂的包膜病毒,通过其较大的DNA基因组及其胞质复制位点而将它们与上述病毒区别开来。已经绘制了痘病毒科的若干成员的基因组并对其进行了测序。它是一种编码约200种蛋白质的大约200kb的双链DNA,这些蛋白质中的大约100种涉及病毒装配。在本披露的背景下,痘病毒载体可以获得自痘病毒科的任何成员,特别是金丝雀痘、禽痘和牛痘病毒,后者是典型的。适合的牛痘病毒包括但不限于Copenhagen株(Goebel(戈贝尔)等人,1990,Virol.(病毒学)179,247-266和517-563;Johnson(约翰逊)等人,1993,病毒学196,381-401)、Wyeth株以及修饰的Ankara(MVA)株(Antoine(安托万)等人,1998,病毒学244,365-396)。用于构建包含核酸分子的痘病毒的一般条件在本领域是众所周知的(参见例如,针对Copenhagen牛痘病毒的EP 83 286;EP 206 920以及针对MVA病毒的Mayr(迈尔)等人,1975,Infection(感染)3,6-14;Sutter(萨特)和Moss(莫斯),1992,Proc.Natl.Acad.Sci.USA(美国国家科学院院刊)89,10847-10851,美国专利号6,440,422)。本披露的核酸分子典型地插入在非必需基因座(如非编码基因间区)中的痘病毒基因组内或其钝化或缺失不显著损害病毒生长和复制的任何基因内。胸苷激酶基因对于插入Copenhagen牛痘病毒中而言是特别适当的(Hruby(赫鲁比)等人,1983,Proc.Natl.Acad.Sci.USA(美国国家科学院院刊))80,3411-3415;Weir(韦尔)等人,1983,J.Virol.(病毒学杂志)46,530-537)。至于涉及到MVA,可以在缺切I至VII中的任一项中,并且典型地在缺切H或III中(Meyer(迈耶)等人,1991,J.Gen.Virol.(普通病毒学杂志)72,1031-1038;Sutter(萨特)等人,1994,Vaccine(疫苗)12,1032-1040)或在D4R基因座中进行核酸分子的插入。对于禽痘病毒而言,尽管可以考虑在胸苷激酶基因内进行插入,但是典型地将核酸分子引入非编码基因间区中(参见例如EP 314 569和美国专利号5,180,675)。还可以设想在必需病毒基因座中进行插入,其条件是经由辅助病毒或通过在生产者细胞系中表达而反式地提供缺陷功能。适合的痘病毒载体可以容易地产生自可在公认的保藏中心获得的野生型痘病毒,如ATCC(禽痘ATCC VR-251、猴痘ATCC VR-267、猪痘ATCC VR-363、金丝雀痘ATCC VR-111、牛痘ATCC VR-302)或ICTV(堪培拉,澳大利亚)(Copenhagen病毒代码58.1.1.0.001;GenBank登录号M35027)。

在某些实施例中,本披露的载体包括处于适于其在宿主细胞或生物体中表达的形式的本披露的核酸分子,这意味着核酸分子被置于在载体类型和/或宿主细胞的基础上选择的一个或多个调节序列的控制之下,这一个或多个调节序列被可操作地连接至有待表达的核酸分子。如在此所使用,术语“调节序列”是指允许、促进或调制核酸分子的功能调节的任何序列,包括核酸或其衍生物之一(即mRNA)的复制、重复、转录、剪接、翻译、稳定性和/或转运进宿主细胞或生物体。在本披露的背景下,这一术语涵盖启动子、增强子以及其他表达控制元件(例如,多腺苷酸化信号和影响mRNA稳定性的元件)。“可操作地连接”旨在意指感兴趣的核酸分子以允许核酸分子(例如,在宿主细胞或生物体中)进行表达的方式连接至一个或多个调节序列。本领域的普通技术人员应该意识到的是,表达载体的设计可以取决于如有待转化的宿主细胞的选择、希望的蛋白质表达水平等的此类因素。

调节序列包括指导核酸分子在许多类型的宿主细胞中的组成型表达的启动子以及指导核苷酸序列仅在某些宿主细胞中(例如,组织特异性调节序列)或响应于特定事件或外源因素(例如通过温度、营养添加剂、激素或其他配体)而表达的那些。

在本披露的背景下有用的适合的调节序列包括但不限于,来自λ噬菌体的left启动子、lac、TRP以及来自大肠杆菌的TAC启动子、来自SV40的早期和晚期启动子、巨细胞病毒(CMV)立即早期启动子或增强子(Boshart(波沙特)等人,1985,Cell(细胞)41,521-530)、腺病毒早期和晚期启动子、磷酸甘油激酶(PGK)启动子(Hitzeman(赫赛曼)等人,1983,Science(科学)219,620-625;Adra(阿德拉)等人,1987,Gene(基因)60,65-74)、单纯疱疹病毒(HSV)-1的胸苷激酶(TK)启动子和逆转录病毒长末端重复序列(例如MoMuLV和劳斯氏肉瘤病毒(Rous sarcoma virus)(RSV)LTR)。有用于驱动本披露的核酸分子在痘病毒载体中的表达的适合的启动子包括牛痘病毒的7.5K、H5R、TK、p28、p11或K1L启动子。可替代地,可以使用合成启动子,如描述于Chakrabarti(查克拉巴蒂)等人(1997,Biotechniques(生物技术)23,1094-1097)、Hammond(哈蒙德)等人(1997,J.Virological Methods(病毒学方法杂志)66,135-138)及Kumar(库马尔)和Boyle(波义耳)(1990,Virology(病毒学)179,151-158)中的那些,以及早期与晚期痘病毒启动子之间的嵌合启动子。

诱导型启动子是通过外源提供的化合物进行调节,并且包括但不限于,锌诱导金属硫蛋白(MT)启动子(Mc Ivor(麦基弗)等人,1987,Mol.Cell.Biol.(分子与细胞生物学)7,838-848)、地塞米松(Dex)诱导的小鼠乳腺肿瘤病毒(MMTV)启动子、T7聚合酶启动子系统(WO 98/10088)、昆虫蜕皮激素启动子(No(诺)等人,1996,Proc.Natl.Acad.Sci.USA(美国国家科学院院刊)93,3346-3351)、四环素阻抑型启动子(Gossen(哥森)等人,1992,美国国家科学院院刊89,5547-5551)、四环素诱导型启动子(Kim(金姆)等人,1995,J.Virol.(病毒学杂志)69,2565-2573)、RU486诱导型启动子(Wang(王)等人,1997,Nat.Biotech.(自然生物技术)15,239-243和王等人,1997,Gene Ther.(基因治疗)4,432-441)以及雷帕霉素诱导型启动子(Magari(马加里)等人,1997,J.Clin.Invest.(临床研究杂志)100,2865-2872)。

用在本披露的背景下的调节序列还可以是组织特异性的,以驱动核酸分子在治疗益处是希望的组织中的表达。示例性肝脏特异性调节序列包括但不限于HMG-CoA还原酶(Luskey(鲁斯克基),1987,Mol.Cell.Biol.(分子与细胞生物学)7,1881-1893);甾醇调节元件1(SRE-1;Smith(史密斯)等人,1990,J.Biol.Chem.(生物化学杂志)265,2306-2310);白蛋白(Pinkert(平克特)等人,1987,Genes Dev.(基因与发育)1,268-277);磷酸烯醇丙酮酸羧激酶(PEPCK)(Eisenberger(艾森贝格尔)等人,1992,分子与细胞生物学12,1396-1403);人类C反应蛋白(CRP)(Li(李)等人,1990,生物化学杂志265,4136-4142);人类葡萄糖激酶(Tanizawa(谷泽)等人,1992,Mol.Endocrinology.(分子内分泌学)6,1070-1081);胆固醇7-α羟化酶(CYP-7)(Lee(李)等人,1994,生物化学杂志269,14681-14689);α-1抗胰蛋白酶(Ciliberto(斯利贝托)等人,1985,Cell(细胞)41,531-540);胰岛素样生长因子结合蛋白(IGFBP-1)(Babajko(巴巴蔻)等人,1993,Biochem Biophys.Res.Comm.(生物化学与生物物理学研究通讯)196,480-486);人类转铁蛋白(Mendelzon(孟德尔索恩)等人,1990,Nucl.Acids Res.(核酸研究)18,5717-5721);I型胶原蛋白(Houglum(霍格卢姆)等人,1994,J.Clin.Invest.(临床研究杂志)94,808-814)以及FIX(美国专利号5,814,716)基因的那些。示例性前列腺特异性调节序列包括但不限于前列腺酸性磷酸酶(PAP)(Balms(巴拉姆斯)等人,1994,Biochim.Biophys.Acta.(生物化学与生物物理学学报)1217,188-194);前列腺分泌性蛋白94(PSP 94)(Nolet(诺莱特)等人,1991,生物化学与生物物理学学报1089,247-249);前列腺特异性抗原复合物(Kasper(卡斯帕)等人,1993,J.Steroid Biochem.Mol.Biol.(类固醇生物化学与分子生物学杂志)47,127-135);人类腺性激肽释放酶(hgt-1)(Lilja(丽佳)等人,1993,World J.Urology(泌尿外科世界杂志)11,188-191)基因的那些。示例性胰腺特异性调节序列包括但不限于胰腺炎相关蛋白启动子(Dusetti(杜塞蒂)等人,1993,J.Biol.Chem.(生物化学杂志)268,14470-14475);弹性蛋白酶1转录增强子(Kruse(克鲁泽)等人,1993,Genes and Development(基因与发育)7,774-786);胰腺特异性淀粉酶和弹性蛋白酶增强子/启动子(Wu(吴)等人,1991,Mol.Cell.Biol.(分子与细胞生物学)11,4423-4430;Keller(凯勒)等人,1990,Genes and Dev.(基因与发育)4,1316-1321);胰腺胆固醇酯酶基因启动子(Fontaine(方丹)等人,1991,Biochemistry(生物化学)30,7008-7014)以及胰岛素基因启动子(Edlund(艾德兰德)等人,1985,Science(科学)230,912-916)的那些。示例性神经元特异性调节序列包括但不限于神经元特异性烯醇化酶(NSE)(Forss-Petter(福尔斯-皮特)等人,1990,Neuron(神经元)5,187-197)和神经微丝(Byrne(拜恩)和Ruddle(拉朵),1989,Proc.Natl.Acad.Sci.USA(美国国家科学院院刊)86,5473-5477)基因启动子。用于在脑中表达的示例性调节序列包括但不限于神经微丝重链(NF-H)启动子(Schwartz(史华兹)等人,1994,J.Biol.Chem.(生物化学杂志)269,13444-13450)。示例性淋巴特异性调节序列包括但不限于人类CGL1/颗粒酶B启动子(Hanson(汉森)等人,1991,J.Biol.Chem.(生物化学杂志)266,24433-24438);末端脱氧转移酶(TdT),淋巴细胞特异性酪氨酸蛋白激酶(p561ck)启动子(Lo(罗)等人,1991,Mol.Cell.Biol.(分子与细胞生物学)11,5229-5243);人类CD2启动子/增强子(Lake(莱克)等人,1990,EMBO J.(欧洲分子生物学学会杂志)9,3129-3136)、人类NK和T细胞特异性活化(NKG5)(Houchins(霍施因斯)等人,1993,Immunogenetics(免疫遗传学)37,102-107)、T细胞受体(Winoto(温诺托)和Baltimore(巴尔的摩),1989,欧洲分子生物学学会杂志8,729-733)以及免疫球蛋白(Banerji(班纳吉)等人,1983,Cell(细胞)33,729-740;Queen(奎因)和巴尔的摩,1983,细胞33,741-748)启动子。示例性结肠特异性调节序列包括但不限于,pp 60c-src酪氨酸激酶(Talamonti(塔拉蒙蒂)等人,1993,J.Clin.Invest(临床研究杂志)91,53-60);器官特异性新抗原(OSN)mw 40kDa(p40)(Ilantzis(伊兰特斯)等人,1993,Microbiol.Immunol.(微生物学与免疫学)37,119-128);以及结肠特异性抗原-P启动子(Sharkey(夏基)等人,1994,Cancer(癌症)73,864-877)启动子。用于在乳腺和乳腺细胞中表达的示例性调节序列包括但不限于人类α-乳清蛋白(Thean(添)等人,1990,British J.Cancer.(英国癌症杂志)61,773-775)和乳清(美国专利号4,873,316)启动子。示例性肌肉特异性调节序列包括但不限于SM22(WO 98/15575;WO 97/35974)、结蛋白(WO 96/26284)、线粒体肌酸激酶(MCK)启动子以及披露于EP 1310561中的嵌合启动子。示例性肺特异性调节序列包括但不限于CFTR和表面活化剂启动子。

适于在本披露中使用的另外的启动子可以取自优先在增殖性肿瘤细胞中表达的基因。可以例如通过展示和比较基因组杂交鉴定此类基因(参见例如美国专利号5,759,776和5,776,683)。示例性肿瘤特异性启动子包括但不限于以下各项的启动子:过量表达于乳腺癌和前列腺癌中的MUC-1基因(Chen(陈)等人,1995,J.Clin.Invest.(临床研究杂志)96,2775-2782),过量表达于结肠癌中的癌胚抗原(CEA)-编码基因(Schrewe(史瑞弗)等人,1990,Mol.Cell.Biol.(分子与细胞生物学)10,2738-2748),过量表达于乳腺癌和前列腺癌中的ERB-2编码基因(Harris(哈里斯)等人,1994,Gene Therapy(基因疗法)1,170-175),过量表达于肝癌中的α-甲胎蛋白基因(Kanai(金井)等人,1997,Cancer Res.(癌症研究)57,461-465),端粒酶逆转录酶(TERT)(WO 99/27113,WO 02/053760和Horikawa(堀川)等人,1999,癌症研究59,826),缺氧应答元件(HRE),自分泌运动因子受体,L纤溶酶以及己糖激酶II。

本领域的普通技术人员将意识到,控制本披露的核酸分子的表达的调节元件可以进一步包括用于恰当地启动、调节和/或终止转录和翻译进宿主细胞或生物体的另外的元件。此类另外的元件包括但不限于,非编码外显子/内含子序列、转运序列、分泌信号序列、核定位信号序列、IRES、polyA转录终止序列、三联前导序列、涉及复制或整合的序列。在本披露的背景下适合的内含子的示意性实例包括分离自编码以下项的基因的那些:α或β球蛋白(即兔β球蛋白基因的第二个内含子;Green(格伦)等人,1988,Nucleic Acids Res.(核酸研究)16,369;Karasuyama(乌山)等人,1988,Eur.J.Immunol.(欧洲免疫学杂志)18,97-104)、卵白蛋白、载脂蛋白、免疫球蛋白、因子IX和因子VIII,SV40 16S/19S内含子(Okayma(冈山)和Berg(冰山),1983,Mol.Cell.Biol(分子与细胞生物学)3,280-289),以及合成内含子,如存在于由融合至小鼠免疫球蛋白的人类β球蛋白供体制成的pCI载体(普洛麦格公司(Promega Corp),pCI哺乳动物表达载体El 731)中的内含子。在融合蛋白的分泌是希望的情况下,将适当的分泌信号掺入载体中。信号序列对于融合蛋白而言可以是内源的或对于融合蛋白中包括的两个实体而言可以是异源的。本领域的普通技术人员应该了解众多在表达载体中有用的调节序列。

另外,本披露的载体可以进一步包括一个或多个转基因(即有待与本披露的核酸分子一起在宿主细胞或生物体中表达的感兴趣的基因)。令人希望的是,转基因的表达对于疾病或病症而言具有治疗或保护活性,针对这些疾病或病症正在给予本披露的载体。适合的转基因包括但不限于编码(i)肿瘤增殖抑制剂和/或(ii)至少一种针对其免疫应答是希望的特异性抗原。在本披露的一种典型形式中,转基因产物和融合蛋白在诱导免疫应答方面或在提供治疗(例如抗肿瘤)益处方面协同作用。因此,此类组合不仅适于疾病的免疫预防,还出人意料地适于疾病(如病毒、细菌或寄生虫感染)的免疫治疗,并且还适于慢性障碍(如癌症)。

肿瘤增殖抑制剂通过直接抑制细胞生长或杀死肿瘤细胞而作用。肿瘤增殖抑制剂的代表性实例包括毒素和自杀基因。毒素的代表性实例包括但不限于,蓖麻毒素(Lamb(兰布)等人,1985,Eur.J.Biochem.(欧洲生物化学杂志)148,265-270)、白喉毒素(Tweten(托韦登)等人,1985,J.Biol.Chem.(生物化学杂志)260,10392-10394)、霍乱毒素(Mekalanos(梅卡拉诺斯)等人,1983,Nature(自然)306,551-557;Sanchez(桑切斯)和Holmgren(霍姆格伦),1989,Proc.Natl.Acad.Sci.USA(美国国家科学院院刊)86,481-485)、白树毒素(Stirpe(斯蒂尔佩)等人,1980,生物化学杂志255,6947-6953),抗病毒蛋白(Barbieri(巴尔维里)等人,1982,Biochem.J.(生物化学杂志)203,55-59;Irvin(欧文)等人,1980,Arch.Biochem.Biophys.(生物化学与生物物理学学报)200,418-425)、麦芽凝集素(tritin)、志贺菌毒素(Calderwood(考尔德伍德)等人,1987,美国国家科学院院刊84,4364-4368;Jackson(杰克逊)等人,1987,Microb.Path.(微生物病原体)2,147-153)以及假单胞菌外毒素A(Carroll(卡罗尔)和Collier(科列尔),1987,生物化学杂志262,8707-8711)。

特异性抗原典型地是易赋予针对给定的病原体(病毒、细菌、真菌或寄生虫)或针对非己抗原(例如肿瘤相关抗原)的特异性和/或非特异性、抗体和/或细胞介导的免疫应答的那些。典型地,所选抗原包括一个表位,该表位通过I类MHC蛋白结合并呈递至细胞表面。特异性抗原的代表性实例包括但不限于:在本领域众所周知的乙型肝炎表面抗原的一种或多种抗原并且尤其包括列出、描述于欧洲专利申请EP 414 374、EP 304 578和EP 198 474的那些PreS 1、Pars2S抗原。包括任何免疫原性抗原或其片段的丙型肝炎病毒的抗原选自下组,该组由以下各项组成:核(C),包膜糖蛋白E1、E2,非结构性多肽NS2、NS3、NS4(NS4a和/或NS4b)、NS5(NS5a和/或NS5b)或其任何组合(例如NS3和NS4、NS3和NS4和NS5b),HIV-1病毒的一种或多种抗原,尤其是gp120和gp160(如WO 87/06260所描述)。来源于人乳头瘤病毒(HPV)的一种或多种抗原被认为与生殖器疣(HPV 6或HPV 11等)和宫颈癌(HPV 16、HPV 18、HPV 31、HPV-33等)相关。考虑的HPV抗原选自下组,该组由以下各项组成:E5、E6、E7、L1以及L2,单独地或组合地(参见例如WO 94/00152、WO 94/20137、WO 93/02184、WO 90/10459以及WO 92/16636)。在本披露的背景下考虑的是早期HPV-16E6和/或E7抗原的膜锚定形式的非致癌性变体(如描述于WO 99/03885中),这些变体特别适合实现对抗HPV相关癌症的抗肿瘤效果。来自引起疟疾的寄生虫的抗原。例如,来自恶性疟原虫的典型抗原包括RTS(WO 93/10152)和TRAP(WO 90/01496)。可能是候选物的其他疟原虫抗原是恶性疟原虫MSP1、AMA1、MSP3、EBA、GLURP、RAPT、RAP2、钳合蛋白、PfEMP1、Pf332、LSA1、LSA3、STARP、SALSA、PfEXP1、Pfs25、Pfs28、PFS27125、Pfs16、Pfs48/45、Pfs230及其在其他疟原虫种类中的类似物。

其他适合的抗原包括肿瘤相关抗原,如与前列腺癌、乳腺癌、结肠直肠癌、肺癌、胰腺癌、肾癌、肝癌、膀胱癌、肉瘤或黑素瘤相关的那些。示例性抗原包括MAGE 1、3和MAGE 4或其他MAGE抗原(WO 99/40188)、PRAME、BAGE、Lage(亦称NY Eos 1)SAGE以及HAGE(WO 99/53061)或GAGE(Robbins(罗宾斯)和Kawakami(川上),1996.Current Opinions in Immunol.(免疫学当前观点)8,第628-636页)。其他适合的肿瘤相关抗原包括被称为前列腺酶的那些,包括前列腺特异性抗原(PSA)、PAP、PSCA、PSMA。前列腺酶核苷酸序列和推导的多肽序列和同系物披露于Ferguson(弗格森)等人(1999,Proc.Natl.Acad.Sci.USA.(美国国家科学院院刊)96,3114-3119)和WO 98/12302、WO 98/20117以及WO 00/04149中。其他适合的肿瘤相关抗原包括与乳腺癌相关的那些,如BRCA-1、BRCA-2和MUC-1(参见例如WO 92/07000)。

用于本披露的转基因置于适当的调节元件的控制之下,以允许它以组成型或诱导型方式在所选宿主细胞或生物体中表达。此类调节元件的选择为熟练的技术人员所力所能及。它典型地选自下组,该组由以下各项组成:组成型、诱导型、肿瘤特异性以及组织特异性启动子,如以上结合本披露的融合蛋白的表达所描述。在一个实例中,转基因置于CMV启动子的控制之下,以确保高水平的表达。

可以将用于本披露的转基因插入载体的任何位置。根据一个替代方案,将它典型地放置不与本披露的核酸分子紧邻。根据另一个替代方案,相对于核酸分子,可以将它以反义取向放置,以便避免两个表达盒之间的转录干扰。例如,在腺病毒基因组中,相对于本披露的核酸分子,可以将转基因插入不同的缺失区(E1、E3和/或E4)中或插入与所述核酸分子相同的缺失区中,但是彼此处于反义取向。

可以通过本领域中适于任何种类的载体的任何基因工程策略,如通过描述于Sambrook(萨姆布鲁克)等人(2001,Molecular Cloning-A Laboratory Manual(分子克隆-实验室手册),Cold Spring Harbor Laboratory(冷泉港实验室))中的方法,将本披露的核酸分子引入载体骨架中。典型地,为了将核酸分子引入腺病毒载体中,将包括编码融合蛋白的核酸分子的细菌质粒工程化,以将复制或装配所需的腺病毒基因(例如E1)替换为替代核酸分子。然后,将质粒用作穿梭载体,并且与第二质粒组合,该第二质粒包含腺病毒基因组的互补部分,从而允许借助重叠两个质粒中的腺病毒序列而发生同源重组。可以直接在适合的哺乳动物宿主(如293,如描述于Graham(格拉哈姆)和Prevect(普莱维克特),1991,Methods in Molecular Biology(分子生物学方法),第7卷“Gene Transfer and Expression Protocols(基因转移与表达方案)”;编辑E.J.Murray(默里),The Human Press Inc(休曼出版公司),克林顿,新泽西州中)或者在酵母YAC克隆或大肠杆菌(如描述于WO 96/17070中)中进行重组。随后,将完整的腺病毒基因组转染进哺乳动物宿主细胞,用于复制和病毒衣壳化。

本披露还涵盖已被修饰为允许优先靶向具体靶细胞的本披露的载体或其颗粒。本披露的靶向载体/颗粒(病毒和非病毒来源两者的,如聚合物和脂质复合的载体)的特有特征是在其表面上存在能够识别并结合至细胞和表面暴露组件的靶向部分。此类靶向部分包括但不限于,化学轭合物、脂质、糖脂、激素、糖、聚合物(例如PEG、聚赖氨酸、PEI等)、肽、多肽(例如如描述于WO 94/40958中的JTS1)、寡核苷酸、维生素、抗原、凝集素、抗体及其片段。它们典型地能够识别并结合至细胞特异性标志物、组织特异性标志物、细胞受体、病毒抗原、抗原表位或肿瘤相关标志物。在此方面,可以通过对编码存在于病毒的表面上的衣壳多肽(例如纤维、五邻体和/或pIX)的病毒基因进行遗传修饰而进行腺病毒的细胞靶向。此类修饰的实例描述于文献中(例如没描述于Wickam(维克姆)等人,1997,J.Viral.(病毒学杂志)71,8221-8229;Amberg(安伯格)等人,1997,Virol.(病毒学)227,239-244;Michael(迈克尔)等人,1995,Gene Therapy(基因疗法)2,660-668;WO 94/10323、EP 02 360204以及WO 02/96939中)。为了说明,将编码EGF的序列插入腺病毒纤维的编码序列内将允许靶向表达EGF受体的细胞。还可以如EP 1 146 125中所描述实现痘病毒趋性的修饰。可以通过将靶向部分化学轭合在病毒颗粒的表面上而实现细胞特异性靶向的其他方法。

在某些实施例中,本披露涉及感染性病毒颗粒,这些颗粒包括本披露的上述核酸分子或载体。

本披露还涉及一种用于产生感染性病毒颗粒的方法,该方法包括以下步骤:(a)将本披露的病毒载体引入适合的细胞系中,(b)在适合的条件下培养所述细胞系,以便允许产生所述感染性病毒颗粒,并且(c)从所述细胞系的培养物中回收产生的感染性病毒颗粒,并且(d)任选地纯化所述回收的感染性病毒颗粒。

可以使用容易为本领域的普通技术人员获得的众所周知的技术将包含本披露的核酸分子的载体引入适当的细胞系中,供繁殖或表达。这些技术包括但不限于,将微量的DNA显微注射进细胞的细胞核中(Capechi(卡派施)等人,1980,Cell(细胞)22,479-488)、CaPO4介导的转染(Chen(陈)和Okayama(冈山),1987,Mol.Cell Biol.(分子与细胞生物学)7,2745-2752)、DEAE-葡聚糖介导的转染、电穿孔(Chu(楚)等人,1987,Nucleic Acid Res.(核酸研究)15,1311-1326)、脂转染/脂质体融合(Feigner(费格奈尔)等人,1987,Proc.Natl.Acad.Sci.USA(美国国家科学院院刊)84,7413-7417)、粒子轰击(Yang(杨)等人,1990,美国国家科学院院刊87,9568-9572),基因枪、转导、感染(例如用感染性病毒颗粒)以及其他技术,如发现于Sambrook(萨姆布鲁克)等人(Molecular Cloning:A Laboratory Manual(分子克隆:实验室手册),Cold Spring Harbor Laboratory(冷泉港实验室),Cold Spring Harbor Laboratory Press(冷泉港实验室出版社),Cold Spring Harbor(冷泉港),纽约,2001)中的那些。

当本披露的载体有缺陷时,通常在互补细胞系中或经由使用辅助病毒而产生感染颗粒,该辅助病毒反式地提供功能性病毒基因。例如,用于补充腺病毒载体的适合的细胞系包括通常用于补充E1功能的293细胞(Graham(格拉哈姆)等人,1997,J.Gen.Virol.(普通病毒学杂志)36,59-72)以及PER-C6细胞(Fallaux(福雷克斯)等人,1998,Human Gene Ther.(人类基因治疗)9,1909-1917)。已经将其他细胞系工程化为加倍地补充缺陷型腺病毒载体(Yeh(叶)等人,1996,J.Virol.(病毒学杂志)70,559-565;Krougliak(克劳格里克)和Graham(格拉哈姆),1995,Human Gene Ther.(人类基因治疗)6,1575-1586;Wang(王)等人,1995,Gene Ther.(基因治疗)2,775-783;Lusky(卢斯凯)等人,1998,病毒学杂志72,2022-2033;W0 94/28152以及WO 97/04119)。感染性病毒颗粒可以回收自培养物上清液,但还可以回收自溶解后的细胞并且任选地根据标准技术进行进一步纯化(层析、氯化铯梯度超速离心,如描述于例如WO 96/27677、WO 98/00524、WO 98/22588、WO 98/26048、WO 00/40702、EP 1016700以及WO 00/50573中)。

本披露还涉及以下宿主细胞,这些宿主细胞包括在此描述的本披露的核酸分子、载体或感染性病毒颗粒。出于本披露的目的,应该广泛地理解术语“宿主细胞”,而没有涉及组织、器官或分离的细胞中的具体组构的任何限制。此类细胞可以属于独特类型的细胞或一组不同类型的细胞并且涵盖培养的细胞系、原代细胞以及增殖细胞。

因此,宿主细胞包括原核细胞、低等真核细胞(如酵母)以及其他真核细胞,如昆虫细胞、植物和高等真核细胞(如脊椎动物细胞),并且特别优选的是哺乳动物(例如人类或非人)细胞。适合的哺乳动物细胞包括但不限于,造血细胞(全能性干细胞、白细胞、淋巴细胞、单核细胞、巨噬细胞、APC、树突细胞、非人细胞等)、肺细胞、气管细胞、肝细胞、上皮细胞、内皮细胞、肌肉细胞(例如骨骼肌、心肌或平滑肌)或成纤维细胞。典型的宿主细胞包括大肠杆菌、芽孢杆菌属、李斯特菌属、酵母属、BHK(幼仑鼠肾)细胞、MDCK细胞(马丁-达比(Madin-Darby)犬肾细胞系)、CRFK细胞(克兰德尔(Crandell)猫肾细胞系)、CV-1细胞(非洲猴肾细胞系)、COS(例如、COS-7)细胞、中国仓鼠卵巢(CHO)细胞、小鼠NIH/3T3细胞、海拉细胞以及维拉(Vera)细胞。宿主细胞还涵盖能够补充本披露的复制缺陷型载体(例如腺病毒载体)的至少一种缺陷功能的互补细胞,如上文举出的那些。

本披露的宿主细胞可以包含超过一个本披露的核酸分子、载体或感染性病毒颗粒。另外,它可以另外包括编码转基因的载体,例如如上文描述的转基因。当将超过一个核酸分子、载体或感染性病毒颗粒引入细胞中时,可以独立地引入或同时引入这些核酸分子、载体或感染性病毒颗粒。

此外,根据一个具体实施例,本披露的宿主细胞可以被进一步包囊。细胞包囊技术先前已经被描述(Tresco(特雷斯科)等人,1992,ASAJO杂志38,17-23;Aebischer(亚比斯卓)等人,1996,Human Gene Ther.(人类基因治疗)7,851-860)。根据所述具体实施例,可以用形成微孔膜的化合物包囊转染的或感染的真核宿主细胞并且所述包囊的细胞可以被进一步植入体内。可以利用中空的微孔膜制备包含感兴趣的细胞的胶囊(例如阿克苏诺贝尔法斯尔股份公司(Akzo Nobel Faser AG,Wuppertal),德国;Deglon(德格龙)等人1996,Human Gene Ther.(人类基因治疗)7,2135-2146),这些微孔膜具有适于允许蛋白质和营养素在胶囊内外之间自由通过同时防止移植的细胞与宿主细胞接触的分子量截留。

本披露的仍另一方面是一种用于利用本披露的载体、感染性病毒颗粒和/或宿主细胞重组地产生融合蛋白的方法。用于产生融合蛋白的方法包括向适合的宿主细胞中引入本披露的载体或感染性病毒颗粒,以产生转染的或感染的宿主细胞,在适于宿主细胞的生长的条件下体外培养所述转染的或感染的宿主细胞,并且之后从所述培养物中回收所述融合蛋白,并且任选地,纯化所述回收的融合蛋白。可以预期的是,可用于在适当的宿主细胞中表达本披露的融合蛋白的众多表达系统是本领域的普通技术人员可已知的。

典型地通过用一个或多个包括本披露的一个或多个核酸分子的重组分子(例如本披露的载体)转染/感染宿主细胞而产生本披露的宿主细胞。可以使用重组DNA技术改善核酸分子在宿主细胞中的表达,例如通过操纵宿主细胞内的核酸分子的拷贝数目、转录核酸分子的效率、翻译生成的转录物的效率、翻译后修饰的效率以及使用适当的选择。有用于增加本披露的核酸分子的表达的重组技术包括但不限于,使用高拷贝数的载体、加入载体稳定性序列、取代或修饰一个或多个转录调节序列(例如,启动子、操纵子、增强子)、取代或修饰翻译调节序列(例如,核糖体结合位点、新荣-达尔加莫(Shine-Dalgamo)序列)、将本披露的核酸分子修饰为对应于宿主细胞的密码子使用以及缺失使转录物不稳定的序列。

可以在常规的发酵生物反应器、烧瓶和培养皿中培养本披露的宿主细胞。在适于给定的宿主细胞的温度、pH和氧含量下进行培养。这里将不尝试详细描述已知用于在原核生物和真核生物细胞中表达蛋白质的各种方法。在一个实施例中,载体是一种携带可操作地与适当的调节元件相关的编码融合蛋白的核酸分子的质粒。用于在本披露的方法中的典型的宿主细胞是哺乳动物细胞系、酵母细胞和细菌细胞。

在融合蛋白未被分泌到生产细胞外的情况下或在它未被完全分泌的情况下,可以通过标准破坏程序从细胞中将其回收,包括冻融、声处理、机械破坏、使用溶解剂等。如果被分泌,则可以直接从培养基中将其回收。然后可以回收融合蛋白并通过众所周知的纯化方法进行纯化,包括硫酸铵沉淀、酸提取、凝胶电泳、反相层析、尺寸排阻层析、离子交换层析、亲和层析、磷酸纤维素层析、疏水相互作用层析、羟基磷灰石层析、凝集素层析或高效液相层析。用于纯化本披露的具体融合蛋白的条件和技术将取决于合成方法并且取决于如净电荷、分子量、疏水性、亲水性的因素并且对于本领域的普通技术人员而言将是显而易见的。还应该理解的是,取决于用于重组产生在此描述的融合蛋白的宿主细胞,融合蛋白可以具有不同的糖基化模式,或可以是非糖基化的(例如当在细菌中产生时)。另外,在一些情况下,作为宿主介导的过程的结果,融合蛋白可以包括初始的甲硫氨酸。

可以将本披露的融合蛋白“纯化”至它基本上不含细胞材料的程度。纯化水平将基于预期的用途。关键特征在于即使在存在相当大量的其他组件的情况下,该制剂允许融合蛋白的希望的功能。在一些用途中,“基本上不含细胞材料”包括融合蛋白制剂,这些融合蛋白制剂具有少于约30%(按干重计)其他蛋白质(即,污染蛋白质),典型地少于约20%其他蛋白质,更典型地少于约10%其他蛋白质或甚至更典型地少于约5%其他蛋白质。当重组地产生融合蛋白时,它还可以基本上不含培养基,即培养基表示蛋白制剂的少于约20%的体积。

术语

如在此所使用,术语“轭合物”是指由共价键或提供在生理条件下基本上不可逆的结合的其他安排连接的分子实体。例如,可以由连接聚合物将两个蛋白质、分离的和/或纯化的多肽序列轭合在一起,该连接聚合物是例如氨基酸、多肽序列、乙二醇聚合物。可以通过将一个蛋白质连接至配体并且将第二个蛋白质连接至受体而将两个蛋白质轭合在一起,例如链霉亲和素和生物素或抗体和表位。

如在此所用,当用于描述与一种另外的治疗一起给予时,术语“与...组合”意指该药剂可以在该另外的治疗之前、与其一起、或之后、或其组合被给予。

如在此所使用,“受试者”是指任何动物,典型地是人类患者、家畜或家养宠物。

如本文所用,术语“预防(prevent)”和“预防(preventing)”包括复发、扩散或发作的预防。并不旨在将本披露限制为完全预防。在一些实施例中,发作被延迟,或严重性被降低。

如在此所使用,术语“治疗(treat)”和“治疗(treating)”并不限于受试者(例如患者)被治愈并且疾病被根除的情况。相反,本披露的实施例还考虑了仅仅减轻症状和/或延缓疾病发展的治疗。

如在此所使用,“氨基酸序列”是指蛋白质分子的氨基酸序列。可以由编码蛋白质的核酸序列推导出“氨基酸序列”。然而,术语如“多肽”或“蛋白质”并不意在将氨基酸序列限制为推导的氨基酸序列,而是包括非天然发生的氨基酸、推导的氨基酸序列的翻译后修饰(如氨基酸缺失、添加)以及如糖基化和添加脂质部分的修饰。

术语指定的多肽“编码核酸序列”是指包括基因的编码区的核酸序列或换言之编码基因产物的核酸序列。编码区可以按cDNA、基因组DNA或RNA形式存在。当以DNA形式存在时,寡核苷酸、多核苷酸或核酸可以是单链的(即正义链)或双链的。如果需要允许适当地启动原始RNA转录物的转录和/或正确的加工,则可以紧邻基因的编码区放置适合的控制元件,如增强子/启动子、剪接点、多腺苷酸化信号等。可替代地,在本披露的表达载体中使用的编码区可以包含内源增强子/启动子、剪接点、间插序列、多腺苷酸化信号等或内源和外源两种控制元件的组合。

当就核酸分子而言时,术语“重组”是指包含通过分子生物学技术而连接在一起的核酸区段的核酸分子。当就蛋白质或多肽而言时,术语“重组”是指使用重组核酸分子进行表达的蛋白质分子。

“病毒样颗粒”是指包括毒粒蛋白但是基本上不含病毒遗传材料(例如,病毒RNA)的颗粒。病毒样颗粒可以包含来自不同病毒的病毒蛋白。参见例如,Guo(郭)等人,Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles(通过嵌合流感HA/SHIV病毒样颗粒增强粘膜免疫应答),Virology(病毒学),2003,313(2):502-13。病毒样颗粒可以包含脂质膜并且可以被构建为在其颗粒表面上表达多种抗原,这是通过在用于创建颗粒的病毒载体中进行表达或通过将病毒样颗粒与抗原或轭合至糖基磷脂酰肌醇锚定物的其他多肽混合。参见例如Skountzou(斯库尼特佐)等人,J.Virol.(病毒学杂志)81(3):1083-94;Derdak(德尔达克)等人,PNAS(美国国家科学院院刊),2006,103(35)13144-13149;Poloso(波洛索)等人,Molecular Immunology(分子免疫学),2001,38:803-816。

如在此所使用,冠词“一个/种(a或an)”旨在指示一个/种或多个/种,除非上下文以另外的方式表明。

实验

GIFT4基因和蛋白质。

鼠IL-4和GM-CSF的基因(cDNA)购自Invivogen公司(圣地亚哥,加州)并且被克隆进框中的双顺反子的AP2逆转录病毒载体中,从而允许表达嵌合的转基因和GIFT4融合蛋白两者。一个氨基酸(丝氨酸,S)作为GM-CSF与IL-4蛋白序列之间的桥连接物。为了建立鼠GIFT4蛋白的三维结构,将人类GM-CSF和IL-4的晶体结构用作模板,用于在软件PROSPECT v2(橡树岭国家实验室(Oak Ridge National Laboratory),橡树岭,田纳西州)上同源建模。遵循制造商的说明,将编码GIFT4的逆转录病毒质粒引入293-GP2包装细胞(克罗泰克公司(Clontech),山景,加州)中。使用编码GIFT4或GM-CSF或IL-4基因的浓缩的逆转录病毒颗粒(retroparticle)来遗传地修饰293T细胞或B16F10黑色素瘤细胞。将来自阳性单细胞克隆选择的293T-GIFT4细胞或B16F0-GIFT4细胞在96孔板的孔中合并在一起,通过GIFT4蛋白表达进行证实,通过ELISA检测蛋白表达。

GIFT4触发B细胞扩增。

为了测试GIFT4融合因子的免疫刺激功能,将来自亲本GM-CSF和IL-4cDNA的鼠GIFT4cDNA克隆进AP2逆转录病毒载体中,然后将其转染进293T细胞中。翻译的GIFT4蛋白序列与具有预测的3D结构(图1B)的282个氨基酸(图1A)的单个多肽链一致。AP2-GIFT4载体转染的293T细胞稳定地表达分子量约为50kDa的丰富的GIFT4蛋白(图1C)。GIFT4融合蛋白具有强的生物活性,以诱导GM-CSF应答物JAWSII细胞(图1D)和IL-4依赖性CT.h4S细胞(图1E)的增殖。

为了检查GIFT4蛋白的免疫功能,从C57BL/6J(B6)小鼠中分离脾细胞,并与组合使用其亲本分子GM-CSF和IL-4相比较,用GIFT4蛋白在体外刺激这些细胞。出乎意料地,GIFT4触发脾细胞在B细胞区室(图9B)中的扩增(图9A)。一致地,GIFT4诱导纯化的B细胞的增殖(图2A-B)。为了定义GIFT4处理的脾B细胞(GIFT4-B细胞)的表型,我们用一系列表面标志物描绘了GIFT4-B细胞。FACS分析证明,GIFT4-B细胞表达B220、CD19、CD22、CD25、CD40、MHCI/II、IgM、CD80以及CD86(图2C);后两者是抗原呈递细胞的常见标志物。BCR与抗鼠IgM交联进一步证实,伴随CD80和CD86的下调,GIFT4-B细胞具有将细胞上的免疫球蛋白表达的同种型从IgM切换至IgG的可塑性(图2D)。

GIFT4触发抗肿瘤免疫。

由B细胞分泌的细胞因子在对抗感染性病原体和肿瘤的先天性和获得性免疫两者中发挥重要作用。IL-4是一种诱导STAT6的磷酸化的γ链家族成员。为了测试GIFT4在STAT信号传导方面的能力,与单独的或组合的重组GM-SCF和IL-4进行的刺激相比,用GIFT4蛋白刺激纯化的鼠B细胞。GIFT4在STAT1、STAT3、STAT5以及STAT6的磷酸化上具有功能获得(gain-of-function)(图3A)。为了检查由GIFT4-B细胞产生的细胞因子,使用GIFT4蛋白刺激的纯化的脾B细胞的培养物上清液经受细胞因子路明克斯分析。分泌组的分析揭示,GIFT4-B细胞产生IL-1β、IL-6、IL-12(图3B)、IL-5、VEGF以及巨量的GM-CSF和趋化因子CCL3(图3C),与不可检测的IL-10和很少的IFN-γ(图3B)连同其他较低水平的细胞因子。胞内细胞因子染色进一步证实GIFT4-B细胞分泌GM-CSF(图3D),这与组合使用重组GM-CSF和IL-4的对照处理的分泌(图3E)相比高十倍多。为了测试GIFT4蛋白在体内对产生GM-CSF的B细胞的影响,通过静脉注射向B5小鼠给予GIFT4蛋白。GIFT4处理一周后,小鼠患上脾肿大(图4A);用组合的GM-CSF和IL-4处理的小鼠显示出如未处理的小鼠(未示出)的正常尺寸的脾(图4A)。通过FACS对来自那些小鼠的脾中的B220+细胞和CD3+细胞进行分析证明,与用GM-CSF和IL-4处理的小鼠相比,脾B细胞在GIFT4处理的小鼠中强力地扩增(图4B);在GIFT4处理的小鼠中还有轻微的T细胞增殖。胞内染色进一步证实通过GIFT4处理诱导分泌GM-CSF的脾B细胞。GIFT4处理的小鼠中的GM-CSF+B细胞的百分比比用GM-CSF和IL-4处理的小鼠中的百分比高30多倍(图10B),后者类似于正常的未处理的小鼠。

将GM-CSF考虑为肿瘤疫苗的细胞因子佐剂。GIFT4-B细胞分泌IL12、IL-6和IL-1β,它们可以增强Th1T细胞应答和作为必需的抗肿瘤细胞因子的IFN-γ的产生。因此,GIFT4蛋白可以在体内引发抗肿瘤免疫。为了进行测试,通过将B16F0黑色素瘤细胞皮下植入B6小鼠中而建立黑色素瘤小鼠模型。肿瘤植入后五天,小鼠体内出现了可见的肿瘤。用GIFT4蛋白或组合的GM-CSF和IL-4或PBS(作为未处理的对照)处理那些小鼠。两周后,对照组或组合的细胞因子处理组中的小鼠出现大量的黑色素瘤(图4C);相比之下,GIFT4处理显著地抑制肿瘤生长(图4C)。

为了进一步测试GIFT4蛋白的抗肿瘤功能,产生稳定地表达GIFT4蛋白(B16F0-GIFT4细胞)或单独的GM-CSF或IL-4细胞因子的、经遗传修饰的B16F0黑色素瘤细胞系。将肿瘤细胞皮下地注入同系B6小鼠中。二十天后,植入野生型B16F0细胞或植入混合的B16F0-GMCSF和B16F0-IL4细胞(B16F0-GMCSF+IL4)的小鼠出现大量的黑色素瘤(图4D);然而,植入B16F0-GIFT4细胞的小鼠体内的肿瘤生长被显著地抑制,从而指示GIFT4表达显著地抑制黑色素瘤生长(图4D)。

GIFT4引发的抗肿瘤免疫是B细胞依赖性的。

抗肿瘤免疫与先天性和获得性免疫区室的两个组相一致。为了检查GIFT4蛋白是否靶向获得性组,将B16F0-GIFT4细胞植入缺少功能性B细胞和T细胞的Ragl-/-小鼠中。黑色素瘤在Ragl-/-小鼠中迅速生长(图5A)。T细胞在抗肿瘤免疫中发挥作用。在CD4T细胞或CD8T细胞缺陷小鼠中观察到B16F0-GIFT4肿瘤的生长(图5B)。为了进一步测试B细胞是否在GIFT4触发的抗肿瘤应答中发挥举足轻重的作用,将B16F0-GIFT4细胞植入B细胞缺陷μMT小鼠中。与GIFT4蛋白在体外和在体内对B细胞的免疫功能一致,专一缺少功能性B细胞的μMT小鼠出现较大尺寸的黑色素瘤(图5B)。GIFT4-B细胞分泌IL-12、IL-6和IL-1β,它们可以增强T细胞产生IFN-γ。为了测试GIFT4-B细胞是否可以与T细胞相互作用并促进抗肿瘤免疫的假设,将T细胞与用GIFT4蛋白或单独的GM-CSF或IL-4或组合的重组细胞因子刺激的纯化的B细胞共同培养。通过ELISA对培养物上清液中的IFN-γ分泌进行定量显示,GIFT4刺激强力地增加T细胞产生IFN-γ(图5C),而用单独的重组细胞因子GM-CSF、IL-4或组合使用的对照处理对T细胞产生IFN-γ没有显著影响。使用基因敲除小鼠,证实IL-12或IFN-γ缺陷但IL-10不缺陷的小鼠不能抑制黑色素瘤生长(图5D)。

肿瘤特异性抗体对于GIFT4触发的抗肿瘤免疫而言是重要的。

B细胞免疫包括细胞和体液免疫应答。为了测试GIFT4是否可以促进B细胞抗体应答,在GIFT4蛋白或混合的GM-CSF和IL-4的存在下,用卵白蛋白(OVA)免疫正常的B6小鼠。注射缺少OVA的对照介质的小鼠作为对照(图6A)。来自收获的脾的OVA特异性IgG-分泌B细胞的ELISpot分析证明,与OVA加GM-CSF和IL-4相比,具有GIFT4处理的OVA显著增强在体内产生抗原特异性抗体(图6B)。当不向对照小鼠给予抗原时,在脾中存在不可检测的OVA特异性IgG分泌B细胞。为了检查GIFT4蛋白作为促进抗肿瘤特异性抗体的佐剂的能力,用B16F0-GIFT4黑色素瘤细胞免疫B6或μMT B-细胞缺陷小鼠。一个月后,从小鼠中收集血清。用来自免疫小鼠或初试B6小鼠的血清处理的B16F0细胞的流式细胞术分析确认了在免疫的B6小鼠中存在高效价的抗黑色素瘤特异性抗体(图6C-D)。B-细胞缺陷小鼠μMT小鼠和初试B6小鼠在循环中具有不可检测的抗-B16F0抗体。为了测试抗-黑色素瘤抗体是否涉及GIFT4触发的B细胞介导的抗肿瘤免疫,将B16F0-GIFT4黑色素瘤细胞皮下地植入B6、FcγR-/-或μMT小鼠中。FcγR-/-小鼠缺少功能性IgG。监测肿瘤生长证明,在FcγR-/-小鼠中以及在μMT B-细胞缺陷小鼠中存在大量肿瘤生长,但是在野生型小鼠中不存在(图6E)。为了检查B16F0-GIFT4细胞的免疫是否可以引发对抗黑色素瘤的保护性免疫,用B16F0肿瘤细胞激发免疫或未免疫的小鼠。B16-GIFT4细胞的免疫完全阻止小鼠患上黑色素瘤(图7A)。相比之下,未进行免疫的小鼠出现较大的肿瘤(图7A)。免疫细胞的过继转移对于癌细胞免疫疗法而言是一种有希望的途径。为了进一步研究来自免疫的小鼠的GIFT4活化的B细胞是否可以将有活性的抗肿瘤免疫传给B细胞缺陷小鼠,将B16F0-GIFT4细胞植入μMT小鼠中。当小鼠出现可见尺寸的黑色素瘤时,纯化自免疫的小鼠的脾B细胞过继地转移进该小鼠中。肿瘤尺寸的测量显示,来自免疫的小鼠的B16F0-预致敏B细胞的过继转移显著抑制B-细胞缺陷μMT小鼠中的黑色素瘤生长(图7B)。未进行B细胞过继转移的小鼠出现较大尺寸的黑色素瘤。

人类GM-CSF和IL-4衍生的融合细胞因子将白血病B细胞重新编程为抗-CLL效应物

产生人类GM-CSF和IL-4衍生的融合因子GIFT4,以测试它对慢性淋巴样白血病B细胞(CLL-B细胞)的免疫功能。(图11)人类GIFT4蛋白将白血病B细胞重新编程为抗-CLL效应物和辅助物。(图10)GIFT4经由STAT5的排他的过度磷酸化而活化CLL B细胞。与正常人类B细胞的诱导的扩增不同,GIFT4不触发CLL B细胞增殖。(图12)GIFT4转化的CLL B细胞上调共刺激分子CD40、CD80和CD86的表达,表现地像抗原呈递细胞一样,并分泌IL-1β、IL-6、ICAM1以及大量的IL-2。(图13)GIFT4-CLL B细胞进一步推进产生IFN-γ的自体细胞毒性NK和T细胞的扩增。共培养GIFT4处理的CLL细胞显著增加在离体杀死初级自体CLL细胞。(图14)这些数据一起证明,GIFT4通过将白血病B细胞重新编程为抗-CLL辅助细胞而具有有效的抗-CLL免疫功能。融合因子GIFT4蛋白和GIFT4转化的CLL-B细胞可以作为CLL治疗的新颖免疫治疗剂。

细胞培养

将分泌GIFT4的293T细胞或B16F0黑色素瘤细胞系或非转染细胞在补充有10%FBS(维森特科技公司(Wisent Technologies))和50U/ml的Pen/Strep抗生素(维森特科技公司)的DMEM培养基(维森特科技公司,罗克林(Rocklin),加州)中进行培养。收集培养物上清液并用无菌离心过滤装置(密理博公司(Millipore Corporation),比尔里卡,马萨诸塞州)浓缩,用于进行ELISA测定和蛋白质印迹。将293T-GIFT4细胞的浓缩的培养物上清液进一步用于体外和体内实验。在2ng/ml的GIFT4蛋白或重组GM-CSF和IL-4对照蛋白(R&D体系公司(R and D system),明尼阿波里斯,美国)的存在下,将来自C57BL/6J小鼠的脾细胞或通过用B细胞富集试剂盒(斯迪姆赛尔公司(StemCell),蒙特利尔,加拿大)进行阴性选择而纯化自脾细胞的B细胞(105个细胞/孔)在完全RPMI 1640培养基中培养6天。可替代地,将B细胞用CFSE染料(英杰公司,尤金,俄勒冈州)标记并遵循来自该公司的说明,在完全RPMI 1640培养基中进行培养,用于进行细胞增殖测定。

ELISA和蛋白质印迹

用鼠GM-SCF或IL-4的ELISA试剂盒(e生物科学公司(eBiosciences),圣地亚哥,加州),遵循来自该公司的说明,对由输注的293T或B16F0黑色素瘤细胞表达的GIFT4蛋白进行定量。用来自e生物科学公司的IFN-γELISA试剂盒确定T淋巴细胞在体外产生IFN-γ。用抗小鼠MG-SCF或抗IL-4特异性抗体(R&D体系公司)通过蛋白质印迹分析完整的鼠GIFT4蛋白。用抗-pSTAT1、抗-pSTAT3、抗-pSTAT5、抗-pSTAT6或抗-STAT抗体(细胞信号传导公司(Cell Signaling),波士顿,马萨诸塞州)通过蛋白质印迹描绘B细胞中由GIFT4刺激活化的STAT磷酸化。

MTT测定

为了确定GIFT4蛋白的IL-4或GM-CSF融合区室的生物活性,将IL-4-应答CT.h4S细胞(由美国国立卫生研究院(National Institutes of Health)的威廉·保罗(William Paul)博士的实验室提供)和GM-CSF-应答JASWII细胞在96孔板中以5,000个细胞/孔的密度铺板,并在分别补充有2ng/ml的重组IL-4细胞因子或10ng/ml的重组GM-CSF(派普泰克公司(PeproTech),洛基山,新泽西州)或者补充有GIFT4蛋白(用于CT.h4S细胞,2ng/ml并且用于JASWII细胞,10ng/ml)的完全RPMI 1640培养基中进行培养。

72小时培养后,添加20μL的3-(4,5-二甲基噻唑-2-基)-2,5-二苯四唑鎓溴化物(MTT)(西格玛公司(Sigma),圣路易斯,密苏里州)溶液,在37C下孵育4小时。将细胞沉淀物溶解于200μL的无水DMSO(科立泰生物技术有限公司(Quality Biological Inc.),梭伦,俄亥俄州)中,并在微板分光光度计(伯腾仪器有限公司(BioTek Instruments Inc.),威努斯基,佛蒙特州)上读取570nm下的吸光度。

细胞流式细胞术

用APC-轭合的抗小鼠B220和PE-轭合的抗小鼠CD3抗体将GIFT4处理的体外脾细胞染色。在BD FACSCanto II流式细胞仪上通过细胞流式细胞术(FACS)分析B细胞和T细胞情况。用一系列B细胞表面标志物(抗-B220、CD19、CD22、CD23、CD25、CD27、CD40、CD69、CD80、CD86、MHCI、MHCII、IgM、IgG)(BD公司,圣地亚哥,加州)通过流式细胞术分析纯化自脾细胞的GIFT4处理的B细胞的表面标志物。用于胞内GM-CSF染色,将B细胞固定并用BD Cytofix/CytopermTM溶液透性化,随后进行GM-CSF抗体染色。可替代地,在第0、2和4天,将鼠GIFT4蛋白(20ng)静脉注射进C57BL/6J小鼠中。重组鼠GM-CSF和IL-4(20ng)作为蛋白对照。在第6天,从处理的小鼠的脾中分离脾细胞。用抗-B220和抗-CD3抗体(BD公司)通过流式细胞术分析总的B细胞和T细胞,并且计算每个脾的细胞数。通过将黑色素瘤细胞与来自免疫的或对照小鼠的血清进行孵育,随后用APC-轭合的驴抗小鼠二级抗体(BD公司)染色而通过FACS检查针对B16F0黑色素瘤细胞的特异性抗体的体内产生。用Flow Jo 9.1软件分析FACS数据。

B细胞ELISpot

在第0和7天,通过腹腔注射向C57BL/6J小鼠给予OVA蛋白(10μg/小鼠/次),补充有GIFT4蛋白(20ng/小鼠/次)或组合的重组GM-CSF和IL-4(20ng/小鼠/次)。将未进行细胞因子处理的小鼠作为空白对照(每组中n=5)。在第14天,收获脾,并通过B细胞富集试剂盒(斯迪姆赛尔公司)进行阴性选择而从脾细胞中纯化B细胞。遵循由制造商提供的说明,通过B细胞ELISpot试剂盒(梅布科技公司(Mabtech),辛辛那提,俄亥俄州)分析每50,000个B细胞的OVA-特异性IgG分泌细胞的数目。

路明克斯测定

在第5天收集GIFT4处理的B细胞的培养物上清液,并根据制造商的说明,使其经受用26-plex细胞因子聚苯乙烯珠试剂盒(昂飞公司(Affymetrix),圣克拉拉,加州)在斯坦福大学的人类免疫监测中心(Human Immunology Monitoring Center of Stanford University)进行的路明克斯测定。在路明克斯200仪器上读取样品,下限为100个珠/样品/细胞因子。

鼠黑色素瘤模型

将产生B16F0或GIFT4的B16F0黑色素瘤细胞(106/小鼠)皮下地植入同系的C57BL/6J小鼠或Rag1-/-、CD4-/-、CD8-/-、μMT(B-细胞缺陷)或FcγR-/-(IgG功能缺陷)小鼠中。可替代地,将分泌GIFT4的B16F0细胞(106个细胞/小鼠)皮下地免疫进C57BL/6J小鼠中。30天后,将野生型B16F0黑色素瘤细胞(106个细胞/小鼠)植入免疫的小鼠中。未免疫的小鼠作为对照。另外,通过静脉注射将分离自免疫的小鼠或对照小鼠的1千万脾细胞或50万纯化的B细胞过继转移进具有预建立的B16F0黑色素瘤的C57BL/6J小鼠中。为了测试GIFT4蛋白的抗肿瘤功能,以2天的间隔,向具有预建立的B16F0肿瘤的C57BL/6J小鼠给予三个剂量的100ng/天/小鼠的鼠GIFT4。另外,将来自免疫的小鼠的纯化的脾B细胞(10x106个细胞/小鼠)过继转移进预建立B16F0肿瘤的μMT小鼠中;未进行细胞过继转移的小鼠作为对照。用数显卡尺测量肿瘤生长。使用的小鼠是购自杰克逊实验室(Jackson Laboratory)(巴尔港,缅因州)的雌鼠(6-8周龄)。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1