PEDOT:PSS聚合物及其制备方法和应用与流程

文档序号:15598192发布日期:2018-10-02 19:50阅读:4330来源:国知局

本发明涉及导电高分子技术领域,特别是涉及一种pedot:pss聚合物及其制备方法和应用。



背景技术:

自shirakaw发现具有高导电性的聚乙炔,开创了有机导电聚合物这一新的研究领域以来,聚苯胺、聚吡咯、聚噻吩及其它们的衍生物等各类有机导电聚合物在抗静电涂料、超级电容器、传感器、显示器、有机电子设备和功能电极等方面实现了广泛应用。其中聚(3,4-乙烯二氧噻吩)(pedot)是一种聚噻吩类的有机导电聚合物,其具有高导电性、良好的生物兼容性等优点,然而存在在水中分散性差的缺点,无法采用水溶液旋转涂膜制备薄膜大大限制其应用。

近年研究发现采用聚苯乙烯磺酸掺杂可得到能较好的分散在水溶液和有机溶剂的聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸聚合物(pedot:pss聚合物)。此外,pedot:pss聚合物还具有在可见光范围内透明度高,机械柔性较高,热稳定性优越和ph使用范围宽等优点。然而目前的pedot:pss制备得到的pedot:pss薄膜的导电率较低,影响着其在传感器、显示器和有机电子器件等领域中的应用。



技术实现要素:

基于此,有必要提供一种导电率高的pedot:pss聚合物及其制备方法和应用。

一种pedot:pss聚合物的制备方法,包括如下步骤:

将聚苯乙烯磺酸盐的水溶液和edot混合并调节溶液至酸性,得到混合液;

在保护气体氛围下,在超声处理条件下将所述混合液和催化剂混合,继续超声处理3~10min,得到反应液,其中所述超声处理的频率为20khz~40khz;

将所述反应液于5~30℃反应5~24h,以使所述反应液中的所述edot发生聚合反应形成pedot,所述pedot和所述聚苯乙烯磺酸盐在静电作用下结合,得到pedot:pss聚合物。

上述pedot:pss聚合物的制备方法,操作简便,绿色无污染。制得的pedot:pss聚合物不仅在水中分散性好,而且pedot:pss聚合物的颗粒粒径适中且粒径均匀。采用该pedot:pss聚合物形成的薄膜,其导电率高,结合力强,循环使用的稳定性高。此外,pedot:pss聚合物用于有机电化学晶体管,具有较大的初始源漏电流和良好的源漏电流调控性能。

在其中一个实施例中,所述聚苯乙烯磺酸盐的水溶液中所述聚苯乙烯磺酸盐的质量百分比为1%~5%。

在其中一个实施例中,所述聚苯乙烯磺酸盐与所述edot的质量体积比为(1~5)g:1ml。

在其中一个实施例中,所述催化剂以水溶液加入,将所述催化剂溶于水得到所述催化剂水溶液,所述催化剂水溶液与所述混合液的体积为1~2:1。

在其中一个实施例中,所述调节溶液至酸性的步骤具体为:调节溶液的ph值至1~3。

在其中一个实施例中,所述催化剂包括铁盐和过硫酸盐,所述铁盐和所述过硫酸盐的摩尔比为1:2~6。

在其中一个实施例中,所述铁盐为氯化铁,所述过硫酸盐为过硫酸钾。

在其中一个实施例中,所述edot发生聚合反应形成pedot,所述pedot和聚苯乙烯磺酸盐在静电作用下结合的条件为:将所述反应液于5~30℃反应5~24h。

在其中一个实施例中,还包括提纯步骤:所述反应液于5~30℃反应5~24h后,过滤得到固体,依次用己烷、乙醇洗涤,干燥,得到所述pedot:pss聚合物。

一种pedot:pss聚合物,采用上述pedot:pss聚合物的制备方法制得。

采用上述pedot:pss聚合物的制备方法制得的pedot:pss聚合物,不仅在水中分散性好,而且pedot:pss聚合物的颗粒粒径适中且粒径均匀。采用该pedot:pss聚合物形成的薄膜,其导电率高,结合力强,循环使用的稳定性高。

上述pedot:pss聚合物在制备半导体薄膜中的应用。如此可提高半导体薄膜的导电性能和循环使用的稳定性。

附图说明

图1为实施例1得到的pedot:pss聚合物和原料edot的红外谱图,其中图a为原料edot的红外谱图,图b为实施例1得到的pedot:pss聚合物的红外谱图;

图2为导电率性能测试的模型结构图;

图3为实施例1和对比例1~4得到的pedot:pss聚合物的导电性能图;

图4为实施例1和对比例1~4得到的pedot:pss聚合物的粒径分布图;

图5为实施例1和对比例1~4得到的pedot:pss聚合物制成的oects器件的transfer曲线图;

图6为实施例1和对比例1~4得到的pedot:pss聚合物制成的oects器件的output曲线图;

图7为实施例1和对比例1~4得到的pedot:pss聚合物制成的oects器件连续7天的transfer曲线图。

具体实施方式

为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。

本发明提供了一实施例的pedot:pss聚合物,其采用下述制备方法制得。本发明一实施例的pedot:pss聚合物的制备方法,包括如下步骤。

步骤s100:将聚苯乙烯磺酸盐的水溶液和edot混合并调节溶液至酸性,得到混合液。其中,edot的中文名称为3,4-乙烯二氧噻吩。

聚苯乙烯磺酸盐与edot的质量体积比会影响edot聚合反应的聚合度以及pedot:pss聚合物中pedot(聚3,4-乙烯二氧噻吩)与聚苯乙烯磺酸盐的比例,进而影响着pedot:pss聚合物的导电性能和在水中的分散性能。

优选的,聚苯乙烯磺酸盐的水溶液中所述聚苯乙烯磺酸盐的质量百分比为1%~5%。优选的,聚苯乙烯磺酸盐与edot的质量体积比为(1~5)g:1ml,以提高pedot:pss聚合物的导电性能和水溶性能。更优选的,聚苯乙烯磺酸盐与edot的质量体积比为2~3g:1ml。更优选的,聚苯乙烯磺酸盐与edot的质量体积比为2.5g:1ml。

具体的,聚苯乙烯磺酸盐包括聚苯乙烯磺酸钠盐和聚苯乙烯磺酸钾盐中的至少一种。优选的,聚苯乙烯磺酸盐为聚苯乙烯磺酸钠盐。优选的,聚苯乙烯磺酸盐为分子量约为500000,苯乙烯磺酸盐的聚合度约为2404。

优选的,所述调节溶液至酸性的步骤具体为:调节溶液的ph值至1~3。更优选的,调节溶液的ph值至1.0。具体的,调节溶液的ph值所用的试剂为浓盐酸。

步骤s200:在保护气体氛围下,在超声处理条件下将混合液和催化剂混合,继续超声处理3~10min,得到反应液,其中超声处理的频率为20khz~40khz。

在超声处理条件下将混合液和催化剂混合,以使混合液和催化剂在超声条件下开始接触,利用超声波在液体介质中产生的巨大能量和超声波空化现象,使得生成的pedot高分子间的作用力大大削弱,并使高分子间碰撞加剧,进而使得其分子链和链段的运动加速,从而达到加速聚合反应和促进pedot:pss聚合物的粒径均匀的效果。而超声处理的时间过长将会使得pedot聚合度降低,从而使pedot:pss聚合物的粒径变小,进而降低溶液的黏度和产物的导电性;而pedot:pss聚合物的粒径过大会导致形成的薄膜结合力和循环使用的稳定性下降。另外,超声处理对于聚苯乙烯磺酸盐具有一定的降解作用,且其分子量随超声处理的时间和强度增加而有所降低。因此混合液和催化剂混合后继续超声3~10min,以得到平均粒径合适,形成的薄膜导电性、结合力和循环使用的稳定性均较好的pedot:pss聚合物。

优选的,保护气体氛围为氩气。可以理解,保护气体氛围也可为氮气。

优选的,催化剂包括铁盐和过硫酸盐,铁盐和过硫酸盐的摩尔比为1:2~6。更优选的,铁盐和过硫酸盐的摩尔比为1:3~5。更优选的,铁盐和过硫酸盐的摩尔比为1:4。具体的,铁盐为氯化铁。具体的,过硫酸盐为过硫酸钾。

在其中一个实施例中,催化剂以水溶液加入,将催化剂溶于水得到催化剂水溶液,催化剂水溶液与混合液的体积为1~2:1。优选的,催化剂水溶液与混合液的体积为1.3:1。

优选的,超声处理的频率为40khz,加入催化剂后,继续超声处理5min。

步骤s300:将反应液于5~30℃反应5~24h,以使反应液中的edot发生聚合反应形成pedot,pedot和聚苯乙烯磺酸盐在静电作用下结合,得到pedot:pss聚合物。

得到的pedot:pss聚合物为深蓝色固体。其反应机理为:在酸性环境下,edot单体在具有氧化性的fe3+作用下生成pedot聚合物,pedot聚合物和聚苯乙烯磺酸盐在静电作用下结合,得到pedot:pss聚合物;而转化成的fe2+又被过硫酸根氧化成fe3+,从而实现催化剂的循环。

edot氧化聚合及生成的pedot和聚苯乙烯磺酸盐在静电作用下结合的反应过程如下所示:

更优选的,将反应液于10℃反应24h。

在其中一个实施例中,还包括提纯步骤:将反应后的反应液过滤得到固体,依次用己烷、乙醇洗涤,干燥,得到pedot:pss聚合物。其中己烷洗涤的目的是除去未反应完全的edot单体,乙醇洗涤除去其他杂质。

优选的,干燥的温度为50~60℃。更优选的,干燥的温度为50℃。

上述pedot:pss聚合物的制备方法,操作简便,绿色无污染。制得的pedot:pss聚合物不仅在水中分散性好,而且pedot:pss聚合物的颗粒粒径适中且粒径均匀。采用该pedot:pss聚合物形成的薄膜,其导电率高,结合力强,循环使用的稳定性高,优于目前商用的德国heraeus公司cleviosph1000的pedot:pss水分散体产品。此外,pedot:pss聚合物用于有机电化学晶体管,具有较大的初始源漏电流和良好的源漏电流调控性能。

本发明还提供了一实施例的pedot:pss聚合物在制备半导体薄膜中的应用。如此可提高半导体薄膜的导电性能和循环使用的稳定性。

优选的,将pedot:pss聚合物分散于水中得到pedot:pss水分散体,将pedot:pss水分散体采用旋涂等方法在基底上制备得到pedot:pss半导体薄膜。得到的pedot:pss半导体薄膜导电率高,薄膜结合力强,循环使用的稳定性高。

在其中一个实施例中,pedot:pss聚合物应用于制备有机电化学晶体管(oects)中的半导体薄膜。得到的有机电化学晶体管具有较大的初始源漏电流和良好的源漏电流调控性能。

以下为具体实施例。

实施例1

在3.1ml质量百分数为2wt.%的napss溶液(napss的质量为62.5mg)中加入25μl淡黄色油状的edot,随后滴加浓盐酸调节溶液的ph=1,得到混合液。将反应容器密封抽真空并通入氩气保护,在频率为40khz下超声处理条件下用注射器均速加入4mlfecl3和过硫酸钾的水溶液,其中fecl3和k2s2o8的浓度分别为12.9mmol/l和52.5mmol/l,继续超声5min。然后将反应容器转移到水浴温度为10℃的水浴锅中,在800rpm的转速下搅拌反应24h,将反应后的反应液抽滤得到固体,采用己烷洗涤除去未反应的edot,随后再用大量乙醇洗涤,再于50℃恒温干燥箱中干燥,得到深蓝色固体状的pedot:pss聚合物。

实施例2

在3.1ml质量百分数为2wt.%的napss溶液中加入62.5μl淡黄色油状的edot,随后滴加浓盐酸调节溶液的ph=2,得到混合液。将反应容器密封抽真空并通入氩气保护,在频率为30khz下超声处理条件下用注射器均速加入3.1mlfecl3和过硫酸钾的水溶液,其中fecl3和k2s2o8的浓度分别为12.9mmol/l和25.8mmol/l,继续超声8min。然后将反应容器转移到水浴温度为30℃的水浴锅中,在800rpm的转速下搅拌反应15h,抽滤得到固体,采用己烷洗涤除去未反应的edot,随后再用大量乙醇洗涤,再于60℃恒温干燥箱中干燥,得到深蓝色固体状的pedot:pss聚合物。

实施例3

在3.1ml质量百分数为2wt.%的napss溶液中加入31.2μl淡黄色油状的edot,随后滴加浓盐酸调节溶液的ph=3,得到混合液。将反应容器密封抽真空并通入氩气保护,在频率为20khz下超声处理条件下用注射器均速加入6.2mlfecl3和过硫酸钾的水溶液,其中fecl3和k2s2o8的浓度分别为12.9mmol/l和38.7mmol/l,继续超声10min。然后将反应容器转移到水浴温度为5℃的水浴锅中,在800rpm的转速下搅拌反应20h,抽滤得到固体,采用己烷洗涤除去未反应的edot,随后再用大量乙醇洗涤,再于55℃恒温干燥箱中干燥,得到深蓝色固体状的pedot:pss聚合物。

实施例4

在3.1ml质量百分数为1wt.%的napss溶液中加入6.4μl淡黄色油状的edot,随后滴加浓盐酸调节溶液的ph=1,得到混合液。将反应容器密封抽真空并通入氩气保护,在频率为30khz下超声处理条件下用注射器均速加入4.6mlfecl3和过硫酸钾的水溶液,其中fecl3和k2s2o8的浓度分别为12.9mmol/l和77.4mmol/l,继续超声3min。然后将反应容器转移到水浴温度为20℃的水浴锅中,在800rpm的转速下搅拌反应10h,抽滤得到固体,采用己烷洗涤除去未反应的edot,随后再用大量乙醇洗涤,再于50℃恒温干燥箱中干燥,得到深蓝色固体状的pedot:pss聚合物。

实施例5

在3.1ml质量百分数为5wt.%的napss溶液中加入78μl淡黄色油状的edot,随后滴加浓盐酸调节溶液的ph=2,得到混合液。将反应容器密封抽真空并通入氩气保护,在频率为20khz下超声处理条件下用注射器均速加入4mlfecl3和过硫酸钾的水溶液,其中fecl3和k2s2o8的浓度分别为12.9mmol/l和38.7mmol/l,继续超声5min。然后将反应容器转移到水浴温度为10℃的水浴锅中,在800rpm的转速下搅拌反应5h,抽滤得到固体,采用己烷洗涤除去未反应的edot,随后再用大量乙醇洗涤,再于55℃恒温干燥箱中干燥,得到深蓝色固体状的pedot:pss聚合物。

对比例1

对比例1与实施例1的制备方法基本相同,不同之处在于,对比例1中的步骤均没有采用超声处理。

对比例2~3

对比例2~3与实施例1的制备方法基本相同,不同之处在于,加入4mlfecl3和过硫酸钾的水溶液之后,继续超声的时间分别为15min和30min。

对比例4

对比例4为德国heraeus公司型号为cleviosph1000,规格为100ml分装的质量百分数为1.3%的pedot:pss水分散体产品。

性能测试(1)

将实施例1得到的pedot:pss聚合物与原料edot单体分别进行红外光谱分析,得到红外谱图如图1所示。其中横坐标为波数wavenumbers,单位为cm-1,纵坐标为透射率transmittance,单位为%。

从图1b中可知,970cm-1、842cm-1处附近峰是c-s的伸缩振动;1020cm-1附近的吸收峰对应着乙二氧基团c-o-c的伸缩振动的吸收峰;1206~1147cm-1和1054cm-1处的吸收峰归属于c-c的伸缩振动;1654cm-1处吸收峰是edot单体中噻吩环的c=c的不对称伸缩振动;2992~2874cm-1处较弱的吸收峰对应着乙二氧基团的ch2伸缩振动。图1b和图1a对比发现,原料edot单体中对应着edot噻吩环上c-h弯曲振动在893cm-1处的吸收峰,在产物pedot:pss聚合物中消失,因此说明pedot:pss合成成功。

性能测试(2)

将实施例1和对比例1~4的pedot:pss聚合物分别进行导电率测试。参照图2,该导电率测试的方法如下:取尺寸为50mm*50mm*1mm的pet基片1(聚酯基片),将实施例1和对比例1~4的pedot:pss聚合物配置成质量分数为1.3%的pedot:pss水分散体以及对比例4的pedot:pss水分散体,采用真空旋转涂膜仪旋涂得到厚度为100nm左右的pedot:pss薄膜2;氮气保护下加热使pedot:pss薄膜固化(t=130℃,15min);在薄膜的两侧沉淀相互间隔且平行设置的银浆触点3,模型如图2所示,其中a为银浆触点3的长度,b为两个银浆触点3之间的距离(即两个银浆触点3中心之间的距离),在本测试中a=2cm,b=1cm。使用fluck115c型数字万用表在干燥环境下测量两个银浆触点之间的电阻;将测得的电阻根据下述公式(1)计算得到各pedot:pss聚合物的电导率及其标准偏差值,如图3所示。其中纵坐标为导电率conductivity,单位为s·cm-1

且a=2cm,b=1cm

其中α表示电导率,r表示测得的电阻,d表示pedot:pss薄膜的厚度。ρ表示电阻率,rsq表示表面电阻,α表示银浆触点的长度,b表示两个银浆触点之间的距离。

由图3可知,实施例1得到的pedot:pss聚合物制得的薄膜,其导电率达到13s·cm-1,而对比例1~3得到的pedot:pss聚合物制得的薄膜,其导电率分别为2s·cm-1、0.5s·cm-1和0.3s·cm-1。实施例2~5得到的pedot:pss聚合物制得的薄膜,其导电率与实施例1相似。说明超声时间过长,反而会降低pedot:pss聚合物制得的薄膜的导电性。本发明得到的pedot:pss聚合物优于目前商用的德国heraeus公司cleviosph1000的pedot:pss水分散体产品。

性能测试(3)

将实施例1和对比例1~3得到的pedot:pss聚合物分别采用超声分散水中得到1.3wt.%的pedot:pss水分散体以及对比例4的pedot:pss水分散体,利用纳米电位系统测量其粒径分布情况,得到的粒径分布图如图4所示。

由图4可知,实施例1得到的pedot:pss聚合物其平均粒径大于对比例1~3,略小于对比例4的平均粒径,但其粒径分布较对比例4均匀,这也是其导电率较高的原因。

性能测试(4)

将实施例1和对比例1~3得到的pedot:pss聚合物分别采用超声分散水中得到1.3wt.%的pedot:pss水分散体以及对比例4的pedot:pss水分散体,利用旋转真空涂膜仪将pedot:pss水分散体涂覆到丝网印刷电极上,加热固化后得到oects器件。在ph=7.4的pbs溶液(磷酸二氢钾和十二水磷酸二氢钠的混合溶液)中,以饱和甘汞电极为门电极进行性能表征,得到oects典型的transfer曲线和output曲线,分别如图5和图6所示。

图5中源漏电极的极间距lds为0.12mm,横坐标代表栅极电压vg,单位为v;纵坐标为源漏电流ids,单位为ma。图5中初始电流的大小(即栅极电压vg为0时的电流)可以反映出所得oects的导电性,初始电流越大导电性越好,曲线的斜率可以反映出oects的电流调控性(即单位栅极电压变化导致的源漏电流变化越大调控性越好),曲线的连贯性也可反映器件的成膜性较好。从图5中可得知,实施例1得到的初始电流最大,达到0.27ma;对比例1~3得到的初始电流均小于对比例4。且实施例1得到的oects其电流调控性和成膜性均最好。

图6中横坐标是源漏间电压vds,单位为v;纵坐标是源漏电流ids,单位为ma,其给出了栅极电压vg为0v、0.2v和0.4v的output曲线。图6中output曲线任意画一条与横坐标垂直的直线可绘制出对应的transfer图。从图6可得知,实施例1得到的oects其电流调控性最好。

将制得的各oects器件续测试7天以进行oects器件的电流稳定性分析,得到的transfer曲线如图7所示。其中,源漏电极的极间距lds为0.12mm,横坐标代表栅极电压vg,单位为v;纵坐标为源漏电流ids,单位为ma。图7给出了第1天、第3天、第5天和第7天测得的transfer曲线。由图7可知,实施例1得到的pedot:pss聚合物制得的oects器件循环使用的稳定性最佳,其循环使用的稳定性显著优于对比例1~4,优于目前商用的德国heraeus公司cleviosph1000的pedot:pss水分散体产品。

以上性能测试均以实施例1为例,其他实施例2~5与实施例1的性能测试结果基本相似。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1