一种β‑石墨二炔纳米薄膜及其制备方法与应用与流程

文档序号:12397392阅读:417来源:国知局
一种β‑石墨二炔纳米薄膜及其制备方法与应用与流程

本发明属于材料领域,涉及一种β-石墨二炔纳米薄膜及其制备方法与应用。



背景技术:

二维高分子碳材料是目前材料科学最为活跃的研究领域之一。三维富勒烯,一维碳纳米管和二维石墨烯等纳米碳材料先后被科学家发现,这些材料均称为化学和材料的重点前沿研究领域。由于sp杂化形式所形成的碳碳三键具有线性结构无顺反异构体和高共轭等优点,人们一直渴望能够获得具有sp杂化态的碳的新同素异形体并认为该类碳材料具备优异的电学,光学和光电性能。并且将成为下一代新的电子和光电器件的关键材料。二维碳材料-石墨炔就是一类以sp和sp2为杂化形式形成的新型碳同素异形体材料。随着合成化学的飞速进展,科学家们提出了各种尝试合成该类碳的同素异形体的方法。尤其是关于石墨炔相关的单体和寡聚物,有大量相关工作被报道。(Haley,M.M.;Stephen C.Brand;Pak,J.J.AngewChemInt Edit 1997,835-838.,Diederich,F.;Rubin,Y.AngewChemInt Edit 1992,1101-1123.)

石墨炔作为一类石墨炔家族材料的统称,主要包括有α-、β-和γ-等石墨炔材料。直到2010年,γ-石墨二炔才被成功的合成出来,这是第一种被成功合成的石墨炔类材料。一系列研究展示了γ-石墨二炔特殊的电子结构在诸多领域的优越性质和性能,它是由1,3二炔键将苯环共轭连接形成的具有完美二维平面网络结构的全碳二维材料,具有新奇的碳碳化学键体系和空间堆积排列结构和良好的化学稳定性和以及潜在的有机电子学性能。

β-石墨二炔作为另外一种石墨炔类材料,在分子结构中包含处于乙烯基之间的1,3二炔键的连接,从而形成了一个包含广泛共轭结构和分子孔洞的二维平面的碳材料体系。不同于先前报道的γ-石墨二炔,β-石墨二炔是一种零带隙的碳材料同时具有金属型的电子学性质。而且相比较与其他碳材料,β-石墨二炔具有更大的六边形的分子孔洞。这些新奇的电子学性质和分子结构特征使得β-石墨二炔在选择性半透膜,分子筛,锂离子电池,储氢材料和有机电子学有着巨大的潜在应用。而这种新型的碳的同素异形体石墨炔类材料至今仍未被合成出来。



技术实现要素:

本发明的目的是提供一种β-石墨二炔纳米薄膜及其制备方法与应用。

本发明提供的β-石墨二炔薄膜,为由四炔基乙烯通过碳碳三键偶联形成的薄膜。

该β-石墨二炔薄膜的结构如图1所示。

上述β-石墨二炔薄膜中,其导电率为2.36×10-6-8.24×10-6S·m-1,具体可为3.47×10-6S·m-1

所述β-石墨二炔薄膜的厚度为15-75nm,具体可为25nm、45nm、53nm或70nm。

上述β-石墨二炔薄膜也可为按照如下方法制备而得的产物。

本发明提供的制备所述β-石墨二炔薄膜的方法,包括如下步骤:以铜箔或任意表面覆盖有铜箔的基底为反应基底,将四炔基乙烯与二胺类化合物于溶剂中进行偶联反应,反应完毕得到所述β-石墨二炔薄膜。

上述方法中,所述二胺类化合物为四甲基乙二胺(TMEDA);

所述任意表面覆盖有铜箔的基底为铜箔覆盖的ITO薄膜;

所述溶剂为由吡啶和丙酮组成的混合液;所述吡啶和丙酮的体积比为7-12:1,具体可为9:1。

所述四炔基乙烯与所述反应基底的质量比为1:190-210,具体可为1:204;

所述四炔基乙烯与所述二胺类化合物的质量比为1:130-195,具体可为1:166。

所述偶联反应步骤中,温度为30℃-50℃,具体可为35℃或45℃;时间为8-36小时,具体可为10小时或16小时。

该反应中,二胺类化合物与反应基底产生的铜离子可络合形成络合物,该络合物为该偶联反应的催化剂,也即Glaser-Hay催化剂。

所述偶联反应在惰性气氛中进行;该惰性气氛具体可为氩气气氛。

所述方法还包括如下步骤:在所述反应完毕后,将反应体系依次用N,N-二甲基甲酰胺、丙酮和乙二醇洗涤。

另外,上述本发明提供的β-石墨二炔薄膜在制备锂离子电极材料、电催化材料或有机电子学器件中的应用及含有该β-石墨二炔薄膜的锂离子电极材料、电催化材料或有机电子学器件,也属于本发明的保护范围。

本发明提供的β-石墨二炔纳米薄膜的方法,工艺和流程简便,能够在铜箔表面大规模制备厘米级尺寸的石墨炔纳米薄膜,其导电率可达3.47×10-6S·m-1,该纳米薄膜结构连续,在空气中可以稳定存在,是一种有着优异电子性能新型碳材料,在能源,催化,电子和材料等领域有着相关潜在应用。

附图说明

图1为β-石墨二炔的结构式。

图2为实施例1的反应装置图。

图3为实施例1所得β-石墨二炔纳米薄膜的扫描电镜图(SEM)。

图4为实施例1所得β-石墨二炔纳米薄膜的电镜照片;其中,(a)为透射电镜图(TEM);(b)为高分辨TEM;(c)为选取电子衍射(SAED)图。

图5为实施例1所得β-石墨二炔纳米薄膜的X射线光电子能谱。

图6为实施例1所得β-石墨二炔纳米薄膜的拉曼光谱图。

图7为实施例1所得β-石墨二炔纳米薄膜的红外光谱图。

图8为实施例1所得β-石墨二炔纳米薄膜的原子力显微镜(AFM)图。

图9为实施例1所得β-石墨二炔纳米薄膜的峰值力隧穿原子力显微镜(PFTuna AFM)的I-V曲线图。

图10为实施例1所得β-石墨二炔纳米薄膜的X-射线能量损失谱。

具体实施方式

下面通过具体实施例对本发明的方法进行说明,但本发明并不局限于此。

下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。

下述实施例中用于制备四炔基乙烯的反应物1,是按照下述文献提供的方法制得:Rubin Y,Knobler C B,Diederich F.Tetraethynylethene[J].AngewandteChemie International Edition,1991,30(6):698-700。

反应的化学反应式如下:

对所得β-石墨二炔薄膜进行SEM检测时,样品按照下述办法进行制备:先用N,N-二甲基甲酰胺,丙酮,乙二醇依次洗涤生长有β-石墨二炔薄膜的铜箔,晾干后用导电胶将铜箔粘在SEM样品台上进行测试。

TEM检测时,样品按照下述方法进行制备:用三氯化铁溶液将生长有β-石墨二炔薄膜的铜箔进行溶解,依次用去离子水,乙二醇,丙酮进行洗涤,最后使用乙醇进行超声分散,使用毛细管吸取悬浮液20微升,将样品缓慢滴在铜网上。

AFM检测时,样品按照下述方法进行制备:用三氯化铁溶液将生长有β-石墨二炔薄膜的铜箔进行溶解,依次用去离子水,乙二醇,丙酮进行洗涤,最后使用乙醇进行超声分散,然后将样品分散在硅片上,进行AFM测试。

电学性质测试时,使用峰值力隧穿原子力显微镜(PFTuna AFM)进行测试。样品按照下述方法进行制备:先用N,N-二甲基甲酰胺,丙酮,乙二醇依次洗涤生长有β-石墨二炔薄膜的铜箔,晾干后用导电胶将铜箔粘在样品台上。

实施例1、β-石墨二炔纳米薄膜的制备

1)制备四炔基乙烯:

在5℃时,向含有50.0毫克(0.121毫摩尔(mmol))化合物1的四氢呋喃(THF)溶液中加入0.50ml四丁基氟化铵(TBAF))(1摩尔/升的四氢呋喃溶液,0.4mmol),在氩气保护下搅拌反应15分钟。之后反应液用乙酸乙酯(30毫升)稀释,饱和食盐水洗涤三次,无水硫酸镁(5克)干燥,浓缩至干得四炔基乙烯(化合物2)9.3mg,62%)。

2)制备β-石墨二炔纳米薄膜:

如图2所示装置,用20ml丙酮溶解步骤1)所得四炔基乙烯(化合物2)9.3mg储存在注射泵中,该注射泵置于干冰冷阱中以保护化合物2,同时在氩气保护下慢慢滴加于盛有100ml由体积比为1:9的吡啶和丙酮组成的混合液的三口瓶中,滴加时间为10小时。以1.9g铜箔作为反应基底,加入1.54g四甲基乙二胺(TMEDA),于反应液温度为35℃进行偶联反应10小时,反应结束后在铜箔上生成一层黑色的膜,依次用N,N-二甲基甲酰胺,丙酮,乙二醇洗涤铜箔,此黑色膜即为本发明提供的β-石墨二炔薄膜。

化学反应方程式如下:

扫描电镜(SEM)测试结果(图3)表明,用该方法制备所得的β-石墨二炔薄膜连续均匀的分布在铜箔上,膜呈现良好的柔性。

图4中a为该石墨炔薄膜的透射电镜图(TEM);b为该石墨炔薄膜的高分辨TEM,c为该石墨炔薄膜的选取电子衍射(SAED)图。透射电镜(TEM)测试可以看出,该石墨炔薄膜是层间距为0.36nm是典型的纳米碳材料的层间距,选取电子衍射图表明石墨炔含有周期性的微观结构。

图5所示X射线光电子能谱(XPS)表明石墨炔薄膜仅由碳元素组成,且碳为sp2和sp杂化。

拉曼光谱(图6)显示出四个吸收峰,分別为1460.1cm-1,1577.1cm-1,1902.8cm-1,和2173.1cm-1。1460.1cm-1可以归属为碳碳双键的振动峰,1577.1cm-1由芳香环所有sp2原子对的伸缩振动(E2g模式)产生,1382.2cm-1由芳香环中sp2原子呼吸振动模式产生,1902.8cm-1和2173.1cm-1由共轭二炔的伸缩振动产生。

红外光谱(图7)显示出四个吸收峰,分别为1060cm-1、1475cm-1,1587cm-1、1932cm-1、2191cm-1,其中1060cm-1可以归因为碳氧键的伸缩振动峰,1475cm-1可以归属为碳碳双键的振动峰,1587cm-1由芳香环所有sp2的原子产生,1902.8cm-1和2173.1cm-1由共轭二炔的伸缩振动产生。

原子力显微镜(AFM)(图8)的测试结果表明,分散的在硅片基底上石墨炔薄膜厚度均匀,为25nm左右。

石墨炔薄膜的I-V曲线图(图9)表明石墨炔薄膜的I-V曲线为直线,遵循欧姆特性,电导率为3.47×10-6S·m-1,展现出良好的电学特性。

图10所示X-射线能量损失谱(EDS)是在15千伏(kV)加速电压下,电子束轰击样品表面而得,表明该石墨炔薄膜仅由碳元素组成。

利用开尔文探针力显微镜(KPFM)测试石墨炔薄膜的功函,显示石墨炔的功函为5.22eV。

实施例2、β-石墨二炔纳米薄膜的制备

1)制备四炔基乙烯:

同实施例1步骤1);

2)制备β-石墨二炔纳米薄膜:

用20ml丙酮溶解化合物2储存在注射泵中,该注射泵置于干冰冷阱中以保护化合物2,同时在氩气保护下慢慢滴加于盛有100ml由体积比为1:9的吡啶和丙酮组成的混合液的三口瓶中,滴加时间为10小时。以1.9g铜箔作为反应基底,加入1.54g四甲基乙二胺(TMEDA),,于反应液温度为45℃进行偶联反应10小时,反应结束后在铜箔上生成一层黑色的膜,依次用N,N-二甲基甲酰胺,丙酮,乙二醇洗涤铜箔,此黑色膜即为本发明提供的β-石墨二炔薄膜,厚度为45nm。

由SEM观察此条件下得到石墨炔薄膜较为平整和连续,但是拉曼光谱表明碳碳三键的伸缩振动峰较为不尖锐。

实施例3、β-石墨二炔纳米薄膜的制备

1)制备四炔基乙烯:

同实施例1步骤1);

2)制备β-石墨二炔纳米薄膜:

用20ml丙酮溶解化合物2储存在注射泵中,该注射泵置于干冰冷阱中以保护化合物2,同时在氩气保护下慢慢滴加于盛有100ml由体积比为1:9的吡啶和丙酮组成的混合液的三口瓶中,滴加时间为16小时。以1.9g铜箔作为反应基底,加入1.54g四甲基乙二胺(TMEDA),于反应液温度为45℃进行偶联反应16小时,反应结束后在铜箔上生成一层黑色的膜,依次用N,N-二甲基甲酰胺,丙酮,乙二醇洗涤铜箔,此黑色膜即为本发明提供的β-石墨二炔薄膜,厚度为70nm。

此条件下得到石墨炔薄膜的拉曼光谱表明碳碳三键的伸缩振动峰较为尖锐,是偶联反应高效率发生的特征,但是SEM下观察薄膜表面有较多杂质颗粒。

实施例4、β-石墨二炔纳米薄膜的制备

1)制备四炔基乙烯:

同实施例1步骤1);

2)制备β-石墨二炔纳米薄膜:

用20ml丙酮溶解化合物2储存在注射泵中,该注射泵置于干冰冷阱中以保护化合物2,同时在氩气保护下慢慢滴加于盛有100ml由体积比为1:9的吡啶和丙酮组成的混合液的三口瓶中,滴加时间为16小时。以1.9g覆盖有铜箔的ITO薄膜作为反应基底,加入1.54g四甲基乙二胺(TMEDA),于反应液温度为45℃进行偶联反应16小时,反应结束后即在ITO薄膜上生成一层黑色的膜,依次用N,N-二甲基甲酰胺,丙酮,乙二醇洗涤铜箔,此黑色膜即为本发明提供的β-石墨二炔薄膜,53nm。

此条件下得到石墨炔薄膜拉曼光谱表明碳碳三键的伸缩振动峰较为尖锐,是偶联反应高效率发生的特征,在SEM下观察薄膜表面件下得到石墨炔薄膜较为平整和连续。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1