一种制备超临界低气味、低散发聚丙烯材料的方法与流程

文档序号:11455226阅读:247来源:国知局
本发明涉一种环保材料,具体涉及一种制备超临界低气味低散发材料的方法。
背景技术
:随着中国成为世界第一大汽车产销市场,驾乘人员的环保意识逐渐增强,汽车车内空气污染越来越受到大家的关注。出于对驾乘人员安全的考虑,我国出台了相应车内空气质量管控标准(gb/t27630)。汽车内饰材料作为汽车车内空气污染主要来源之一,它们散发出的苯、甲醛、二甲苯等有毒气体,对人体肝、肾、呼吸系统、造血器官、免疫功能等会造成严重危害。在选材方面,汽车主机厂已经注重选择使用或替换成环保内饰材料,如何开发低气味、低voc汽车内饰材料,已经成为材料行业亟待解决的重大问题。目前制备低气味、低voc汽车内饰环保材料的传统工艺方法有:1)添加无机多孔吸附剂方法,利用无机颗粒的多孔结构吸附一些低分子挥发物,但其吸附/解吸平衡受外界条件影响大,很难长效地降低材料的气味和voc含量;2)多阶真空、烘料等强化脱挥方法,通过后处理工艺,在一定程度上也可改善气味和降低voc含量,但存在稳定性差、工艺路线复杂、能耗大、成本高、效率低等缺点。通过这些传统工艺方法制备的汽车内饰材料,无法满足汽车新型环保材料的需求。专利200510026760.0提到气味为树脂原材料、稳定剂、矿物填料以及加工裂解产生的,气味解决方法是加入纳米氧化锌和纳米二氧化钛。专利cn101817953b添加了气味吸附剂制备了一种低散发的改性聚丙烯复合材料,气味吸附剂包括:粘土,膨润土,多孔二氧化硅,活性氧化铝或分子筛。但这些方法对聚丙烯材料的气味问题虽有一定改善,但很难长效解决气味问题。因此开发一种能够彻底解决聚丙烯材料气味及散发问题显得尤为重要。超临界流体(supercriticalfluid即scf)既具有液体对溶质较高的溶解度,又具有气体易于扩散和运动的特点。更重要的是,scf的密度接近液体,粘度仅是气体的几倍,远小于液体;而扩散系数比液体大100倍左右,因而更有利于传质。此外,scf具有非常低的表面张力,较易透过介质材料。目前研究较多的流体有co2、水、n2等,相对而言,co2的临界条件更容易实现(临界温度为31.06℃、临界压力为7.39mpa),并且co2的化学性质不活泼,无毒、无味、价廉易得、可循环使用、绿色环保。在专利号为“200610156591”的专利中介绍了一种超临界二氧化碳通入进双螺杆挤出机中,可以降低高粘度聚合物的熔融粘度,充分进行塑化,可实现高粘度聚合物的连续挤出成型。因此,本发明中采用超临界二氧化碳(scf-co2)作为萃取介质,scf-co2的扩散系数比一般有机溶剂要大1~2个数量级,压力达到一定数值时,scf-co2的粘度比一般的有机溶剂要低一个数量级,并且其表面张力极低,使得scf-co2具备优异的渗透性。在共混挤出改性过程中以scf-co2流体作为一种全新的载体,运用其强大的渗透和溶解能力萃取树脂熔体中挥发性的voc小分挤出末端抽真空,强力除去熔融材料中超临界流体、水分子、以及两者萃取的小分子挥发物。通过超临界萃取技术,能彻底除去树脂材料中的低分子挥发物,最后得到汽车内饰用低气味、低散发的新型环保材料。技术实现要素:为克服现有技术的不足,本发明的目的从配方设计和加工工艺设计两个方面同时入手,提供一种制备超临界低气味、低散发材料的方法。一种制备超临界低气味、低散发聚丙烯材料的方法将聚丙烯材料经混合后加入设有抽真空的双螺杆挤出机中,所述双螺杆挤出机的中部导入超临界二氧化碳,使超临界二氧化碳与聚丙烯材料在密闭、高压的螺筒中混熔、挤出,而制得超临界低气味、低散发聚丙烯材料。进一步方案,所述双螺杆挤出机包括并排设在螺筒内部的双螺杆,螺筒内部依次设有十个控温区,位于第一控温区和第三控温区之间、第七控温区和第十控温区之间的双螺杆的表面均设置有大导程单线螺纹;位于第三控温区和第五控温区之间、第六控温区和第七控温区之间的双螺杆的表面均设置有小导程单线螺纹;位于第四控温区和第五控温区之间的双螺杆的表面设置有反向小导程单线螺纹;位于第五控温区和第六控温区之间的双螺杆的表面设置有密炼转子。进一步方案,所述双螺杆挤出机的喂料口设有料斗和驱动电机,所述第七控温区的注气口与贮存超临界二氧化碳的存储器连接,所述第九控温区的出气口与真空泵连接。进一步方案,所述存储器依次通过计量输送器、流量控制阀与第七控温区的注气口连接。进一步方案,所述大导程单线螺纹的导程为3-5mm,小导程单线螺纹的导程为1-2mm。进一步方案,所述双螺杆挤出机的十个控温区从第一控温区至第十控温区的温度依次为180-190℃、185-195℃、200-210℃、200-210℃、220-230℃、220-230℃、210-220℃、210-220℃、210-220℃、210-220℃;所述双螺杆转速为400-600r/min。进一步方案,所述聚丙烯材料是以下组分按重量份组成:进一步方案,所述的pp树脂为共聚聚丙烯、均聚聚丙烯中的至少一种;所述的增韧剂为乙烯-辛烯共聚物、三元乙丙橡胶/丙烯-α烯烃共聚物、丙烯-α烯烃共聚物、苯乙烯-乙烯-丙烯-苯乙烯嵌段共聚物中的至少一种;所述的填充剂滑石粉、碳酸钙、硫酸钡、硅灰石、云母中的至少一种;所述的抗氧剂为受阻酚类、硫代酯类、亚磷酸酯类热稳定剂中的至少一种,具体的如:受阻酚类为四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(抗氧剂1010),硫代酯类为硫代二丙酸二硬脂醇酯(抗氧剂dstp),亚磷酸酯类为亚磷酸三(2,4-二叔丁基苯基)酯(抗氧剂168);所述光稳定剂为受阻胺类光稳定剂,如氰特公司cyasorbuv-3808pp5、cyasorbuv-v680中的一种。本发明采用螺纹组成不同的的双螺杆挤出机,在螺杆上游位于第一控温区和第三控温区之间、第七控温区和第十控温区之间的双螺杆的表面均设置有大导程单线螺纹;保证混合物料在螺杆上游段熔融、输送正常。在位于第三控温区和第五控温区之间、第六控温区和第七控温区之间的双螺杆的表面均设置有小导程单线螺纹;位于第四控温区和第五控温区之间的双螺杆的表面设置有反向小导程单线螺纹;位于第五控温区和第六控温区之间的双螺杆的表面设置有密炼转子。目的是使得物料被压缩,充填满整个料筒,封堵进入料筒中的scf-co2,避免其从喂料口逸出;当物料输送到中游段螺杆处的密炼转子,这样物料被进一步的揉炼、搅拌,这种捏合块之间的缝隙非常小,能促使物料熔体与scf-co2接触非常充分,同时物料熔体中的挥发性小分子溶于scf-co2中,这样挥发性小分子被二氧化碳流体从高粘度的熔体中带出;当物料输送到下游段时,第七控温区和第十控温区之间的双螺杆的表面均设置有大导程单线螺纹,料筒的空隙增大,压力迅速降低,超临界二氧化碳转化成二氧化碳气体,再通过下游段真空设备将含有挥发性小分子物质的二氧化碳气体强力抽出,最终得到低气味、低散发的聚丙烯材料。本发明采用scf-co2萃取方法,在物料处于熔融状态下,可以将小分子挥发物萃取,然后真空抽出,材料的气味等级从4.5级降到3.5级(大众气味标准pv3900),总碳可降低90%以上,同时这种方法对材料的性能(拉伸强度、冲击强度、弯曲强度、断裂伸长率等)基本没有影响。该方法制备的低气味、低散发的聚丙烯材料,可以用于仪表板、门板和立柱等汽车内饰件,这种新型环保材料不仅能降低或消除材料产生的刺鼻气味,而且减少或消除有害物质对车内人员的身体伤害。附图说明:图1是本发明双螺杆挤出机的结构示意图。具体实施方式为更好理解本发明,下面结合实施例对本发明作进一步描述,但本发明的实施方式不限于此。实施例1一种制备超临界低气味、低散发聚丙烯材料的方法将聚丙烯材料经混合后加入设有抽真空的双螺杆挤出机中,所述双螺杆挤出机的中部导入超临界二氧化碳,使超临界二氧化碳与聚丙烯材料在密闭、高压的螺筒中混熔、挤出,而制得超临界低气味、低散发聚丙烯材料。如图1所示,双螺杆挤出机1包括并排设在螺筒内部的双螺杆1.11,螺筒内部依次设有十个控温区,位于第一控温区1.1第二控温区1.2、和第三控温区1.3之间、第七控温区1.7、第八控温区1.8、第九控温区1.9和第十控温区1.10之间的双螺杆1.11的表面均设置有大导程单线螺纹1.15;位于第三控温区1.3和第五控温区1.5之间、第六控温区1.6和第七控温区1.7之间的双螺杆1.11的表面均设置有小导程单线螺纹1.14;位于第四控温区1.4和第五控温区1.5之间的双螺杆1.11的表面设置有反向小导程单线螺纹1.13;位于第五控温区1.5和第六控温区1.6之间的双螺杆1.11的表面设置有密炼转子1.12。进一步方案,所述双螺杆挤出机1的喂料口设有料斗2和驱动电机3,所述第七控温区1.7的注气口与贮存超临界二氧化碳的存储器6连接,所述第九控温区1.9的出气口与真空泵7连接。进一步方案,所述存储器6依次通过计量输送器5、流量控制阀4与第七控温区1.7的注气口连接。进一步方案,所述大导程单线螺纹的导程为3-5mm,小导程单线螺纹的导程为1-2mm。进一步方案,所述双螺杆挤出机1的十个控温区从第一控温区至第十控温区的温度依次为180-190℃、185-195℃、200-210℃、200-210℃、220-230℃、220-230℃、210-220℃、210-220℃、210-220℃、210-220℃;所述双螺杆1.11转速为400-600r/min。进一步方案,所述聚丙烯材料是以下组分按重量份组成:进一步方案,所述的pp树脂为共聚聚丙烯、均聚聚丙烯中的至少一种;所述的增韧剂为乙烯-辛烯共聚物、三元乙丙橡胶/丙烯-α烯烃共聚物、丙烯-α烯烃共聚物、苯乙烯-乙烯-丙烯-苯乙烯嵌段共聚物中的至少一种;所述的填充剂滑石粉、碳酸钙、硫酸钡、硅灰石、云母中的至少一种;所述的抗氧剂为受阻酚类、硫代酯类、亚磷酸酯类热稳定剂中的至少一种,受阻酚类为四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(抗氧剂1010),硫代酯类为硫代二丙酸二硬脂醇酯(抗氧剂dstp),亚磷酸酯类为亚磷酸三(2,4-二叔丁基苯基)酯(抗氧剂168);所述光稳定剂为受阻胺类光稳定剂,如氰特公司cyasorbuv-3808pp5、cyasorbuv-v680中的一种。实施例2:同实施例1的制备工艺和双螺杆挤出机制备实施例2,即将pp树脂75份、填充剂25份、增韧剂5份、抗氧剂0.5份、光稳定剂0.4份混合后加入设有抽真空的双螺杆挤出机中,在双螺杆挤出机的中部导入超临界二氧化碳,同时抽真空,使超临界二氧化碳与聚丙烯材料在密闭、高压的螺筒中混熔、挤出,而制得超临界低气味、低散发聚丙烯材料。其中,所用的聚丙烯为均聚和共聚的混合物重量比例在1:4,弹性体为乙烯-丁烯共聚物,光稳定剂为受阻胺类,填充剂为滑石粉类,在制备过程中,通入超临界二氧化碳流体,设置流量为10m3/h。实施例3:制备方法和材料同实施例2,不同的是在制备过程中,通入超临界二氧化碳流体流量为20m3/h。实施例4:制备方法和材料同实施例2,不同的是在制备过程中,通入超临界二氧化碳流体流量为30m3/h。对比例1:制备方法和材料同实施例2,不同的是在制备过程中不通入超临界二氧化碳流体。将上述实施例2-4和对比例1制备的材料进行注塑成型,制备测试样条,测试结果如表1所示,其中:1)拉伸强度:按照iso527测试,实验速度50mm/min;2)弯曲强度和模量:按照iso178测试,实验速度2mm/min;3)悬臂梁缺口冲击强度:按照iso180测试;4)气味测试:按照pv3900测试;5)总碳测试:按照gmw15634测试。表1测试结果物理性能实施例2实施例3实施例4对比例1拉伸强度(mpa)18181718弯曲强度(mpa)22232221弯曲模量(mpa)1975195018001803悬臂梁缺口冲击强度(kj/m2)20211919气味等级3.83.53.54.5总碳(μgc/g)451514230由表1中实施例2-4以及对比例1的测试结果可以看出:(1)与对比例1测试性能比较,实施例2-4中通入超临界二氧化碳,材料的气味有明显改善,总碳下降也很明显;(2)研究发现通入20m3/h、30m3/h流量的超临界二氧化碳对材料的气味及散发性改善最明显,从制造成本角度考虑,最优流量应采用20m3/h;(3)通入超临界二氧化碳基本不会影响材料的力学性能,可满足汽车内饰件中仪表板、门板和立柱对聚丙烯复合材料的物性要求。上述的对实施例的描述是为便于该
技术领域
的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1