一种具备微相结构的反应型乳胶膜的制备方法与流程

文档序号:12856660阅读:288来源:国知局
一种具备微相结构的反应型乳胶膜的制备方法与流程

(一)技术领域

本发明涉及水性涂料、水性油墨及水性粘合剂领域,具体涉及一种具备微相结构的反应型乳胶膜的制备方法。

(二)技术背景

水性乳液粘合剂现已较为广泛的应用于涂料、油墨等领域。其体系具有低有机挥发物含量的特点,且运输、贮存更为安全,同时也符合政策所倡导的环保要求,正在逐步替代相关溶剂型产品。

聚合物乳液作为涂料、油墨的连接相,其干燥后胶膜的力学性能直接影响产品对基材的粘结效果。而提升力学性能的关键在于对胶膜微相结构的设计及改善胶膜对基材的“后反应”能力。

相比于最初采用将“软”、“硬”乳胶粒进行物理共混的方法,制备结构型胶膜对性能的提升则更为明显。因结构型胶乳中,乳胶粒由若干性能互补的聚合物链分相形成,是综合性能相对较好的成膜体系。其中,“核-壳”胶乳是一种典型的结构型胶乳,其乳胶粒中心的聚合物链(段)被另一种溶解性、折光率以及强力等性质不同的聚合物链(段)包覆,可用于控制涂层的微相结构。然而,传统“核-壳”胶乳中,乳胶粒多由两种链化学结构相异的聚合物共混形成,在常温下,可有限程度控制涂层的相分离与相结构。然而,在实际应用中,链化学结构相异且热力学互不相容的聚合物链间因缺少共价键连接,易发生宏观相分离,造成涂层相结构失控,阻断聚合物分子层面的性能向宏观涂层材料功(性)能上的传递,涂层往往无法获得预期的高性能以及功能化。

相比之下,嵌段结构的共聚物分子中,几种热力学不相容的链段通过共价键连接,这种链接作用决定了不同种类的聚合物链仅会发生微相分离,且在不同条件下会表现出微相各异的结构,为制备宏观力学性能优异的胶乳膜提供了新的路径。

申请公布号为cn103044697a的中国发明专利提供了一种类似的制备方法。具体方法为:将非对称的两亲大分子三硫代碳酸酯化合物、去离子水和软质单体进行搅拌乳化,于确定温度下加入引发剂进行第一步聚合;待单体转化率达到要求后,再加入硬质单体进行第二步反应,结束后即得终乳液。这种方法制备的乳胶粒微相结构仅为“核-壳”结构,致使相应乳胶膜微相结构的多样性较为单一,从而限制了胶膜宏观力学性能。

故需探究新的胶膜制备思路。

(三)

技术实现要素:

本发明提供了一种具备微相结构的反应型乳胶膜的制备方法。采用具有对称结构的三硫代碳酸酯试剂,并通过乳液聚合的方法,分步加入“软”、“硬”质单体。待聚合完毕后,乳液在适宜条件下干燥,即得目标乳胶膜。

本发明的技术方案如下:

一种具备微相结构的反应型乳胶膜的制备方法,所述的制备方法为:

(1)将对称两亲大分子三硫代碳酸酯化合物、去离子水混合溶解,再加入软质单体搅拌乳化20~30min,得到乳化液;在惰性气体保护下,将所得乳化液升温至70~75℃,加入引发剂进行聚合反应1~2h,然后加入硬质单体,并升温至80~90℃继续进行聚合反应5~7h,之后降至室温(20~30℃),出料,得到聚合终乳液;

(2)将步骤(1)所得聚合物终乳液倒入模具(材质为聚四氟乙烯)中,在温度20~35℃、相对湿度45%~75%rh的条件下静置,待固体重量百分比达到80%~90%时(一般通过定时称重加以判断:模具和初始乳液的质量可提前分别测得,静置过程中根据体系质量减少量来进行判断,属常规技术),再于120~150℃下进行焙烘处理1~2.5h,即得所述具备微相结构的反应型乳胶膜。

本发明步骤(1)中,所述惰性气体为高纯氮气或高纯氩气。

所述对称两亲大分子三硫代碳酸酯化合物、去离子水、软质单体、硬质单体的质量比为1:50~250:10~50:5~30,优选1:55~85:10~15:5~10。

所述引发剂与对称两亲大分子三硫代碳酸酯化合物的物质的量之比为1:4~10,优选1:5~8;所述引发剂为过硫酸钾或过硫酸铵,将引发剂配制成1.5~2.0wt%的水溶液形式进行投料。

所述对称两亲大分子三硫代碳酸酯化合物的结构如式(1)所示:

其中,x=3~5,y=20~60,且x、y均为整数;

链节的结构如式(2)、(3)或(4)所示:

链节的结构如式(5)或(6)所示:

所述对称两亲大分子三硫代碳酸酯化合物的制备方法可参照专利号为201110228461.0,201210203417.9及201210204499.9的中国发明专利。

所述软质单体的结构如式(7)、(8)或(9)所示,软质单体形成的聚合物玻璃化温度一般均在-30℃以下,常温下具有较好的黏流性及成膜能力。

所述硬质单体为式(10)或(11)所示结构的化合物中的一种或两者的混合物,所述混合物中化合物(10)的质量百分数为75%~95%,化合物(11)为5%~25%;该类单体聚合形成的高聚物玻璃化温度一般在100℃以上,常温下呈玻璃态,为胶膜提供刚性。

本发明的有益效果在于:采用结构对称且含反应性基团的三硫代碳酸酯化合物进行聚合反应,该化合物同时具备亲水亲油链段(两亲结构),在乳液聚合前期可聚集形成大量胶束,提供反应场所。根据“可逆加成-断裂链转移”(raft)聚合机理,当第一步先加入“软质”单体后,随着聚合反应的进行,“活性中心”逐步向乳胶粒内部迁移,故第二步加入的“硬质”单体更倾向于在胶粒内部聚合。由于本发明方法选用了对称结构的三硫代碳酸酯,其通过两步分段加料即可形成三嵌段共聚物,与现有技术相比,明显缩短反应时间,大大节约生产成本。其次,还可通过调整软、硬单体的使用比例及类别,精确设计出具备不同微相结构的乳胶粒,从而可使相应胶膜的微相形态更加丰富。而前文所题申请公布号为cn103044697a的中国发明专利仅适合制备“核-壳”结构乳胶粒,故相应胶膜相形态结构类型受限明显。

(四)附图说明

图1:本发明实施例1中转化率-时间关系曲线图(a为第一步反应关系曲线图,b为第二步反应关系曲线图);

图2:本发明实施例1中终乳液透射电子显微镜(tem)照片;

图3:本发明实施例1中钟乳液体系粒径尺寸及其分布曲线图;

图4:本发明实施例2中转化率-时间关系曲线图(a为第一步反应关系曲线图,b为第二步反应关系曲线);

图5:本发明实施例2中终乳液透射电子显微镜(tem)照片;

图6:本发明实施例2中钟乳液体系粒径尺寸及其分布曲线图;

图7:本发明实施例3中转化率-时间关系曲线图(a为第一步反应关系曲线图,b为第二步反应关系曲线图);

图8:本发明实施例3中终乳液透射电子显微镜(tem)照片;

图9:本发明实施例3中钟乳液体系粒径尺寸及其分布曲线图;

图10:实施例4中所述乳胶膜的微相结构透射电子显微镜(tem)照片;

图11:实施例5中所述乳胶膜的微相结构透射电子显微镜(tem)照片;

图12:实施例6中所述乳胶膜的微相结构透射电子显微镜(tem)照片;

(五)具体实施方式

下面通过具体实施例对本发明作进一步的说明,但本发明的保护范围并不仅限于此。

实施例1

制备并选用如式1所示的对称结构的三硫代碳酸酯化合物,其中a为式2所示,b为6所示,x=3,y=30。将5.258克三硫代碳酸酯与297克去离子水于烧杯中充分混合溶解,再加入70克软质单体丙烯酸正丁酯搅拌乳化。乳化过程约进行25分钟,之后将乳化液移入带冷凝管、搅拌桨、通氮气用直接管塞和取样口的四口烧瓶中。并将反应设备置入70℃的恒温水浴中,同时,通入氮气除氧约30分钟。而后加入溶有0.054克过硫酸钾的水溶液3克,此时为第一步聚合反应开始时间,引发聚合过程中定时取样,测定转化率。待反应时间达1.5h时,将硬质单体30克苯乙烯滴加至聚合的四口烧瓶中进行第二步反应,并将水浴温度升至85℃,反应5h后,聚合结束。期间定时取样,测第二段反应转化率。待水浴温度降至30℃时,出料即得所需乳液。聚合反应过程中转化率-时间关系曲线如图1所示。经锇酸染色的终乳液乳胶粒tem照片如图2所示。乳液体系粒径尺寸及分布曲线如图3所示。

实施例2

制备并选用如式1所示的对称结构的三硫代碳酸酯化合物,其中a为式3所示,b为6所示,x=5,y=20。将4.684克三硫代碳酸酯与347克去离子水于烧杯中充分混合溶解,再加入60克软质单体丙烯酸丙酯搅拌乳化。乳化过程约进行20分钟,之后将乳化液移入带冷凝管、搅拌桨、通氮气用直接管塞和取样口的四口烧瓶中。并将反应设备置入75℃的恒温水浴中,同时,通入氮气除氧约30分钟。而后加入溶有0.046克过硫酸铵的水溶液3克,此时为第一步聚合反应开始时间,引发聚合过程中定时取样,测定转化率。待反应时间达2h时,将硬质单体苯乙烯和甲基丙烯酸甲酯的混合物40克(苯乙烯与甲基丙烯酸甲酯的质量比为9:1)滴加至聚合的四口烧瓶中进行第二步反应,并将水浴温度升至90℃,反应6h后,聚合结束。期间定时取样,测第二段反应转化率。待水浴温度降至20℃时,出料即得所需乳液。聚合反应过程中转化率-时间关系曲线如图4所示。经锇酸染色的终乳液乳胶粒tem照片如图5所示。乳液体系粒径尺寸及分布曲线如图6所示。

实施例3

制备并选用如式1所示的对称结构的三硫代碳酸酯化合物,其中a为式4所示,b为5所示,x=4,y=40。将4.926克三硫代碳酸酯与397克去离子水于烧杯中充分混合溶解,再加入70克软质单体丙烯酸乙酯搅拌乳化。乳化过程约进行30分钟,之后将乳化液移入带冷凝管、搅拌桨、通氮气用直接管塞和取样口的四口烧瓶中。并将反应设备置入75℃的恒温水浴中,同时,通入氮气除氧约25分钟。而后加入溶有0.046克过硫酸铵的水溶液3克,此时为第一步聚合反应开始时间,引发聚合过程中定时取样,测定转化率。待反应时间达1h时,将30克硬质单体苯乙烯滴加至聚合的四口烧瓶中进行第二步反应,并将水浴温度升至80℃,反应7h后,聚合结束。期间定时取样,测第二段反应转化率。待水浴温度降至25℃时,出料即得所需乳液。聚合反应过程中转化率-时间关系曲线如图7所示。经锇酸染色的终乳液乳胶粒tem照片如图8所示。乳液体系粒径尺寸及分布曲线如图9所示。

实施例4

取实施例1制得的乳液15g,将其置于有效尺寸为半径5厘米,深度2毫米的聚四氟乙烯模具中。在温度为25℃,湿度为45%rh条件下静置成膜。该过程中,定时测量模具与乳液质量,待乳液固含量达80%时,将其移入120℃烘箱中焙烘2.5h。而后将胶膜取出并在室温下自然冷却,随后冷冻切片,以透射电子显微镜进行观测,表征相形态。结果如图10所示,可清晰观测到有明显的微相结构。

实施例5

取实施例2制得的乳液25g,将其置于有效尺寸为半径7.5厘米,深度2毫米的聚四氟乙烯模具中。在温度为20℃,湿度为65%rh条件下静置成膜。该过程中,定时测量模具与乳液质量,待乳液固含量达85%时,将其移入135℃烘箱中焙烘1.5h。而后将胶膜取出并在室温下自然冷却,随后冷冻切片,以透射电子显微镜进行观测,表征相形态。结果如图11所示,可清晰观测到有明显的微相结构。

实施例6

取实施例3制得的乳液30g,将其置于有效尺寸为半径7.5厘米,深度2毫米的聚四氟乙烯模具中。在温度为35℃,湿度为75%rh条件下静置成膜。该过程中,定时测量模具与乳液质量,待乳液固含量达90%时,将其移入150℃烘箱中焙烘1h。而后将胶膜取出并在室温下自然冷却,随后冷冻切片,以透射电子显微镜进行观测,表征相形态。结果如图12所示,可清晰观测到有明显的微相结构。

对比例

申请公布号为cn103044697a的中国发明专利提供了一种类似的制备方法。选其实施例中的一种作为对比,其所提供的具体方法为:“取该含环氧基团的三硫代碳酸酯化合物0.97克,溶解于200克水中,将溶液移入装有回流冷凝管、氮气入口、搅拌桨以及取样口的250ml四口瓶中,向四口瓶中加入式1结构的丙烯酸丁酯单体(软单体)30克。将装置浸入70℃水浴中,通氮气除氧0.5小时后,加入溶有0.02克过硫酸钾的水溶液1.0克,引发聚合反应(即第一步聚合反应)。反应过程中间取样,引发聚合反应1小时后向反应器中滴入7.5克式4结构的苯乙烯单体(硬单体),在80℃反应(第二步聚合反应)6小时后,反应结束,降温至25℃出料,得到含表面富集环氧基团的聚丙烯酸正丁酯-b-聚苯乙烯两嵌段共聚物微球的乳状分散液(即聚合物乳液)。”

由于对比专利选取的含环氧基团的三硫代碳酸酯为非对称结构,故以此制备的乳胶粒微相结构仅能为“核-壳”结构,致使相应乳胶膜微相结构的多样性较为单一,从而限制了胶膜宏观力学性能。而本发明所提供的技术,使得初始乳胶粒的微相结构更加多样(可参见附图),从而乳胶膜相态结构更为丰富。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1