环状氮杂环卡宾银配合物及其制备方法与应用与流程

文档序号:14647752发布日期:2018-06-08 21:15阅读:297来源:国知局
环状氮杂环卡宾银配合物及其制备方法与应用与流程

本发明是在国家自然科学基金(基金号:21572159)和天津市自然科学基金(基金号:11JCZDJC22000)的资助下进行的。

技术领域

本发明属于有机化学技术领域,涉及通过芴、正溴丙烷、多聚甲醛、和溴化钾作为原料的环状氮杂环卡宾银配合物,更具体的说是环状氮杂环卡宾银配合物的制备方法及其在荧光识别性能的研究。



背景技术:

近十几年来,N-杂环卡宾逐渐成为金属有机化学的研究热点。N-杂环卡宾与金属间的配位方式与有机膦配体虽然十分相似,但是卡宾与金属的配合物对水,热和空气的良好稳定性是膦配体金属配合物所无法比拟的。N-杂环卡宾金属配合物被广泛应用于各种催化反应,例如烯烃复分解、共轭加成、芳胺化、氢化反应等。N-杂环卡宾的金属配合物用作有机反应底物和催化剂越来越受到研究者的关注。N-杂环卡宾配体在与金属配合时可以形成钳形,三角钳形,大环形以及槽状等多种结构。通常,在进行预先的实验设计路线过程中,最常见的就是通过引入不同的桥链,通过改变桥链,可以改变原先的固有特性,使其发挥自身更多优势。随着研究的深入和研究范围的拓展,这些特殊的结构作为主体可以通过多种作用力与客体结合,因此N-杂化卡宾金属配合物在荧光分子探针领域具有良好的发展前景。环状氮杂环卡宾银配合物具有较为固定的结构、制备简洁、荧光感光效果明显的优点,可以用来制作荧光探针的主体化合物。



技术实现要素:

本发明公开了具有下述结构的氮杂环卡宾金属配合物:

(1)

本发明公开的环状氮杂环卡宾银配合物制备方法,其特征在于按如下的步骤进行:

(1)在有机溶剂中以芴与正溴丙烷反应,得到的9,9-二丙基芴,再与多聚甲醛、溴化钾和浓硫酸得到产物(Y)。将(Y)与N-吡啶甲基苯并咪唑反应,再与六氟磷酸铵反应得到六氟磷酸盐化合物(W) ;其中芴与正溴丙烷的摩尔比为1:2;9,9-二丙基芴与多聚甲醛的摩尔比为1:2,(Y)与N-吡啶甲基苯并咪唑的摩尔比为1:2;

(2)将六氟磷酸盐化合物(W)与氧化银以摩尔比为1:2的比例加入到反应器皿内,用有机溶剂溶解后,反应回流1天,得到最终产物环状氮杂环卡宾银配合物(1)。

步骤(1) 、(2)中所述的有机溶剂选自甲醇、乙醇、四氢呋喃、、二甲基亚砜、二氯甲烷、乙醚、乙腈中的一种或几种的混合物。优选的是二甲基亚砜和乙腈。

本发明进一步公开了环状氮杂环卡宾银配合物晶体,其晶体结构参数如下:

本发明更进一步公开了环状氮杂环卡宾银配合物(及单晶)在制备荧光探针方面的应用。其中的荧光识别指的是对Cu2+的识别,本发明的环状氮杂环卡宾银配合物具有较为固定的结构、制备简洁、荧光感光效果明显的优点,可以用来制作荧光分子识别体系,有望在荧光化学领域得到应用。实验结果显示:环状氮杂环卡宾银配合物对Cu2+具有良好的选择性识别能力。

本发明通过芴,正溴丙烷,多聚甲醛,溴化钾作为原料可以制备咪唑盐类化合物。它是在有机溶剂中以芴与正溴丙烷反应,得到的9,9-二丙基芴,再与多聚甲醛、溴化钾和浓硫酸反应得到产物(Y)。将(Y)与N-吡啶甲基苯并咪唑,再与六氟磷酸铵反应得到六氟磷酸盐化合物(W),得到最终产物环状氮杂环卡宾银配合物(1)。

本发明的合成路线如下:

典型的环状氮杂环卡宾银配合物的分子式为C51H48Ag2F12N8P2。环状氮杂环卡宾银配合物的单晶的测定方法如下:

晶体数据和结构精修参数包含在支持性信息中。在Bruker SMART 1000 CCD衍射仪上进行,实验温度为113(2)K, 在50kV 和20mA下,用Mo-Ka 辐射(0.71073Å)操作,用SMART和SAINT软件进行数据收集和还原,q 的范围是 1.8 < q < 25º。应用SADABS 程序进行经验吸收矫正。晶体结构由直接方法解出,用SHELXTL包对全部非氢原子坐标各向异性热参数进行全矩阵最小二乘法修正。

本发明一个优选的实施例为实例1.

本发明另一个优选的实施例为应用实例1。

本发明进一步公开了通过环状氮杂环卡宾银配合物在荧光识别领域中的应用。

实验证明:用环状氮杂环卡宾银配合物作为主体,用不同种类的硝酸盐作为客体(不同硝酸盐,如:Li+, Na+, K+, NH4+, Ag+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+, Cr3+, Cd2+, Al3+, Hg2+, Hg+, Pb2+, and Bi3+),在25℃下,将主体和客体溶解在有机溶剂中,在一定浓度下(主体浓度:1.0 × 10-5 mol L-1),将主体溶液分别和不同的客体溶液混合(客体浓度:20.0 × 10-5 mol L-1),测定其荧光光谱,找出主体能够识别的客体。对于主体能够识别的客体,用不同的浓度的客体对主体进行滴定(主体浓度:1.0 × 10-5 mol L-1),测定其荧光光谱。用微量注射器加入浓度逐渐增大的硝酸铜溶液(客体浓度:0-45.0 × 10-5 mol L-1)。主体溶液的激发波长为307 nm,发射光谱在325 nm有发射峰。每次添加后,8-10分钟达到反应平衡测定相应的荧光强度。本发明作为主体的环状氮杂环卡宾银配合物(特别是晶体)对硝酸盐化合物的荧光感光效果明显,可以用来制作荧光探针,有望在荧光化学领域得到应用。

本发明提出的环状氮杂环卡宾银配合物晶体是一种在标准状态下可以稳定存在的高级荧光材料,具有荧光感光效果明显的优点,可以用来制作荧光分子识别体系,有望在荧光化学领域得到应用。

附图说明

图1为环状氮杂环卡宾银配合物(实施例1)的晶体结构图;

图2为环状氮杂环卡宾银配合物(实施例1)在25℃下,乙腈溶液中(主体浓度:1.0 × 10-5 mol L-1)加入不同类型相同浓度的硝酸盐溶液(客体浓度:20.0 × 10-5 mol L-1)的荧光光谱图;从图中可以看出主体对Cu2+具有选择性识别能力;

图3为环状氮杂环卡宾银配合物(实施例1)在25℃下,乙腈溶液中(主体浓度:1.0 × 10-5 mol L-1)加入不同浓度的Cu2+的溶液 (客体浓度:0-45.0 × 10-5 mol L-1)的荧光光谱图,从图中可以看出随着Cu2+浓度的增加,在325 nm荧光强度逐渐降低,在380-510 nm范围内荧光强度逐渐增强;当Cu2+浓度增加到一定数值后,荧光强度不再有明显的变化。

具体实施方式

下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。

本发明所用原料及试剂均有市售;特别加以说明的是,制备本发明化合物的起始物质芴、N-吡啶甲基苯并咪唑、溴丙烷、多聚甲醛、溴化钾等均可以从市场上买到或容易地通过已知的方法制得。制备本发明化合物所用到的试剂全部来源于天津市科锐思化工有限公司,级别为分析纯。

另外需要加以说明的是:所有的实验操作运用Schlenk技术,溶剂经过标准流程纯化。所有用于合成和分析的试剂都是分析纯,并没有经过进一步的处理。熔点通过Boetius区截机测定。1H 和 13C{1H}NRM谱通过汞变量Vx400分光光度计记录,测量区间:400 MHz and 100 MHz。化学位移,δ,参考国际标准的TMS测定。荧光光谱通过Cary Eclipse荧光分光光度计测定。

实施例1

9,9-二丙基芴的制备

在芴(1.660 g,10.0 mmol),TBAB(0.150 g,0.4 mmol),正溴丙烷(5 mL)和50%的氢氧化钠水溶液中加人DMSO (50 ml),将此体系在70 ˚C搅拌过夜。冷却至室温后,将溶液倒入冷水中,然后用CH2Cl2 (3 × 30 mL)萃取。萃取溶液用无水MgSO 4干燥。除去CH2Cl2后,得到淡黄色固体9,9-二丙基芴。产率:2.000 g (80%)。M.p.: 36-38˚C. 1H NMR (400 MHz, DMSO-d6): δ0.54 (m, 4H, CH2), 0.61 (t, J = 7.0 Hz, 6H, CH3), 1.96 (t, J = 8.0 Hz, 4H, CH2), 7.34 (m, 4H, PhH), 7.44 (t, J = 4.2 Hz, 2H, PhH), 7.80 (t, J =4.2 Hz, 2H, PhH).13C NMR (400 MHZ, DMSO-d6): δ 150.5, 140.9, 127.6, 127.2, 123.3 and 120.2 (PhC), 55.1 (CH2), 42.2 (fluC), 17.3 (CH2), 14.6 (CH3)。( flu = 芴)。

2,7-双(溴甲基)-9,9-二丙基芴(Y)的制备

将9,9-二丙基芴(2.000 g, 8.0 mmol),多聚甲醛(2.730 g,90.9 mmol),溴化钾(12.000 g,100.0 mmol) 的冰醋酸(40 mL) 溶液在60 ˚C搅拌1 h,然后将硫酸(10 mL) 滴加到上述溶液中。混合物在60 ˚C下搅拌22 h。冷却至室温后,将溶液倒入冷水中。用CH2Cl2(3 × 30 mL)萃取,萃取溶液用无水MgSO 4干燥。除去CH2Cl2后,得到白色固体2,7-双(溴甲基)-9,9-二丙基芴。产率:1.740 g (50 %), M.p.: 88-90˚C. 1H NMR (400 MHZ, CDCl3-d).δ 0.68 (m, 10H, CH2CH3), 1.95 (t, J = 7.6 Hz, 4H, CH2), 4.60 (s, 4H, CH2Br), 7.36 (d, J = 6.8 Hz, 4H, PhH), 7.64 (d, J = 8.0 Hz, 2H, PhH). 13C NMR (400 MHZ, CDCl3-d): δ 151.6, 140.7, 136.9, 128.1, 123.6 and 120.1 (PhC), 55.4 (CH2), 42.5 (fluC), 34.4 (CH2Br), 17.2 (CH2), 14.4 (CH3) 。

六氟磷酸盐化合物(W)的制备

将N-吡啶甲基苯并咪唑(1.347 g,9.1 mmol),2,7-双(溴甲基)-9,9-二丙基芴(2.000 g,4.6 mmol)的THF (80 mL)溶液在回流下搅拌3天,形成沉淀。将产物过滤并用THF洗涤。苯并咪唑盐溴化物。再将此溴化物(2.000 g,2.7 mmol)的甲醇(40mL)溶液中加入NH4PF6(0.717 g,4.4 mmol),在室温下搅拌48 h。通过过滤得到中间体六氟磷酸盐化合物(W)为黄色固体。产率: 2.304 g (84%). M.p.: 184-186˚C. Anal. Calcd for C47H46N6P2F12: C, 57.31; H, 4.70; N, 8.53%. Found: C,; H, ; N, %. 1H NMR (400 MHZ, DMSO-d6)δ0.46 (m, 10H, CH2CH3), 1.90 (t, J = 7.2 Hz, 4H, CH2), 5.90 (s,4H, CH2), 5.97 (s, 4H, CH2), 7.41 (q, J = 4.0 Hz, 2H, PhH), 7.46 (d, J =8.0 Hz, 2H, PhH), 7.62 (m, 6H, PhH), 7.70 (d, J = 8.0 Hz, 2H, PhH), 7.96 (m, 8H, PhH), 8.49 (d, J = 4.4 Hz, 2H, PhH), 10.12 (s, 2H, 2-bimiH). 13C NMR (400 MHZ, DMSO-d6): δ153.4, 151.5, 150.0, 143.8 140.7, 138.0, 133.6, 132.0, 131.1, 127.7, 127.2, 126.8, 124.2, 123.6, 123.2, 121.1, 114.5, 114.4 (PhC or bimiC), 55.3 (CH2), 51.2 (CH2), 50.9 (fluC), 17.2 (CH2), 14.5 (CH3).

环状氮杂环卡宾银配合物(1)的制备

将氧化银(0.075 g, 0.32 mmol)加入到六氟磷酸盐化合物(W)(0.150 g, 0.15 mmol)的乙腈和1,2-二氯乙烷 (15 mL,v:v = 1:1) 溶液中,在30 ˚C左右条件下搅拌24 h,反应完全后将溶液进行抽滤,然后浓缩到10 mL然后加入乙酸乙酯出现黄色粉末沉淀,通过抽滤得到环状氮杂环卡宾银配合物(1)。产率:0.173 g (33%). M.p.: 212-218˚C. Calcd for C51H48Ag2F12N8P2: C, 47.90; H, 3.78; N, 8.76%. Found: C,; H, ; N, %.1H NMR (400 MHz, DMSO-d6):δ 0.33 (m, 20H, CH2CH3), 1.70 (d, 8H, J = 3.2 Hz, CH2), 2.07 (s, 12H,CNCH3), 5.84 (s, 8H, CH2), 5.97 (s, 8H, CH2), 7.04 (s, 8H, PhH), 7.29 (t, 4H, J = 3.4 Hz, PhH), 7.40 (t, 4H, J = 3.8 Hz, PhH), 7.45 (s, 2H, PhH), 7.51 (s, 2H, PhH), 7.77 (q, 4H, J = 5.1 Hz, PhH), 7.85 (t, 8H, J = 9.0 Hz, PhH), 8.39 (d, 4H, J = 4.4 Hz, PhH).13C NMR (400 MHZ, DMSO-d6): δ155.7, 151.4, 151.3, 150.0, 149.9, 139.8, 137.8, 135.7, 134.3, 133.7, 124.7, 124.4, 123.7, 123.1, 122.7, 120.6, 112.8, 112.8 (PhC or bimiC), 55.0 (CNCH3), 53.7 (CH2), 52.3 (CH2), 41.5 (fluC), 17.3 (CH2), 15.6(CH3), 14.4(CH3),0.6(CNCH3)。晶体结构见说明书附图1:

实施例1,环状氮杂环卡宾银配合物的晶体结构参数

晶体数据和结构精修参数包含在支持性信息中。在Bruker APEX II CCD衍射仪上进行,实验温度为296(2)K, 在50kV 和20mA下,用Mo-Ka 辐射(0.71073Å)操作,用SMART和SAINT软件进行数据收集和还原,q 的范围是 1.8 < q < 25º。应用SADABS 程序进行经验吸收矫正。晶体结构由直接方法解出,用SHELXTL包对全部非氢原子坐标各向异性热参数进行全矩阵最小二乘法修正。

应用实例1

在25℃下,在环状氮杂环卡宾银配合物的乙腈溶液中(1.0 × 10-5 mol/L)加入不同种类的相同浓度的(20.0 × 10-5 mol/L),硝酸盐的溶液(Li+, Na+, K+, NH4+, Ag+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+, Cr3+, Cd2+, Al3+, Hg2+, Hg+, Pb2+, and Bi3+),测定其荧光光谱,见附图2。从附图2中可以看出主体1对Cu2+具有选择性识别能力;

荧光滴定通过Cary Eclipse荧光分光光度计用1cm路径长的石英槽测定的。滴定的进行是将主体(1.0 × 10-5 mol L-1)放入4 mL的比色皿中,并用微量注射器加入浓度逐渐增大的Cu2+溶液(0-45.0 × 10-6 mol L-1)。主体溶液的激发波长为307 nm,发射光谱在325 nm有发射峰。每次添加后,8-10分钟达到反应平衡测定荧光强度。数据分析使用Origin 8.0,见图3。从附图3中可以看出:随着Cu2+浓度的增加,在325 nm荧光强度逐渐降低,在380-510 nm范围内荧光强度逐渐增强;当Cu2+浓度增加到一定数值后,荧光强度不再有明显的变化。

综上所述,本发明的内容并不局限在实例中,相同领域内的有识之士可以在本发明的技术指导思想之内可以轻易提出其他的实例,但这种实例都包括在本发明的范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1