一种具有耐热性的改性聚氨酯组合物的制作方法

文档序号:16734571发布日期:2019-01-28 12:31阅读:372来源:国知局

本发明属于聚氨酯复合材料技术领域,具体涉及一种具有耐热性的改性聚氨酯组合物。



背景技术:

拉挤成型是一种具有高度生产效率和高度自动化的固定截面形状纤维增强塑料型材的制造方法;通常情况下,其原材料包含液态树脂(不饱和聚酯、乙烯基酯树脂、环氧树脂或聚氨酯树脂)和增强材料(玻璃纤维、碳纤维、天然纤维等)。

拉挤成型技术通常是使用连续牵引装置将连续的增强材料牵引至树脂浸渍槽或注胶盒使树脂对纤维充分浸润,之后已浸润树脂的纤维通过加热模具进行硬化成型,最后于切割装置裁切所需的型材长度。

对于常温下即快速胶化的聚氨酯,通常使用注胶机分别将多元醇组分和异氰酸酯组分依特定比例混合后,注入注胶盒中对连续牵引的纤维进行浸润,该设计具有高度自动化的优点,并且同时大幅降低树脂未依规定比例混合、树脂混合后久置胶化和树脂暴露于环境湿气变质等风险。

现有技术中,美国专利us6793855(e.h.cheolas等人)公开了用于拉挤成型复合材料制造的聚异氰脲酸酯体系,该体系包括多元醇组分、增链剂和异氰酸酯,并且在室温下具有5分钟至30分钟的延长引发时间。张晨曦等人在专利申请cn105778038中公开了应用于聚氨酯拉挤成型材料的树脂基体,该聚氨酯树脂基体包含一种或多种多异氰酸酯、官能度2-3,羟值10-120mgkoh/g的第一聚醚多元醇、官能度3-8,羟值为810-1900mgkoh/g的第二聚醚多元醇和一种或多种具异氰酸酯反应性的阻燃剂,并以该聚氨酯树脂基体透过拉挤成型方法制备聚氨酯复合材料。

在美国专利us20120252973中,katrinnienkemper等人公开了一种包含二或多异氰酸酯、具有至少两个对异氰酸酯呈反应性基团的化合物、催化剂、官能度大于或等于二的多元酸以及任选的其他助剂的拉挤成型树脂系统。

又如,在美国专利us20140265000中,albertmagnotta等人使用聚氨酯形成系统透过拉挤成型方法制备出纤维增强复合材料,所述聚氨酯成形系统包括透明的且25℃时黏度小于1000厘泊的脂族多异氰酸酯,包含分子量150-400且官能度大于或等于3的胺起始多元醇以及催化剂。此外,美国专利us20160108168(stephenj.harasin等人)使用包括含有至少一种多异氰酸酯的多异氰酸酯组分和含有至少一种基于腰果油的聚醚多元醇的异氰酸酯反应性组分的聚氨酯型成体系通过拉挤成型方法制备聚氨酯复合材料。us20080087373(johne.hayes等人)提供了一种聚氨酯树脂反应系统,所述反应系统包括包含至少一种多异氰酸酯的异氰酸酯组分和包含至少一种聚合物多元醇的异氰酸酯反应组分;us20080090921还提供了一种使用连续纤维增强材料和聚氨酯配方经由拉挤成型方法制作复合材料的方法,所述聚氨酯配方包括包含至少一种多异氰酸酯的多异氰酸酯组分和包含至少一种由dmc催化剂制备的多元醇的异氰酸酯反应组分。

目前,聚氨酯拉挤复合材料因为具备良好的力学性能和高效率的生产速度而广泛应用于各种结构型材,然而对于户外应用而言,芳香族聚氨酯复合材料在经过长时间紫外光照射下会发生黄变、聚合物降解、纤维裸露等问题,进而影响材料的表面质量和力学性能,因此必须透过在聚氨酯复合材料表面施加耐候性涂料以符合户外应用(例如:窗框、电缆架、塔竿等)所需要的耐候性能。

耐候型粉末涂料和烤漆涂料可为底材提供优异的耐候性能,然而,与常温固化的涂料相比,具有相对高的加工温度和固化温度(高于120℃),而该加工固化温度高于一般由聚醚多元醇和芳香族多异氰酸酯、聚氨酯树脂体系的玻璃转化温度,因此若将耐候粉末涂料或烤漆涂料直接施用于该聚氨酯体系的复合材料,则可能导致材料变形而影响其使用性能。

基于上述原因,本领域需要研发出一种聚氨酯组合物,其除了具备良好的力学性能、合乎拉挤工艺的反应性外,还同时具备较高的玻璃转化温度(即耐热性)以满足耐候型粉末涂料或烤漆涂料的施用需求。



技术实现要素:

针对现有技术中存在的种种技术缺陷,本发明旨在提供一种新的聚氨酯复合材料,其同时具备优异的耐热性与力学性能。

具体地,本发明提供了一种具有耐热性的改性聚氨酯组合物,包含:基于双酚类化合物的聚醚二醇,多元醇组分,多异氰酸酯组分;其中,所述基于双酚类化合物的聚醚二醇的结构式如下:

其中,r1为具有1至5个碳原子的亚烷基或磺酰基;r2和r3各自独立地为2至4个碳原子的亚烷基;n1和n2各自独立地选自1-5的整数。

优选地,在上述具有耐热性的改性聚氨酯组合物中,所述多元醇组分选自:官能度为2-6,且羟值为18-1100mgkoh/g的聚醚多元醇,聚酯多元醇及其混合物。

进一步优选地,在上述具有耐热性的改性聚氨酯组合物中,所述聚醚多元醇或所述聚酯多元醇的分子量为200~6000。

优选地,所述具有耐热性的改性聚氨酯组合物还包含小分子扩链剂。

进一步优选地,在上述具有耐热性的改性聚氨酯组合物中,所述小分子扩链剂选自:分子量小于300的小分子二醇,小分子三醇,芳香二胺及其混合物。

更进一步优选地,在上述具有耐热性的改性聚氨酯组合物中,所述小分子扩链剂选自以下任一种或多种:乙二醇,丙二醇,丙三醇,1,4-丁二醇,1,3-丁二醇,2,3-丁二醇,三羟甲基丙烷,新戊二醇,1,6-己二醇,一缩二丙二醇,二甘醇,三甘醇,3,3’-二氯-4,4’-二氨基二苯基甲烷,3,5-二乙基甲苯二胺。

优选地,在上述具有耐热性的改性聚氨酯组合物中,所述多异氰酸酯组分选自以下任一种或多种:4,4’-二苯基甲烷二异氰酸酯,2,4-二苯基甲烷二异氰酸酯,2,2’-二苯基甲烷二异氰酸酯,多苯基多亚甲基多异氰酸酯,2,4-甲苯二异氰酸酯,2,6-甲苯二异氰酸酯,1,6-六亚甲基二异氰酸酯,异佛尔酮二异氰酸酯,1,5-萘二异氰酸酯,碳化二亚胺改性二苯基甲烷二异氰酸酯。

优选地,所述具有耐热性的改性聚氨酯组合物还包含其它添加剂;所述其它添加剂选自以下任一种或多种:催化剂、消泡剂、干燥剂、脱模剂、偶联剂、填料、颜料、分散剂、阻燃剂。换言之,所述其它添加剂可以是适用于聚氨酯组合物生产的任何已知的添加剂。

例如,所述催化剂可以是本领域已知的应用于生产聚氨酯的有机金属化合物、胺类化合物或其混合物。优选地,所述有机金属化合物包括但不限于:二月桂酸二丁基锡、辛酸亚锡、乙酸亚锡、二乙酸二丁基锡、乙基己酸亚锡、二新癸酸二甲基锡、二新癸酸二辛基锡、二油酸二甲基锡、二月桂酸二辛基锡、辛酸铋、新癸酸铋、辛酸钾、油酸钾或其它锡、锌、铋、钛、锆、镍的有机化合物。优选地,所述胺类化合物包括但不限于:三亚乙基二胺、n,n-二甲基环己胺、双(2-二甲氨基乙基)醚、n,n,n',n'-四甲基亚烷基二胺、三乙胺、n,n-二甲基苄胺、1,8-二氮杂环[5,4,0]十一烯-7或其盐、1,5-二氮杂双环[4.3.0]壬-5-烯或其盐、n-乙基吗啉、n-甲基吗啉、n,n'-二乙基哌嗪、三乙醇胺、吡啶,n,n’-二甲基吡啶二甲基乙醇胺。

又如,其中所述的干燥剂包括但不限于:分子筛、原甲酸三乙酯、恶唑烷类化合物、对甲苯磺酰异氰酸酯。

基于拉挤工艺的高度自动化连续生产特性,所述脱模剂优选无需以人工方式施加于模具表面的内脱模剂,所述的内脱模剂例如可为购自technickproducts的techlubehb-550或购自axelplasticsresearchlaboratories的int-1948mch。

综上所述,本发明所提供的具有耐热性的改性聚氨酯组合物具备优异的力学性能,符合拉挤工艺操作的反应性要求,且具备足够高的玻璃转化温度(即耐热性);因此,所述具有耐热性的改性聚氨酯组合物能够满足耐候型粉末涂料或烤漆涂料的施用需求,从而具有广阔的应用前景与不错的市场潜力。

具体实施方式

下面结合具体实施方式对本发明作进一步阐述,但本发明并不限于以下实施方式。

以下各实施例或对比例中所使用的组分如下:

多元醇a:丙三醇为起始剂,与环氧丙烷聚合反应制得的3官能度多元醇,羟值为670mgkoh/g;

多元醇b:丙三醇为起始剂,与环氧丙烷聚合反应制得的3官能度多元醇,羟值为280mgkoh/g;

多元醇c:丙二醇为起始剂,与环氧丙烷聚合反应制得的2官能度多元醇,羟值为280mgkoh/g;

基于双酚类化合物的聚醚二醇:双酚a为起始剂,环氧丙烷聚合反应制备之2官能度多元醇,羟值为280mgkoh/g;参见结构式(i),此处所述的基于双酚类化合物的聚醚二醇中,r1为异丙基(即3个碳原子),r2和r3分别为正丙基或异丙基;由其羟值换算的平均分子量为400。

小分子扩链剂:2,3-丁二醇;

添加剂a:催化剂fomrezul-54,采购自迈图高新材料;

添加剂b:干燥剂albolithmsc350,采购自alberdingk;

添加剂c:内脱模剂int-1948mch,采购自axel;

聚合mdi:nco含量为31-32.5%,平均官能度为2.5-2.8的聚合mdi。

以相同的常规制备工艺分别制得对比例1、对比例2、实施例1~5中的聚氨酯组合物,其中各组分的质量(单位:g)如下表1所示:

表1组分对照表

此外,发明人对对比例1、对比例2、实施例1~5中的聚氨酯组合物分别实施了以下实验:

常温凝胶时间:将各组分依比例混合,取100g混合物置于25℃空气浴中,观察其混合至凝胶所需时间。

高温凝胶时间:将各组分依比例混合后,取3-10g混合物倒入120℃模具,观察其自倒入至凝胶所需时间。

树脂浇铸板制作:将各组分依比例混合后,倒入一300mmx300mmx3mm的模具之中,将该模具置于190℃下烘烤10分钟后,降至140℃烘烤3小时,然后降至室温,脱模即得树脂浇铸板;最后将树脂浇铸板依照各力学测试方法所需试片尺寸进行裁切,并测试其力学性能。

拉伸强度、拉伸模量、伸长率依照astmd638方法进行试验。

弯曲强度、弯曲模量依照astmd790方法进行试验。

硬度依照astmd2240进行测试。

玻璃转化温度使用dsc法进行测试。

据此,具体的实验结果如下表2所示:

表2主要检测指标数据比较

由此可见,各实施例的常温凝胶时间以及高温快速固化的特性皆可满足配备注胶盒的拉挤工艺;对比例1-2中的常规聚氨酯组合物表现出较低的玻璃转化温度,与此不同,实施例1-5中的聚氨酯组合物在加入基于双酚类化合物的聚醚二醇的情况下表现出明显高于对比例1-2的玻璃转化温度。

以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1