一种热-紫外分步聚合制备液晶调光膜的方法与流程

文档序号:18734695发布日期:2019-09-21 01:00阅读:251来源:国知局
一种热-紫外分步聚合制备液晶调光膜的方法与流程

本发明属于液晶材料领域,具体涉及一种热-紫外分步聚合制备低驱动电压的液晶调光膜的方法。



背景技术:

液晶所具有的各向异性结构与特性使其在基本理论研究和应用器件开发方面具有非常深远的研究意义,其中,功能性液晶材料的研究和开发是热点方向。新型的功能性液晶材料中,聚合物分散液晶(Polymer Dispersed Liquid Crystal,简称PDLC)和聚合物稳定液晶(Polymer Stabilized Liquid Crystal,简称PSLC)均表现出良好的应用特性。

在PDLC膜中,液晶以微滴形式均匀地分散在高分子基体中。在不施加电场的情况下,液晶分子的指向矢是无规分布的,由于液晶分子和高分子基体折射率的不匹配,PDLC膜呈现光散射状态;施加电场后,液晶分子的指向矢沿着电场方向统一取向,此时液晶微滴的寻常光折射率与高分子基体折射率相匹配,PDLC膜呈现透明态。在PDLC体系中,高分子基体的含量较高,一般均超过40wt%,因而具有优良的机械强度和柔韧性,并且由于两层基膜之间具有良好的粘结强度,电光性能稳定,所以适合利用卷对卷加工的方法实现规模化生产。目前广泛应用于建筑和汽车门窗,智能家居,室内隔断,投影屏和触摸屏等设备。但是一般而言,为了达到高对比度的要求,国内外制备出的PDLC膜的驱动电压都比较高。

聚合物稳定液晶通常是将液晶性紫外光可聚合单体以低浓度溶解在液晶中,然后在紫外光辐照下引发光聚合反应,形成聚合物网络分布在液晶中。PSLC膜具有驱动电压低和响应速度快等优点,并且其初始状态的液晶分子可具有某种稳定的取向排列方式。与PDLC相比,PSLC的高分子基体含量在10%以下,所以两层基膜之间的撕裂强度较低,柔韧性较差,难以进行柔性大面积加工。

如果能提供一种合适的方法,将两种薄膜优异的应用特性相结合形成一种共存结构,制备出一种兼具低驱动电压和优良柔韧性的功能性液晶薄膜,将会具有广阔的应用前景。



技术实现要素:

本发明的目的是提供一种兼具低驱动电压和优良柔韧性的功能性液晶薄膜的制备方法,具体采用热-紫外分步聚合法制备。

为实现上述发明目的,本发明所采用的技术方案是:一种热-紫外分步聚合制备液晶调光膜的方法,包括如下步骤:

(1)将液晶材料、环氧单体、环氧固化剂、促进剂、液晶性紫外光可聚合单体、引发剂和间隔粒子混合均匀,获得各向同性液体材料;将所述各向同性液体材料置于镀有氧化铟锡的导电膜中间制成薄膜;

(2)对所述薄膜进行热聚合,形成多孔高分子基体,获得导电薄膜;

(3)对所述导电薄膜施加电场,使液晶分子处于垂直取向状态,再对导电薄膜进行紫外光聚合,在网孔内部构筑垂直取向的高分子网络,获得所需的电控液晶调光膜。

优选的,所述热聚合的条件为:在室温至100℃范围内,聚合反应1~24h。

优选的,所述紫外光聚合的条件为:施加电压大小为10~150V,施加电压频率为0~1000Hz,紫外光波长为365nm,紫外光强度为1~20mW/cm2,光照时间为1~60分钟。

优选的,所述电压频率为:50~1000Hz。

优选的,所述液晶调光膜的配方包括:按质量分数,25.0%~60.0%的液晶材料,1.0%~10.0%的液晶性紫外光可聚合单体,质量为液晶性紫外光可聚合单体和液晶材料总质量的0.1%~5.0%的引发剂,20.0%~30.0%的环氧单体,20.0%~30.0%的环氧固化剂,质量为环氧单体和环氧固化剂总质量的1.0%~10.0%的热固化促进剂,0.1%~5.0%的间隔粒子。

优选的,所述液晶材料包括但不限于:向列相液晶材料或胆甾相液晶材料;和/或;所述液晶材料中的液晶单体包括但不限于:

X、Y为含有1~16个碳原子的烷基、烷氧基、氰基、卤素、异硫氰基中的任意一种;B1、B2为苯环、吡啶环、环己烷环中的任意一种;m、n为0~4;A为炔键、烯键、酯基中的任意一种。

优选的,所述液晶材料为胆甾相液晶材料时,通过在向列相液晶中添加手性添加剂来获得胆甾相液晶材料;所述手性添加剂的用量为向列相液晶用量的0~30.0%;所述手性添加剂包括但不限于S811、R811、CB15、R1011、S1011、胆甾醇壬酸酯中的任意一种。

优选的,所述液晶性紫外光可聚合单体包括但不限于下述分子中的一种或几种:

其中,x、y为1或2,m、n为4~8,D、E为乙烯基醚、丙烯酸酯、环氧、环氧丙烯酸酯中的任意一种。

优选的,所述引发剂包括但不限于芳香酮类、苯偶酰缩酮类、阳离子引发剂中的任意一种。

优选的,所述环氧单体包括但不限于环氧树脂;和/或;所述环氧固化剂包括但不限于硫醇类固化剂;和/或;所述热固化促进剂包括但不限于叔胺类促进剂。

本发明具有以下有益效果:

1、PDLC体系力学性能优异,但驱动电压较高;PSLC体系具有驱动电压低和响应速度快等优点,但薄膜撕裂强度很低。发明人创造性地首次在热聚合PDLC体系中加入了液晶性紫外光可聚合单体,然后对混合体系先进行热聚合,引发环氧单体与环氧固化剂的交联反应形成类似于PDLC体系中的多孔高分子基体,为两层基板之间提供足够的撕裂强度,再对导电薄膜施加电场,使液晶分子处于垂直取向状态,并利用紫外光照射薄膜引发液晶性光聚合单体进行聚合,在液晶微滴中形成类似于PSLC体系的垂直取向高分子网络,成功构筑出PD&SLC共存结构。

2、高分子基体的微观结构对薄膜电光性能的调控具有重要意义。本发明构筑的PD&SLC共存体系在保证较高聚合物基体含量的情况下,利用垂直取向的高分子网络与液晶分子的相互作用,能有效减少高分子基体界面对液晶分子的锚定作用,可实现低电压驱动。因此基于PD&SLC共存体系的电控液晶调光膜兼具PDLC体系和PSLC体系的优势。

附图说明

图1为各组液晶调光膜的透过率与电压关系示意图;

图2为组1制备的液晶调光膜除去液晶材料后的截面扫描电镜图;

图3为组2制备的液晶调光膜除去液晶材料后的截面扫描电镜图;

图4为对照组制备的液晶调光膜除去液晶材料后的截面扫描电镜图;

图5为组1制备的液晶调光膜柔性和透性展示图。

具体实施方式

1、本发明提供了一种电光性能优异的液晶调光膜。

按质量百分比,本发明提供的液晶调光膜的配方包括:25.0%~60.0%的液晶材料,1.0%~10.0%的液晶性紫外光可聚合单体,质量为液晶性紫外光可聚合单体和液晶材料总质量的0.1%~5.0%的引发剂;20.0%~30.0%的环氧单体,20.0%~30.0%的环氧固化剂,质量为环氧单体和环氧固化剂总质量的1.0%~10.0%的热固化促进剂;0.1%~5.0%的间隔粒子。

所述液晶材料包括但不限于向列相液晶材料和胆甾相液晶材料;所述液晶材料中的液晶单体可选择但不限于以下结构:

其中,上述结构中,X、Y为末端基团,可以是含有1~16个碳原子的烷基、烷氧基,或氰基、卤素、异硫氰基等;B为环体系,即含环结构,可以为苯环、吡啶环、环己烷环等,B可含有侧向基团,可以为烷基、氰基或卤素等,其中m、n分别为0~4;A为连接基团,可为炔键、烯键、酯基等。

此外,本发明使用的向列相液晶混合物还可以选择市场在售液晶,例如江苏合成显示科技股份有限公司的E7、E8,石家庄诚志永华显示材料有限公司的SLC1717,SLC-7011等。

当本发明使用的液晶材料为胆甾相液晶材料时,可以通过在向列相液晶中添加手性添加剂来获得胆甾相液晶材料。此时,所述手性添加剂可选择范围包括但不限于:S811、R811、CB15、R1011、S1011、胆甾醇壬酸酯;其用量(质量)为向列相液晶用量的0~30.0%(0%时表示直接使用向列相液晶作为液晶材料)。

所述液晶性紫外光可聚合单体可以为下述分子中的一种或几种:

其中,x、y可为1或2,m、n为4~8,D、E为乙烯基醚,或丙烯酸酯,或环氧,或环氧丙烯酸酯。

所述引发剂可以为:芳香酮类(如二苯甲酮、氯代硫杂蒽酮)、苯偶酰缩酮类(如安息香双甲醚)、阳离子引发剂(如二芳基碘鎓盐和三芳基硫鎓盐)中的任意一种。

所述环氧单体为环氧树脂,包括但不限于以下单体中的一种或几种:缩水甘油醚类化合物、缩水甘油酯类化合物、缩水甘油胺类化合物和脂肪族环氧化合物。

所述环氧固化剂为硫醇类固化剂,包括但不限于以下单体的一种或几种:小分子硫醇,如乙二醇二(3-巯基丙酸酯)、1,4-丁二醇二(3-巯基丙酸酯)、季戊四醇四(3-巯基丙酸酯);大分子硫醇,如Capcure3-800等。所述环氧单体和环氧固化剂间通过热引发实现聚合,聚合反应的温度为室温至100℃之间,聚合反应1~24h。

所述热固化促进剂为叔胺类促进剂,如2,4,6-三(二甲胺基甲基)酚、邻(二甲胺基甲基)酚等。

所述间隔粒子为单分散聚合物微球,本发明的实施例中使用的间隔粒子为玻璃微珠,购买自镇江爱邦电子科技有限公司,粒径为5~100μm,优选为20μm。

2、本发明提供的液晶调光膜的制备方法包括如下步骤:

(1)将液晶材料、环氧单体、环氧固化剂、促进剂、液晶性紫外光可聚合单体、引发剂和间隔粒子按所需比例混合均匀,将形成的各向同性液体材料置于镀有氧化铟锡(ITO)的导电膜中间制成薄膜。

(2)对所述薄膜进行热聚合,通过热聚合引发环氧单体与环氧固化剂的交联反应形成高分子基体,与液晶性光聚合单体和液晶形成微相分离,获得导电薄膜。所述热聚合的具体条件为:在室温至100℃范围内,聚合反应1~24h。

(3)对所述导电薄膜施加电场,使液晶分子处于垂直取向状态。再进行紫外光聚合:利用紫外光照射薄膜,引发液晶性光聚合单体进行聚合,在液晶微滴中构筑垂直取向的高分子网络,从而形成聚合物分散液晶网络和聚合物稳定液晶网络共存结构,得到所需的电控液晶调光膜。

所述紫外光聚合的具体条件为:施加电压大小为10~150V,施加电压频率为0~1000Hz,紫外光波长为365nm,紫外光强度为1~20mW/cm2,光照时间为1~60分钟。其中,当电压频率为0Hz时,表示使用直流电;优选的电压频率为50~1000Hz。

下面结合具体实施例,对本发明的技术方案进行进一步阐释。需要说明的是,以下实施例仅用以说明本发明的技术方案而非限制。本领域的技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的保护范围中。

实施例

1、材料说明:

(1)本实施例所用的胆甾相液晶材料是通过在向列相液晶E8中添加手性添加剂S811获得的。其中,E8和S811的质量比为97:3;制备方法为,将E8和S811混合、搅匀即可。向列相液晶E8各组分的分子结构和含量如表1所示。

表1液晶材料E8各组分的分子结构和含量对照表

(2)本实施例涉及的各材料的分子结构如表2所示。

表2所用各材料的分子结构对照表

2、制备2组所需的液晶调光膜,同时设置对照组,各组所需材料如表3所示。

表3各组配方比例表

上表各组质量分数总和为1,分别在各组上表组分的基础上,再分别添加质量为上述材料质量总和0.5%的间隔粒子,所述间隔粒子的粒径为20μm;再在各组中分别添加重量为所述环氧单体和环氧固化剂质量总和的3.0%的热固化促进剂,具体为2,4,6-三(二甲胺基甲基)酚。

对照组为单纯的PDLC膜,未添加液晶性紫外光可聚合单体,其余材料组成与组1相同。对照组的PDLC膜制备方法与组1、2完全相同。

3、将步骤2中各组所有原材料在80℃下搅拌混匀,获得3组各向同性液体。将所述各向同性液体置于两片镀有氧化铟锡透明导电膜的塑料薄膜中间,用辊压均匀制成薄膜。将所述薄膜置于60℃烘箱中,固化5h,完成热聚合。再在室温下施加频率为50Hz、60V的电压,并同时使用波长为365nm的紫外光进行辐照,紫外光强度为6mW/cm2,光照15min后即可得到所需的电控液晶调光膜。

4、对所述3组电控液晶调光膜进行性能测试。

(1)液晶调光膜的电光性能测试。电光特性的重要指标包括:开态透过率(Ton)、关态透过率(Toff)、对比度(CR)、阈值电压(Vth)和驱动电压饱和电压(Vsat)。其中,Toff为电压为零时薄膜的透过率;Ton为薄膜在电场作用下透过率达到饱和时的数值;对比度CR定义式为:CR=Ton/Toff。Vth和Vsat分别定义为液晶调光膜透过率达到最大透过率的10%和9%时的外场电压数值。

设单纯两层ITO薄膜的透过率为100%。使用液晶综合参数仪,在室温、632nm波长下对两组液晶调光膜分别进行测试。结果如图1所示。测试结果为:组1的关态透过率为0.44%,开态透过率为89.75%,对比度为202.8,阈值电压为9.5V,驱动电压为20.7V。组2的关态透过率为0.42%,开态透过率为88.91%,对比度为213.34,阈值电压为5.6V,驱动电压为17.2V。对照组的关态透过率为0.46%,开态透过率为88.12%,对比度为191.8,阈值电压为16.7V,驱动电压为28.4V。

结果表明:使用本发明技术方案制备的液晶调光膜,电光特性优异,关态透过率低、开态透过率高、对比度高、驱动电压低。

(2)所述调光膜截面形貌展示。将各组液晶调光膜分别置于环己烷中浸泡15天,以除去薄膜中的液晶材料;再将薄膜置于40℃烘箱中干燥6h,利用扫描电镜观察其截面网络形貌。组1结果如图2所示,组2结果如图3所示,对照组结果如图4所示。

(3)所述液晶调光膜的柔性和透性展示。如图5所示,图5(a)、(b)分别为组1样品在施加电场和撤去电场下的实物图。可以看出薄膜在不施加电场时呈现出良好的光散射状态,无法看到薄膜背后的图案;当施加电场(20V)后,薄膜呈现为透明态,此时可以清楚地看到薄膜背后的图案。此外,由于所述液晶调光膜的高分子含量较高,两层基板之间的粘结力较好,薄膜还表现出优良的柔性。图5(c)为施加电场后将液晶调光膜进行弯曲的实物图,由此可见,薄膜在弯曲情况下仍能保持良好的透明态。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1