一种D-A型共轭聚合物给体光伏材料及其制备方法和应用

文档序号:25022579发布日期:2021-05-11 16:47阅读:285来源:国知局
一种D-A型共轭聚合物给体光伏材料及其制备方法和应用

本发明属于有机太阳能电池材料技术领域,涉及一种d-a型共轭聚合物给体光伏材料及其制备方法和应用。



背景技术:

可溶液加工的本体异质结有机薄膜太阳能电池(bhj-oscs)以其制备过程简单、成本低、质量轻、可制备大面积柔性器件等优点受到各国科学家们的广泛关注(g.zhang,j.zhao,p.c.y.chow,k.jiang,j.zhang,z.zhu,j.zhang,f.huang,h.yan,chem.rev.,2018,118,3447;j.hou,o.inganäs,r.h.friend,f.gao,nat.mater.,2018,17,119;c.yan,s.barlow,z.wang,h.yan,a.k.-y.jen,s.r.marder,x.zhan,nat.rev.mater.2018,3,18003;b.jia,x.zhan,sci.chinachem.2020,63,1179;z.-g.zhang,y.li,angew.chem.int.ed.2020,10.1002/anie.202009666.)。近几年。有机太阳能电池的光电转换效率(pce)获得了巨大的进展。在有机太阳能电池发展过程中,活性层材料(包括给体材料和受体材料)的发展对pce的提升起到了决定性作用。bhj-oscs中基于以共轭聚合物为给体和富勒烯衍生物(pcbm、pc71bm、icba)为受体得到了广泛的应用并获得了较高的pce(>10%)(y.li,chem.asianj.,2013,8,2316;y.-y.lai,y.-j.cheng,c.-s.hsu,energyenvir.sci.,2014,7,1866;f.lu,e.a.neal,t.nakanishi,acc.chem.res.,2019,52,1834;t.umeyama,h.imahori,acc.chem.res.,2019,52,2046.)。然而,由于pcbm等富勒烯衍生物的吸收主要集中在紫外区,并且从电子能级的角度考虑,给、受体材料的能级要相互匹配才有利于激子的分离和传输,才能有效地减少能量损失,而化学修饰对富勒烯受体材料的homo和lumo能级影响不大。因此,以pcbm、icba等富勒烯衍生物作为受体材料在很大程度上限制了给体材料的设计和应用范围。因此,许多新的非富勒烯受体包括聚合物和小分子已经作为新的受体光伏材料应用在bhj-oscs中(y.z.lin,j.y.wang,z.-g.zhang,h.t.bai,y.li,d.zhu,x.zhan,adv.mater.,2015,27,1170;y.lin,f.zhao,y.wu,k.chen,y.xia,g.li,j.zhu,l.huo,h.bin,z.-g.zhang,x.guo,m.zhang,y.sun,f.gao,z.wei,w.ma,c.wang,z.bo,o.inganäs,y.li,x.zhan,adv.mater.,2017,29,1604155;y.lin,z.-g.zhang,h.bai,j.wang,y.yao,y.li,d.zhu,x.zhan,energyenviron.sci.,2015,8,610;w.zhao,s.li,h.yao,s.zhang,y.zhang,b.yang,j.hou,j.am.chem.soc.,2017,139,7148;l.zhang,t.jia,l.pan,b.wu,z.wang,k.gao,f.liu,c.duan,f.huang,y.cao,scichinachem,2021,64,https://doi.org/10.1007/s11426-020-9935-2;x.ma,a.zeng,j.gao,z.hu,c.xu,j.h.son,s.y.jeong,c.zhang,m.li,k.wang,h.yan,z.ma,y.wang,h.y.woo,f.zhang,nat.sci.rev.,2021,doi:10.1093/nsr/nwaa305.)。

到目前为止,以聚合物为给体、非富勒烯小分子为受体的bhj-oscs的pce已经超过了18%(q.liu,y.jiang,k.jin,j.qin,j.xu,w.li,j.xiong,j.liu,z.xiao,k.sun,s.yang,x.zhang,l.ding,sci.bull.,2020,65,272;y.lin,m.i.nugraha,y.firdaus,a.d.scaccabarozzi,f.aniés,a.-h.emwas,e.yengel,x.zheng,j.liu,w.wahyudi,e.yarali,h.faber,o.m.bakr,l.tsetseris,m.heeney,t.d.anthopoulos,acsenergylett.,2020,5,3663;y.cui,h.yao,j.zhang,k.xian,t.zhang,l.hong,y.wang,y.xu,k.ma,c.an,c.he,z.wei,f.gao,j.hou,adv.mater.,2020,32,1908205;y.cui,h.yao,l.hong,t.zhang,y.tang,b.lin,k.xian,b.gao,c.an,p.bi,w.ma,j.hou,nat.sci.rev.,2020,7,1239;z.luo,r.ma,t.liu,j.yu,y.xiao,r.sun,g.xie,j.yuan,y.chen,k.chen,g.chai,h.sun,j.min,j.zhang,y.zou,c.yang,x.lu,f.gao,h.yan,joule,2020,4,1236)。如pm6:y6已被广泛证明是一个高效的二元光伏体系(j.yuan,y.zhang,l.zhou,g.zhang,h.-l.yip,t.-k.lau,x.lu,c.zhu,h.peng,p.a.johnson,m.leclerc,y.cao,j.ulanski,y.li,y.zou,joule,2019,3,1140;k.jiang,q.wei,j.yukl.lai,z.peng,h.k.kim,j.yuan,l.ye,h.ade,y.zou,h.yan,joule,2019,3,3020;c.sun,f.pan,h.bin,j.zhang,l.xue,b.qiu,z.wei,z.-g.zhang,y.li,nat.commun.,2018,9,743;y.wu,y.zheng,h.yang,c.sun,y.dong,c.cui,h.yan,y.li,sci.chinachem.,2020,63,265;s.liu,j,yuan,w.deng,m.luo,y.xie,q.liang,y.zou,z.he,h.wu,y.cao,nat.photonics,2020,14,300.),这得益于pm6:y6具有宽的吸收,高的载流子迁移率和易形成互穿的纳米相分离膜形貌。这些结果是高效bhj-oscs中报道得最好的值。然而,如何在单层器件中获得基于二元共混体系的更高的pce是研究人员面临的一大挑战。

将两种给体材料和一种受体材料或一种给体材料和两种受体材料集成到光活性层的三元bhj-oscs器件已被证明是进一步提升器件性能的有效策略(n.gasparini,a.salleo,i.mcculloch,d.baran,nat.rev.mater.,2019,4,229;q.an,zhang,f.zhang,w.tang,z.deng,b.hu,energyenviron.sci.,2016,9,281;h.huang,l.yang,b.sharma,j.mater.chem.a,2017,5,11501;d.baran,r.s.ashraf,d.a.hanifi,m.abdelsamie,n.gasparini,j.a.röhr,s.holliday,a.wadsworth,s.lockett,m.neophytou,c.j.m.emmott,j.nelson,c.j.brabec,a.amassian,a.salleo,t.kirchartz,j.r.durrant,i.mcculloch,nat.mater.,2017,16,363.)。此外,三元器件还保留了二元器件制备过程简单的优点。尤其在过去的三年中,三元共混器件取得了前所未有的进步。考虑到三元光伏器件结合了二元器件的优势,并且可进一步优化膜形貌,所以现在三元光伏器件的研究是一个重要的课题并且需要投入更多的精力。

第三组分在提高器件性能方面起着重要的作用,要求第三组分的能级与其他两种材料相匹配并具有良好的互容性,以减少能量损失。此外,三种组分间的吸收应相互补,从而可进一步增强短路电流(jsc),第三种组分的引入不能破坏原有膜形貌,而是更加优化,进而可进一步提升器件的填充因子。

值得注意的是,在以往的研究中已经揭示出苯并二噻吩(bdt)是构建有机光伏材料最优秀的给体单元之一,这是由于其具有对称的平面共轭结构,高的空穴传输性能等优点(h.yao,l.ye,h.zhang,s.li,s.zhang,j.hou,chem.rev.,2016,116,7397.)。另一方面,噻唑具有与噻吩相似的结构,具有较弱的吸电子能力,噻吩环3位上的碳原子被n原子取代后即为噻唑,过去的工作表明基于噻唑的光伏材料容易获得高的载流子迁移率(m.kuramochi,j.kuwabara,w.lu,t.kanbara,macromolecules,2014,47,7378;y.lin,h.fan,y.li,x.zhan,adv.mater.,2012,24,3087;k.wang,x.guo,b.guo,w.li,m.zhang,y.li,macromol.rapidcommun.,2016,37,1066.)。

然而,将噻唑作为受体单元应用到共轭聚合物中的研究还不多,而将bdt和噻唑的共聚物作为第三组分引入到二元光伏体系中还未见报道。考虑到pm6:y6体系在近紫外区的吸收较少,pm6和y6间具有较小的最低未占据分子轨道(lumo)能级差,并且y6受体的lumo能级与pm6的最高占据分子轨道(homo)能级的差值较小,这会带来较大的能量损失,在一定程度上影响器件的jsc,voc。因此,将基于噻唑的共轭聚合物光伏材料作为第三组分引入到高效的二元体系中能够实现宽的吸收光谱和合适的分子能级,这对于充分利用太阳光及实现高效的激子分离非常重要。



技术实现要素:

为解决上述技术问题,本发明提出一种d-a型共轭聚合物给体光伏材料及其制备方法和应用。

本发明的技术方案是这样实现的:

一种d-a型共轭聚合物给体光伏材料,其化学式为:

上述的d-a型共轭聚合物给体光伏材料,步骤如下:以给体单元即(4,8-二(4,5-二辛基噻吩-2-基)苯[1,2-b:4,5-b']并二噻吩-2,6-二基)(三甲基锡)为原料,以甲苯为溶剂,使给体单元与受体单元2,5-二(5-溴噻唑-2-基噻吩)在四三苯基磷钯催化下回流反应,得d-a型共轭聚合物给体光伏材料,即5-(4,8-二(4,5-二辛基噻吩-2-基)-6-甲基苯[1,2-b:4,5-b']噻吩-2-基)-2-(5-(5-甲基噻吩-2-基)噻吩-2-基)噻唑。

上述的d-a型共轭聚合物给体光伏材料在制备三元光伏器件中的应用。

所述三元光伏器件中给体材料为pm6和pbdtdtzt,受体材料为y6,制备的光伏器件结构为:ito/pedot:pss/pm6:pbdtdtzt:y6/pdino/al;其中ito为透明的氧化铟锡;pedot:pss为聚合物化合物为聚(苯乙烯磺酸酯)掺杂的聚(3,4-乙撑二氧基噻吩);pdino为阴极界面修饰层,化学式为3,3'-(1,3,8,10-四氧杂环[2,1,9-def:6,5,10-d'e'f']二异喹啉-2,9(1h,3h,8h,10h)-二基)双(n,n-二甲基丙烷-1-氧化胺)。

所述pm6的结构式为:;y6的结构式为

制备步骤为:

(1)将刻蚀有ito的玻璃基片分别置于丙酮和异丙醇中超声清洗10min,随后将片子进行干燥,并在匀胶机上将阳极界面层pedot:pss旋涂到玻璃基片上,然后在150℃下干燥15min,完成pedot:pss层的涂覆;

(2)在充满氮气氛围的手套箱中,将不同d/a比的pm6:pbdtdtzt:y6混合溶液旋涂到经步骤(1)制备的pedot:pss层上,之后在加热台上对基片进行热处理,完成活性层的涂覆;

(3)将阴极修饰层pdino旋涂到步骤(2)完成的活性层上;最后,在4×10-4pa的真空下将铝电极蒸镀到阴极修饰层上,从而完成三元光伏器件的制备。

所述步骤(1)中pedot:pss层厚度为40nm。

所述步骤(2)中混合溶液的溶剂为氯仿,pm6:pbdtdtzt:y6混合溶液的d/a比为1:(0-0.3):(1.1-1.2)。

所述步骤(3)中阴极修饰层pdino的溶剂为甲醇,浓度为0.5mg·ml-1;铝电极的厚度为100nm。

本发明具有以下有益效果:

本发明设计和制备的pbdtdtzt在300-600nm范围里表现出宽和强的吸收光谱和低的homo能级;基于pm6:pbdtdtzt:y6的三元有机太阳能电池在氯仿为溶剂、热退火处理、氯萘为添加剂条件下展示出较高的光伏性能。

基于pm6:pbdtdtzt:y6的三元有机光伏器件,在pm6:pbdtdtzt:y6质量比为1:0.1:1.1,以0.75%的cn为添加剂,110℃下退火10min时器件性能达到最优,pce达到16.98%,voc为0.86-0.87v,jsc为26.3ma•cm-1,ff为74.9%。在各种不同的器件加工条件下,光伏器件总是拥有很高的jsc值和ff。较高的光伏性能和进一步提升的jsc和ff值表明pbdtdtzt能够成为一个有希望的给体材料应用在三元有机太阳能电池中。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明制备方法的合成路线示意图。

图2为本发明pbdtdtzt的高温凝胶渗透色谱(gpc)数据及其测试图。

图3为本发明制备的给体pbdtdtzt的紫外-可见(uv-vis)吸收光谱、电化学能级图及能级示意图,其中a为给体pbdtdtzt以及pm6:y6二元体系在归一化条件下的紫外-可见(uv-vis)吸收光谱,b为给体pbdtdtzt采用循环伏安法测定的循环伏安曲线图,c为给体pbdtdtzt以及pm6、y6的能级示意图。

图4为应用例中三元光伏器件性能检测图;其中a为三元光伏器件在不同含量的第三组分pbdtdtzt存在下的电流-电压(j-v)曲线图;b为三元光伏器件在不同含量的第三组分pbdtdtzt存在下的外量子效率(eqe)曲线图。

图5为三元光伏器件在pm6:pbdtdtzt:y6质量比为1:0.1:1.1,110℃退火10min时的性能检测图;其中a为不同含量添加剂条件下的电流-电压(j-v)曲线图,b为不同含量添加剂条件下的外量子效率(eqe)曲线图。

图6为三元光伏器件在pm6:pbdtdtzt:y6质量比为1:0.1:1.1,以0.75%的cn为添加剂时的性能检测图;其中a为不同退火温度条件下的电流-电压(j-v)曲线图,b为不同退火温度条件下的外量子效率(eqe)曲线图。

图7为基于pm6:y6的二元光伏器件和pbdtdtzt作为第三组分的三元光伏器件的性能图;其中a为电流-电压(j-v)曲线图,b为外量子效率(eqe)曲线图。

具体实施方式

下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例

一种d-a型共轭聚合物给体光伏材料,步骤如下:以给体单元即(4,8-二(4,5-二辛基噻吩-2-基)苯[1,2-b:4,5-b']并二噻吩-2,6-二基)(三甲基锡)为原料,以甲苯为溶剂,使给体单元与受体单元2,5-二(5-溴噻唑-2-基噻吩)在四三苯基磷钯催化下回流反应,得d-a型共轭聚合物给体光伏材料,即5-(4,8-二(4,5-二辛基噻吩-2-基)-6-甲基苯[1,2-b:4,5-b']噻吩-2-基)-2-(5-(5-甲基噻吩-2-基)噻吩-2-基)噻唑。gpc表征证数据如下:mn=10.98kda,mw=24.05kda,pdi=2.19。

对pbdtdtzt的相关物理性能和光伏性能的研究如下:

1.良好的吸收互补性

如图3a所示,图3a是pbdtdtzt以及pm6、y6在归一化条件下的紫外-可见(uv-vis)吸收光谱。从图中可以看出:pbdtdtzt在300-600nm范围内出展示出较宽的吸收,最大吸收峰位于527nm处;在400-550nm范围内与pm6、y6的吸收相互补,从而进一步拓宽了活性层材料对光的吸收,这将有利于光伏器件短路电流的提升。

2.深的homo能级

采用循环伏安法(cv)来研究pbdtdtzt的电化学能级,如图3b所示。图3b展示了pbdtdtzt具体的电化学能级图,其中方型的黑色曲线是pbdtdtzt的测试曲线图,而红色曲线是二茂铁的标定曲线图。从图3b中可以看出,pbdtdtzt起始氧化电势的(φox)为0.80vvsag/ag+,根据公式可以计算出最高占据轨道(homo)能级=-e(φox+4.72)(ev)=-5.52ev;pbdtdtzt起始还原电势的(φred)为-1.15vvsag/ag+,根据公式可以计算出最低未占据轨道(lumo)能级=-e(φred+4.72)(ev)=-3.57ev。由于器件的开路电压(voc)与给体的homo能级和受体的lumo能级的差值正相关,所以在光伏器件中较低的homo能级(-5.52ev)能够期望获得一个较高的voc。

图3c表示在本发明应用中,三元光伏器件中三种材料的能级示意图。从图3c中可以看出,pbdtdtzt的lumo能级位于pm6和y6间,从而可以使得三种材料的能级更加匹配,既能为激子的分离提供充足的驱动力又能有效减少能量损失。

3.光伏性能

三元光伏器件中给体材料pm6、pbdtdtzt和受体材料y6的化学结构式分别如下:

相应的光伏器件结构为:ito/pedot:pss/pm6:pbdtdtzt:y6/pdino/al。

其中:ito为透明的氧化铟锡,pedot:pss为聚合物,聚(苯乙烯磺酸酯)掺杂的聚(3,4-乙撑二氧基噻吩),pdino为阴极界面修饰层,3,3'-(1,3,8,10-四氧杂环[2,1,9-def:6,5,10-d'e'f']二异喹啉-2,9(1h,3h,8h,10h)-二基)双(n,n-二甲基丙烷-1-氧化胺)。

器件制备:将刻蚀有ito的玻璃基片分别置于丙酮和异丙醇中超声清洗10min,随后将片子进行干燥,并在匀胶机上将阳极界面层pedot:pss旋涂到玻璃基片上,然后在150℃下干燥15min,pedot:pss厚度约为40nm;在充满氮气氛围的手套箱中,将不同d/a比的pm6:pbdtdtzt:y6混合溶液(氯仿为溶剂)旋涂到pedot:pss层上;之后在加热台上对基片进行热处理;再将阴极修饰层pdino(以甲醇为溶剂,浓度为0.5mg·ml-1)旋涂到活性层上;最后,在4×10-4pa的真空下将铝电极蒸镀到其上,厚度为100nm,从而制备成三元共混的有机太阳能电池器件。一个电池的有效面积是0.04cm2。在填充n2的手套箱中,使用氙灯太阳模拟器的am1.5g强度(100mw·cm-2)下对所制备的三元有机光伏器件的开路电压、短路电流以及填充因子进行测试,所述氙灯太阳能模拟器在国家可再生能源实验室(nrel)中使用硅二极管(具有kg5可见滤光器)进行校正。

在光伏性能研究这方面,voc表征开路电压,jsc表示短路电流,ff表示填充因子,pce表示光电转换效率。

图4a和图4b分别展示了在110℃退火10min,0.5%的cn为添加剂,不同的含量的第三组分pbdtdtzt存在下,光伏器件的电流-电压(j-v)曲线以及相应的外量子效率(eqe)曲线。表1展示了在110℃退火10min,0.5%的cn为添加剂,pm6:y6为1:1.1时,不同的含量的第三组分pbdtdtzt存在下,在模拟光强am1.5g,100mw·cm-2条件下光伏器件的光伏参数。表2展示了在110℃退火10min,0.5%的cn为添加剂,pm6:y6为1:1.2时,不同的含量的第三组分pbdtdtzt存在下,在模拟光强am1.5g,100mw·cm-2条件下光伏器件的光伏参数。

表1

a)数据计算来源于eqe。

表2

a)数据计算来源于eqe。

从图4a、图4b、表1和表2可以得出,器件最佳的d/a是1:0.1:1.1,此时光伏器件有较高的pce(16.5%),其中voc为0.87v,jsc为26.0ma·cm-1,ff为73.2%。

为了进一步改善器件的光伏性能,通过调整添加剂的比例优化的活性层形貌,我们发现当添加剂比例为0.75%时,器件性能可进一步优化。

图5a和图5b分别展示了三元光伏器件在pm6:pbdtdtzt:y6质量比为1:0.1:1.1,110℃退火10min,不同含量添加剂条件下的j-v曲线图和eqe曲线图。表3展示了在pm6:pbdtdtzt:y6质量比为1:0.1:1.1,110℃退火10min,在模拟光强am1.5g,100mw·cm-2条件下光伏器件的光伏参数。

表3

a)数据计算来源于eqe。

从图5a、图5b和表3中可以看出,在添加剂为0.75%时三元器件获得了最佳的光伏性能,此时得到最高的pce值是16.98%,并且器件的voc维持在0.86-0.87v,jsc为26.3ma·cm-1,ff为74.9%。值得注意的是,在各种不同的器件加工条件下,器件总是拥有较高的jsc值(>26ma·cm-1)和ff,16.98%的pce也是目前为数不多的三元有机光伏器件光电转换效率值之一。

此外,图6a和图6b分别展示了三元光伏器件在pm6:pbdtdtzt:y6质量比为1:0.1:1.1,以0.75%的cn为添加剂,不同退火温度条件下的j-v曲线图和eqe曲线图。表4展示了在pm6:pbdtdtzt:y6质量比为1:0.1:1.1,以0.75%的cn为添加剂,不同退火温度条件下,在模拟光强am1.5g,100mw·cm-2条件下光伏器件的光伏参数。

表4

a)数据计算来源于eqe。

从图6a、图6b和表4中可以看出,在添加剂为0.75%,退火温度为110oc时三元器件获得了最佳的光伏性能,此时得到最高的pce值是16.98%。此外,以上器件优化过程中,从eqe曲线可以看出,在波长300-900nm范围中都有较强的响应,尤其在400-850nm范围内,eqe值都能保持在60%以上,这能很好的匹配器件高的jsc值。从eqe曲线中计算的积分电流值能很好的与测出的jsc值相符合,误差在8%以内。最优条件下的三元器件的j-v曲线、eqe曲线与二元器件对比图如图7a和图7b所示。

综上所述,本发明设计并合成了一种简单的新的有机共聚物pbdtdtzt,它以bdt作为给电子单元,二噻唑噻吩作为吸电子单元。本发明同时还研究了pbdtdtzt的光学、电化学以及作为第三组分加入到pm6:y6体系后的光伏性能。经研究发现,pbdtdtzt在300-600nm范围里表现出宽的吸收光谱和低的homo能级;基于pm6:pbdtdtzt:y6的三元有机光伏器件,在pm6:pbdtdtzt:y6质量比为1:0.1:1.1,以0.75%的cn为添加剂,110℃下退火10min时器件性能达到最优,pce达到16.98%,voc为0.86-0.87v,jsc为26.3ma·cm-1,ff为74.9%。值得注意的是,在各种不同的器件加工条件下,器件总是拥有较高的jsc值(>26ma·cm-1)和ff,16.98%的pce也是目前为数不多的三元有机光伏器件光电转换效率值之一。较好的光伏性能和高的jsc值表明pbdtdtzt能够成为一个有希望的给体材料应用在三元光伏器件中,例如适合作为有机太阳能电池中的第三组分加入到高效的二元体体系中。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1