一种聚氨酯海绵及其制备方法与应用与流程

文档序号:28625337发布日期:2022-01-22 14:22阅读:470来源:国知局
一种聚氨酯海绵及其制备方法与应用与流程

1.本发明属于高分子材料制备技术领域,具体涉及一种聚氨酯海绵及其制备方法与应用,该聚氨酯海绵具有高抑菌性和高血液相容性。


背景技术:

2.这里的陈述仅提供与本发明相关的背景技术,而不必然地构成现有技术。
3.聚氨酯(pu)是主链上含有氨基甲酸酯基团(-nhcoo-)的高分子聚合物,传统的聚氨酯抗菌材料都是在其预聚物链上引入具有抑菌功能小分子,从而使pu材料具有了抑菌性能。
4.发明人发现,传统的具有抗菌功能的聚氨酯材料存在制备方法复杂、成本较高、不可降解吸收、抑菌性和血液相容性较差等问题。


技术实现要素:

5.针对现有技术存在的不足,本发明的目的是提供一种聚氨酯海绵及其制备方法与应用。
6.为了实现上述目的,本发明是通过如下的技术方案来实现:
7.第一方面,本发明提供一种聚氨酯海绵的制备方法,包括如下步骤:将聚酯二醇、磷酰胆碱二醇和赖氨酸二异氰酸酯催化反应设定时间;
8.向反应体系中加入槲皮素溶液,继续反应设定时间、降温、交联成型、冷冻干燥,即得。只有经过冷冻干燥才能得到海绵结构。
9.第二方面,本发明提供一种聚氨酯海绵,由所述方法制备而成。
10.第三方面,本发明提供所述聚氨酯海绵在作为医用填塞物、压迫止血材料、抑菌材料或药物载体中的应用。
11.本发明的以上一种或多种实施例取得的有益效果如下:
12.1)通过聚酯二醇、磷酰胆碱二醇和赖氨酸二异氰酸酯催化聚合,制备的海绵材料中侧链的磷酰胆碱基团提供了良好的血液相容性;向反应体系中加入槲皮素参与反应,在聚氨酯主链上引入槲皮素基团,槲皮素基团提供了优异的抗菌能力,使得制备的聚氨酯海绵同时具备高抑菌能力和高血液相容性。
13.2)制备的海绵材料的聚酯链段中的酯键具有水解能力,赋予材料可生物降解性能,并且降解产物无毒可吸收,同时,硬段的最终降解产物为赖氨酸,也可被生物体吸收。
14.3)制备的海绵材料(首先得到以二氧六环为溶剂的凝胶,凝胶冻干即得蜂窝状海绵结构)为多孔结构,具有高的回弹性,可用作人体或动物体耳、鼻或其他腔体的填塞物起压迫止血的作用;
15.4)制备的海绵材料还可作为药物载体,随着材料的降解达到缓释药物的目的。
附图说明
16.构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
17.图1为本发明实施例2制备的海绵s2的血小板粘附的sem图片;
18.图2为本发明实施例1制备的海绵s1-1的sem照片;
19.图3为本发明实施例5制备的海绵s5对大肠杆菌的抑菌效果图。
具体实施方式
20.应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
21.第一方面,本发明提供一种聚氨酯海绵的制备方法,包括如下步骤:将聚酯二醇、磷酰胆碱二醇和赖氨酸二异氰酸酯催化反应设定时间;
22.向反应体系中加入槲皮素溶液,继续反应设定时间、降温、交联成型、干燥,即得。
23.在一些实施例中,催化反应的温度为75-85℃,反应至-nco的含量达到理论值(即-nco的摩尔数减去-oh的摩尔数)。
[0024]-nco的含量采用二正丁胺滴定法测定,其含量达到理论值才能进行下一步反应,约需2.5~3.5h;
[0025]-nco的含量按下式计算:
[0026][0027]
式中:v1、v0为滴定样品和空白样品所消耗的标准hcl溶液的体积(l);c为标准hcl溶液的浓度(mol/l);m为异氰酸酯样品的取样量(g);42.02为-nco基团的分子质量;0.200为每份滴定样品占取样量(m)的质量分数。
[0028]
进一步的,催化反应的时间为16-24小时。
[0029]
在一些实施例中,所述聚酯二醇为均聚酯二醇。
[0030]
进一步的,所述聚酯二醇选自聚(l-丙交酯)二醇、聚(ε-己内酯)二醇或聚(对二氧环己酮)二醇。
[0031]
进一步的,所述聚酯二醇的数均分子量为600-3000g/mol,优选600-2000g/mol。
[0032]
磷酰胆碱二醇的结构式如下式所示,其制备方法按照文献materials science&engineering c,2020,109,110571公开的方法制备。
[0033][0034]
在一些实施例中,聚酯二醇和磷酰胆碱二醇的摩尔比为1:1-1:3;赖氨酸二异氰酸
酯的摩尔量为聚酯二醇和磷酰胆碱二醇摩尔总量的1.5-1.8倍。
[0035]
赖氨酸二异氰酸酯结构式如下:
[0036][0037]
在一些实施例中,催化反应的催化剂选自辛酸亚锡或/和二月桂酸二丁基锡。
[0038]
进一步的,催化剂的质量为原料质量的0.5%-1%。
[0039]
在一些实施例中,聚酯二醇的浓度为0.2-0.45g/ml。
[0040]
进一步的,反应体系的溶剂为二氧六环。二氧六环熔点约为0℃,与水接近,易进行冷冻干燥。
[0041]
在一些实施例中,槲皮素溶液为槲皮素的二氧六环溶液。
[0042]
进一步的,槲皮素的二氧六环溶液的浓度为0.2-0.3g/ml。
[0043]
进一步的,加入的槲皮素的摩尔量为剩余-nco摩尔量的35%-40%。
[0044]
槲皮素的结构式如下所示,该比例下槲皮素上4位和7位羟基完全反应,3位羟基部分反应,具有适度的交联。
[0045][0046]
槲皮素是植物界分布广泛、具有多种生物活性的黄酮醇类化合物,能对抗自由基,络合或捕获自由基防止机体脂质过氧化反应;能够直接抑制肿瘤,有效发挥防癌抗癌作用;在抗菌、抗炎、抗过敏、防止糖尿病并发症方面也有较强的生物活性。此外,槲皮素还有降低血压、增强毛细血管抵抗力、减少毛细血管脆性、降血脂、扩张冠状动脉,增加冠脉血流量等作用,对冠心病及高血压患者也有辅助治疗作用。另外,槲皮素无毒性,将槲皮素引入到聚氨酯材料中,可以赋予聚氨酯在癌症、衰老、心血管疾病的治疗和预防的功能。
[0047]
在一些实施例中,向反应体系中加入槲皮素后继续反应的时间为8-12min,反应温度为75-85℃。
[0048]
在一些实施例中,降温至30-35℃后,静置,交联成型。
[0049]
进一步的,交联成型反应至红外检测-nco特征吸收峰完全消失。该过程需要大约16-24小时。
[0050]
在一些实施例中,海绵的孔隙率通过向注模前的反应体系中加入二氧六环进行调节。
[0051]
在一些实施例中,所述干燥为冷冻干燥。
[0052]
第二方面,本发明提供一种聚氨酯海绵,由所述方法制备而成。
[0053]
在一些实施例中,所述聚氨酯海绵的孔隙率为60%-80%,吸水率》300%。
[0054]
在一些实施例中,所述聚氨酯海绵的压缩强度为6.5-7.0kpa。
[0055]
第三方面,本发明提供所述聚氨酯海绵在作为医用填塞物、压迫止血材料、抑菌材料或药物载体中的应用。
[0056]
下面结合附图和实施例对本发明作进一步说明。
[0057]
实施例1
[0058]
10g聚(ε-己内酯)二醇(mn=1000g/mol),8.06g磷酰胆碱二醇,10.85g赖氨酸二异氰酸酯和0.16g辛酸亚锡溶于70ml二氧六环中,干燥氮气保护,搅拌至溶解,升温至80℃,反应至-nco含量达到理论值,约2.5h,加入槲皮素的二氧六环溶液(1.96g槲皮素溶于4.5ml二氧六环中),维持温度继续搅拌反应10分钟,停止搅拌,减压去除溶液中的气泡,趁热缓慢倒入模具中,将模具置于35℃的烘箱中,静置,交联成型,至-nco红外特征峰消失,约20h。将成型后的凝胶进行冷冻干燥,得海绵材料s1-1。
[0059]
同海绵s1-1的制备方法,加入不同浓度槲皮素的二氧六环溶液,分别为1.96g槲皮素溶于9.0ml二氧六环和13.5ml二氧六环中,得到海绵材料s1-2和s1-3。
[0060]
实施例2
[0061]
10g聚(ε-己内酯)二醇(mn=1000g/mol),4.03g磷酰胆碱二醇,7.232g赖氨酸二异氰酸酯和0.14g辛酸亚锡溶于65ml二氧六环中,干燥氮气保护,搅拌至溶解,升温至85℃,反应至-nco含量达到理论值,约2.0h,加入槲皮素的二氧六环溶液(1.31g槲皮素溶于3.0ml二氧六环中),维持温度继续搅拌反应10分钟,停止搅拌,减压去除溶液中的气泡,趁热缓慢倒入模具中,将模具置于35℃的烘箱中,静置,交联成型,至-nco红外特征峰消失,约24h。将成型后的凝胶进行冷冻干燥,得海绵材料s2。
[0062]
实施例3
[0063]
10g聚(l-丙交酯)二醇(mn=1000g/mol),8.06g磷酰胆碱二醇,10.85g赖氨酸二异氰酸酯和0.16g辛酸亚锡溶于70ml二氧六环中,干燥氮气保护,搅拌至溶解,升温至80℃,反应至-nco含量达到理论值,约2.5h,加入槲皮素的二氧六环溶液(1.96g槲皮素溶于4.5ml二氧六环中),维持温度继续搅拌反应10分钟,停止搅拌,减压去除溶液中的气泡,趁热缓慢倒入模具中,将模具置于35℃的烘箱中,静置,交联成型,至-nco红外特征峰消失,约20h。将成型后的凝胶进行冷冻干燥,得海绵材料s3。
[0064]
实施例4
[0065]
15g聚(ε-己内酯)二醇(mn=1500g/mol),8.06g磷酰胆碱二醇,10.85g赖氨酸二异氰酸酯和0.16g辛酸亚锡溶于80ml二氧六环中,干燥氮气保护,搅拌至溶解,升温至80℃,反应至-nco含量达到理论值,约3.0h,加入槲皮素的二氧六环溶液(1.96g槲皮素溶于4.5ml二氧六环中),维持温度继续搅拌反应10分钟,停止搅拌,减压去除溶液中的气泡,趁热缓慢倒入模具中,将模具置于35℃的烘箱中,静置,交联成型,至-nco红外特征峰消失,约20h。将成型后的凝胶进行冷冻干燥,得海绵材料s4。
[0066]
实施例5
[0067]
10g聚(ε-己内酯)二醇(mn=1000g/mol),8.06g磷酰胆碱二醇,10.85g赖氨酸二异氰酸酯和0.16g辛酸亚锡溶于70ml二氧六环中,干燥氮气保护,搅拌至溶解,升温至80℃,反应至-nco含量达到理论值,约2.5h,加入槲皮素的二氧六环溶液(2.17g槲皮素溶于5.1ml二氧六环中),维持温度继续搅拌反应10分钟,停止搅拌,减压去除溶液中的气泡,趁热缓慢倒
入模具中,将模具置于35℃的烘箱中,静置,交联成型,至-nco红外特征峰消失,约20h。将成型后的凝胶进行冷冻干燥,得海绵材料s5。
[0068]
分析方法
[0069]
以下分析方法用于所有的实施例,除非另外说明。
[0070]
海绵的吸水率测定:称取一定量(m1)的海绵于浸入去离子水中,30s后取出称量,质量记为m2,吸水率r=(m
2-m1)/m1。
[0071]
海绵的降解时间:海绵失去机械性能的时间,在100ml宽口锥形瓶中,加入50ml的生理食盐水和1.0cm
×
1.0cm
×
1.0cm的海绵,恒温37℃,一定时间后,轻轻振摇锥形瓶,当海绵破碎(不再保持原有形状)时的时间,记为海绵的降解时间。
[0072]
压缩强度:采用质构仪测定直径为12mm、高10mm的海绵样品压缩至高7mm(压缩率为30%)时的强度。
[0073]
血小板粘附:其血液相容性采用血小板粘附测定。从健康兔子心脏抽取新鲜血液,加入质量分数为3.8%的柠檬酸钠溶液作为抗凝剂,全血与抗凝剂的比例为9:1,将加入抗凝血剂的全血放入离心机中,初次离心设置转速为1400r/min,离心10min;然后吸取上层清液再次离心,设置转速仍为1400r/min,离心15min,上层清液为贫血小板血浆(prp),吸取大约3/4上清液弃掉,剩余即为prp;将压缩成膜片的海绵(1.0
×
1.0
×
1.0cm3)样品,浸没在ph=7.4的pbs缓冲溶液中4h,然后转移至37℃prp溶液中孵育1h。将膜取出,用pbs缓冲溶液反复冲洗3次以除去未吸附的血小板,然后再将膜浸泡在2.5%的戊二醛pbs溶液中30min固定表面的血小板。紧接着将膜依次放入不同浓度梯度的乙醇水溶液中(50、60、70、80、90、100%)进行逐级脱水,在每种浓度的溶液中浸泡30min,最后于室温下干燥,喷金,采用s-4800型sem(日本日立公司)观察膜表面的血小板黏附情况。
[0074]
孔隙率的测定:骨材料的孔隙率采用压汞法平行测定3次,取平均值。
[0075]
抑菌性能的测定:将海绵样品切成5mm
×
5mm的切片,辐照灭菌。采用从大肠杆菌的单个菌落获得的过夜培养物,并在琼脂培养基中培养。将每种培养液(1ml)接种到9ml pbs中,得到浓度为3
×
10
5-5
×
105菌落形成单位(cfus/ml)。用浓度为3
×
10
5-5
×
105cfus/ml的细菌溶液进行抑菌试验,在直径为10cm的培养皿中进行。
[0076]
实施例1-5中制备的海绵样品的性能如表1所示。
[0077]
表1聚氨酯海绵的性能
[0078][0079]
由表1和图1-3可看出,制备的海绵具有较高的压缩强度,说明该海绵具有良好的回弹能力,可用于压迫止血;并且海绵的压缩强度随着硬段含量的增加而增加,表明聚氨酯链段中的硬段对压缩强度贡献较大。样片s5具有更高的交联度,表现出更大的压缩强度,但交联度太高,可能会导致降解速率的降低和抗菌能力变弱,因此所制备的海绵样品均具有合适的交联度。
[0080]
冷冻干燥后的样品s1-1的sem照片显示冻干后的海绵呈现蜂窝状结构(如图2所示)。海绵的孔隙率和吸水率与冻干前的固含量有关,固含量越小,孔隙率和吸水率越高,因此,可以通过调整溶剂的用量来控制海绵的孔隙率和吸水率。
[0081]
海绵的降解速率与产品中聚酯的含量有关,随着聚酯含量的增加,降解速率加快;样品s1-1与s-3对比可发现,聚酯链段为聚(ε-己内酯)和聚(l-丙交酯)时,降解速率没有明显变化。另外,该材料的降解产物不含致癌的芳香胺,均为可吸收代谢的产物。
[0082]
海绵的血液相容性通过海绵压缩成的膜材料的血小板粘附测定,整体上,材料表面粘附的血小板很少,如图1所示,具有优异的抗血小板粘附能力,表现出良好的血液相容性,并且,对比样品s1-1和s2,发现随着材料中磷酰胆碱含量的增加,血小板吸附量降低,即磷酰胆碱的引入提高了材料的血液相容性。
[0083]
海绵的抗菌性采用常见的大肠杆菌进行实验,抑菌效果图如图3所示,抑菌圈结果表明材料对大肠杆菌具有良好的抑制效果,并且随着材料中槲皮素含量的增加,抑菌效果增加,这表明槲皮素基团为材料提供了抗菌能力。因为槲皮素具有广谱抗菌能力,因此可推测该材料对常见的菌类都有抑菌能力。
[0084]
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1