一种三维离子型钇(Ⅲ)配位聚合物、制备方法和用途

文档序号:29796156发布日期:2022-04-23 18:53阅读:285来源:国知局
一种三维离子型钇(Ⅲ)配位聚合物、制备方法和用途
一种三维离子型钇(ⅲ)配位聚合物、制备方法和用途
技术领域
1.本发明属于化学领域,涉及配位聚合物,具体涉及一种三维离子型钇(ⅲ)配位聚合物、制备方法和用途。


背景技术:

2.重金属离子过多或过少都会对生物体产生较大的影响,甚至引起疾病。而重金属cu
2+
离子在生物体内的许多生理过程中起着尤为重要的作用,同时也是一种重要的环境污染物。在生物学、医学中,过渡金属cu
2+
离子稳态失调会引起神经退化型疾病,譬如阿尔茨海默病、帕金森病、朊蛋白病和威尔逊氏病等。因此,了解过渡金属cu
2+
离子对生物和环境的作用需要一种可靠、通用的定量方法。
3.目前检测cu
2+
离子的方法有离子迁移谱(ims)、x射线色散、原子吸收光谱法、电感耦合等离子体(icp)等。但是这些方法复杂、实验时间长,不具选择性以及浪费成本等缺点而受到限制。化学传感器又称化学探针,由于其在化学、生物学、医学和环境等众多研究领域中的应用而显得尤为重要。荧光探针获得了快速发展,其具有高灵敏度、易于可视化、响应时间短,高选择性和经济高效的实时监控等优点,是最有效的传感应用工具之一。一些探针在水溶液中不能稳定存在,使其应用受到很大的限制,因此设计合成在水溶液中对cu
2+
离子具有选择性识别功能的荧光探针具有重要的研究意义。
4.为解决上述问题,特提出本发明创造。


技术实现要素:

5.本发明旨在克服现有技术的不足,第一目的在于提供一种三维离子型钇(ⅲ)配位聚合物,第二目的在于提供该配位聚合物的制备方法,第三目的在于提供该配位聚合物作为荧光探针检测水溶液中cu
2+
离子的用途。
6.本发明上述目的通过如下技术方案实现:
7.一种三维离子型钇(ⅲ)配位聚合物,其分子式为[y(c
14
h7n4o4)
·
(h2o)]n·
nno3,化学简式为[y(bita)n(h2o)]n·
nno3,h2bita代表2,5-双咪唑对苯二羧酸,其化学结构式如下:
[0008][0009]
其中:n为正整数;y1代表的y
3+
离子与分别来自四个2,5-双咪唑苯二羧酸配体中的羧基氧原子o1、o1
iv
、o2
ii
和o2
iii
及配位水分子配位成键,同时还与分别来自两个2,5-双咪唑苯二羧酸配体中的咪唑氮原子n2v和n2
vi
配位成键(对称代码:i1.5

x,1/2

y,1

z;
ii
x,1

y,1/2+z;
iii1–
x,1

y,1

z;
iv1–
x,y,1.5

z;
v1–
x,y,1/2

z;
vi
x,y,1+z);y
3+
离子的配位数为7,呈现五角双锥空间几何构型;硝酸根为抗衡离子。
[0010]
一种上述配位聚合物的制备方法,包括如下步骤:
[0011]
将y(no3)3·
6h2o和2,5-双咪唑对苯二羧酸加入聚四氟乙烯管中,加入koh水溶液,后将混合物混合均匀分散,体系的ph为7.5~8.5,将此聚四氟乙烯管置于不锈钢反应釜中密封,在温度为423~443k下反应72h~156h,自然冷却至常温,即可析出黄色块状晶体,用蒸馏水和丙酮洗涤后真空干燥,即得所述配位聚合物;
[0012]
其中:所述y(no3)3·
6h2o与2,5-双咪唑对苯二羧酸的物质的量之比为1:(1~2);所述koh水溶液的浓度为0.2mol/l;所述2,5-双咪唑对苯二羧酸的物质的量与所述koh水溶液的体积比为1mol:(0.6ml~1ml)。
[0013]
优选地,上述制备方法中的反应温度为443k,反应时间为72h。
[0014]
上述配位聚合物用作荧光探针检测水溶液中cu
2+
离子的用途。
[0015]
该技术方案中的三维离子型钇(ⅲ)配位聚合物的晶体结构属单斜晶系,空间群为c2/c,晶胞参数为:α=90
°
,β=103.215(2)
°
,γ=90
°
。在晶胞的不对称单元中y1、o3(配位水分子)、o5和o6原子处于2-重螺旋轴上,其占有率为0.5,根据电荷平衡原理硝酸根中的n3和o4在不对称单元中的占有率也为0.5,所以不对称单元中包含了1/2的y
3+
离子、1/2的2,5-双咪唑苯二羧酸、1/2个配位水分子和1/2的硝酸根离子。该配合物中y
3+
离子分别与来自四个2,5-双咪唑苯二羧酸配体中的羧基氧原子o1、o1
iv
、o2
ii
和o2
iii
及配位水分子上的o3配位成键;同时与分别来自两个2,5-双咪唑苯二羧酸配体中的咪唑氮原子n2v和n2
vi
配位成键(对称代码:i1.5

x,1/2

y,1

z;
ii
x,1

y,1/2+z;
iii1–
x,1

y,1

z;
iv1–
x,y,1.5

z;
v1–
x,y,1/2

z;
vi
x,y,1+z),展现出五角双
锥几何构型(图1)。配体h2bita采取μ
6-ko2:ko2:kn1:kn1模式连接六个y
3+
离子,相邻的两个y
3+
离子通过两个顺-顺桥连羧基连接形成了次级结构单元[y2(μ-coo)2](其中y
···
y间的距离为);这样的次级结构单元平面相互垂直(二面角为73.23(5)
°
)连接形成了一维“之”字型金属链状结构[y(μ-coo)2]n(图2)。在bc平面内,通过bita
2-配体延伸形成了一个波浪型二维层状结构(图3),这样的二维层状结构相互连接进一步形成三维阳离子金属有机骨架结构(图4),孔道的尺寸大约是抗衡no
3-离子占据到骨架结构的菱形孔道中,与配位水分子间形成了氢键(o-h
···
o键长为)。y

o键的键长范围为到y

n键的键长为x射线粉末衍射测试表明该配位聚合物的晶体样品均一稳定。室温条件下配位聚合物的固体荧光发射光谱显示,当激发波长为460nm时,配位聚合物在536nm处发射出强的绿光。
[0016]
有益效果:
[0017]
1、本发明制备的三维离子型钇(ⅲ)配位聚合物的产率大于89%;
[0018]
2、本发明使用的刚性配体2,5-双咪唑苯二羧酸和y(no3)3·
6h2o廉价易得,在水热条件下进行反应,即得到一例结构新颖的三维离子型钇(ⅲ)配位聚合物,制备方法简单、合成成本低、产率、纯度较高且绿色环保;
[0019]
3、本发明使用的刚性配体2,5-双咪唑苯二羧酸配体,具有大的共轭体系,表现出良好的荧光性能,含有多个氮氧配位原子同时和轻稀土金属钇(iii)离子配位,表现出七配位几何构型,根据软硬酸碱规则不同于第一过渡系和镧系金属离子常见的配位环境;
[0020]
4、本发明制备的三维离子型钇(ⅲ)配位聚合物在298k固态下,在激发波长为460nm时,最强的发射峰位于536nm,表现出绿色荧光;在水溶液中具有强的荧光性能,且在ph=2~13的水体系中浸泡30天,其结构仍然稳定保持,可作为水体系中cu
2+
离子检测的稳定荧光探针。
附图说明
[0021]
图1为本发明钇(iii)配位聚合物的晶体结构中配体bita
2-和y
3+
离子配位环境图;
[0022]
图2为本发明钇(iii)配位聚合物中相邻y
3+
离子通过两个羧基顺-顺桥连形成的一维“之”字型金属链状结构[y(μ-coo)2]n;
[0023]
图3为本发明钇(iii)配位聚合物中bita
2-配体连接次级结构单元[y2(μ-coo)2]构建的二维层状结构示意图;
[0024]
图4为本发明钇(iii)配位聚合物中bita
2-配体与金属链[y(μ-coo)2]n构建的三维骨架结构图;
[0025]
图5为本发明钇(iii)配位聚合物粉末在室温下x射线粉末衍射图;
[0026]
图6为本发明钇(iii)配位聚合物粉末在室温下固体荧光发射图;
[0027]
图7为本发明钇(iii)配位聚合物粉末在不同溶剂中的荧光发射强度图;
[0028]
图8为本发明钇(iii)配位聚合物粉末(a)在不同溶剂以及(b)在不同ph值的水溶液中浸泡30天后的x射线粉末衍射图;
[0029]
图9为本发明钇(iii)配位聚合物的水溶液中加入不同金属离子的荧光强度图;
[0030]
图10为本发明钇(iii)配位聚合物的水溶液中加入不同浓度cu
2+
离子荧光淬灭图;
[0031]
图11为本发明钇(iii)配位聚合物的水溶液中加入不同浓度cu
2+
离子的荧光线性校准曲线。
具体实施方式
[0032]
下面结合实施例具体介绍本发明实质性内容,但并不以此限定本发明的保护范围。
[0033]
实施例1:钇(iii)配位聚合物的制备
[0034]
称取0.1mmol h2bita与0.2mmol y(no3)3·
6h2o加入到15ml聚四氟乙烯管中,滴加600μl 0.2mol/lkoh溶液。将此聚四氟乙烯管密封于不锈钢反应釜中,在433k反应72h,自然冷却到常温,即可析出黄色块状晶体,用水和丙酮洗涤后真空干燥,产率为89%。元素分析:理论值:c 36.23,h 1.95,n 15.09%;实验值:c 36.03,h 1.91,n 15.13。
[0035]
钇(iii)配位聚合物的晶体结构测定:
[0036]
晶体结构测定采用单晶x射线衍射,以bruker d8-quest探测器通过石墨单色器单色化的mo-kα射线,温度为296k,扫描方式ω-2θ,在photo 100型的探测器收集数据的。原始数据经saint还原后,使用sadabs进行吸收校正。晶体结构由shelxl-2018直接法解得。详细的晶体测定数据见表1。晶体结构见图1所示的分子结构图。
[0037]
表1钇(iii)金属有机框架材料的晶体学数据
[0038]
[0039][0040]
粉末衍射:
[0041]
x-射线粉末衍射花样与实验单晶衍射数据模拟花样完全吻合,表明本发明的钇(iii)配位聚合物的晶体样品物相均一,见图5。
[0042]
实施例2:本发明钇(iii)配位聚合物在室温下具有光致发光性能
[0043]
2,5-双咪唑苯二羧酸配体表现出较大的共轭体系结构,含有多个配位点,羧基可与金属离子配位形成双核或多核金属簇结构单元。室温下,我们对2,5-双咪唑苯二羧酸配体和钇(iii)配位聚合物粉末分别进行了固体荧光测试(图6)。在激发波长为360nm,狭缝为5nm的条件下,h2bita配体在430nm处出现荧光发射峰,原因是h2bita共轭体系中含有的π-π*和n-π*电子跃迁所产生。而钇(iii)配位聚合物在460nm激发波激发下,荧光发射峰出现在535nm,相比于h2bita配体,其发生了105nm的红移,这是由于y
3+
离子微扰配体分子内的π*

π跃迁和金属到配体的跃迁(mlct)作用达到调控配位聚合物的发射绿色荧光的目的;另外,由于y
3+
离子与羧基和咪唑氮原子配位增强了h2bita配体的共轭刚性平面,减少了荧光的衰减,使得钇(iii)配位聚合物的荧光强度明显增强。
[0044]
实施例3:本发明不同溶剂诱导钇(iii)配位聚合物的荧光性能
[0045]
由于溶剂会引起化合物的荧光性质的改变,在室温下,称取5mg的钇(iii)配位聚合物粉末样品,分别置于10ml的不同溶剂:蒸馏水、dmf、乙醇、乙腈中,通过超声处理60分钟后,将悬浊液静置沉化三天,分别取不同溶剂的上清液进行荧光测试,如图7所示,在不同溶
剂中钇(iii)配位聚合物表现出明显差异的荧光现象,在水体系中产生的荧光强度最强。
[0046]
为了确定钇(iii)配位聚合物在上述溶剂中的稳定性,在室温下浸泡2周后,通过x-射线粉末衍射分析发现配合物样品在这些溶剂中浸泡后,其衍射花样与原样品粉末衍射花样相吻合,说明配合物具有良好的溶剂稳定性(图8中a)。进一步,将5mg粉末样品分别浸泡于不同ph值的水溶液中,通过x-射线粉末衍射测试表明,配合物在水以及酸碱介质体系中具有良好的稳定性(图8中b)。
[0047]
实施例4:本发明钇(iii)配位聚合物在水中对cu
2+
离子的选择性识别
[0048]
首先,配制10ml浓度为2
×
10-3
mol/l的不同离阳离子溶液,(m(no3)
x
(m=nh
4+
,mg
2+
,ca
2+
,sr
2+
,al
3+
,cr
3+
,mn
2+
,fe
3+
,co
2+
,ni
2+
,cu
2+
,zn
2+
,cd
2+
,ag
+
,pb
2+
,bi
3+
)。将5mg的钇(iii)配位聚合物粉末分别加入到上述5ml不同阳离子溶液中,超声处理60分钟后,静置沉化三天,使其形成复合无机阳离子的钇(iii)配位聚合物的悬浊液。取上层清液,在激发波长为290nm,狭缝宽度为5nm的条件下,分别测得其荧光发射强度,如图9所示,该钇(iii)配位聚合物对cu
2+
离子具有独特的荧光选择性。
[0049]
实施例5本发明钇(iii)配位聚合物在水中识别cu
2+
离子以及识别cu
2+
离子的灵敏度
[0050]
将5mg钇(iii)配位聚合物粉末加入到10ml水中,超声处理60分钟,静置沉化三天,使其形成均匀的悬浊液。取2ml上层清液,逐渐滴加浓度为2
×
10-3
mol/l的cu
2+
离子溶液,从图10可以看出,在激发波长为330nm,狭缝为5nm时,钇(iii)配位聚合物的悬浊液在430nm处显示强的荧光。随着溶液中cu
2+
离子浓度的增加,其荧光强度显著下降。在低浓度时,通过stern-volmer方程i0/i=1+k
sv
×
[m]来计算其淬灭效应:i0为钇(iii)配位聚合物悬浊液的荧光强度,i为向钇(iii)配位聚合物悬浊液加入cu
2+
离子后的荧光强度,[m]为cu
2+
离子的浓度,k
sv
为猝灭常数。该配位聚合物对cu
2+
离子的猝灭常数为k
sv
=1.34
×
104m-1
(图11),表明该配位聚合物在水溶液中对cu
2+
离子具有较高灵敏的响应。通过对该配位聚合物对cu
2+
离子进行识别循环测试10次后发现其对cu
2+
离子依然保持良好的荧光强度,具有良好的重复利用率。以上实验表明该配位聚合物作为水中探测cu
2+
离子的探针具有好的应用前景。
[0051]
上述实施例的作用在于具体介绍本发明的实质性内容,但本领域技术人员应当知道,不应将本发明的保护范围局限于该具体实施例。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1