包括发绿光的陶瓷发光转换器的照明系统的制作方法

文档序号:3779225阅读:224来源:国知局
专利名称:包括发绿光的陶瓷发光转换器的照明系统的制作方法
技术领域
本发明通常涉及一种包括辐射源和发绿光的陶瓷发光转换器的照明系统。本发明还涉及一种在这种照明系统中使用的发绿光的陶瓷发光转换器。
更具体地,本发明涉及一种照明系统和发绿光的陶瓷发光转换器,用于基于发射紫外或者蓝色辐射的辐射源,通过下转换发光(luminescent down conversion)以及加色混合,来产生特定的有色光,包括白光。特别地期望发光二极管作为辐射源。

背景技术
如今,包括发出可见彩色光的二极管作为辐射源的发光照明系统,单个地或者成簇地用于需要不规则的(rugged)、小型、轻质、高效、长寿命、低电压的白色或者彩色照明源的各种应用中。
这些应用尤其包括消费品(例如蜂窝电话、数码相机和手持式计算机)中的小型LCD显示器的照明。相关用途还包括例如计算机监控器、立体声收音机、CD播放器、VCR等这样的产品上的状态指示器。这种指示器还可以在例如飞机、火车、轮船、汽车等中的仪器面板这样的系统中发现。
在大面积显示器例如全色视频墙以及高亮度大面积户外电视屏幕中可发现在包括几百或者几千LED组件的在可寻址阵列中的众多可见彩色LED的多色结合。发出绿色、琥珀色和红色的LED逐渐用于交通灯或者用于建筑物的效果照明。
然而,传统的可见彩色发光二极管典型地倾向于低光输出并且认为从一批到一批难以制造有相同的发光特征。LED还能够在一批中显示出晶片上大波长变化以及由工作条件例如驱动电流和温度引起的强波长和发光变化。这种情况特别适用于发绿光的LED。
因此,当通过包括可见彩色发光二极管的排列装置产生白光时,存在因为可见彩色发光二极管的色调、亮度以及其它因素的差异而不能产生所需色调的白光这样的问题。
已知可以通过借助包含磷光体(phosphor)的发光材料将在电磁波频谱的UV到蓝色的范围中发射的发光二极管的颜色进行变换,来提供可见白光或彩色光照明。
这种磷光体增强的“白色”LED系统特别以二色性(BY)方法,即混合黄色和蓝色为基础,在这种情况下可以由黄色磷光体提供输出光的黄色二级组分,以及可以通过磷光体或者通过蓝色LED的一级发射提供蓝色组分。
同样地,白色发光系统以三色(RGB)方法,即混合三种颜色红色、绿色和蓝色为基础,在这种情况下可以通过磷光体提供红色和绿色组分,通过发蓝光的LED的一级发射提供蓝色。
最近在发光二极管技术方面的进步已经带来非常高效的在近UV到蓝色范围发光的发光二极管,如今已经开始销售发彩色和白色光的磷光体转换的发光二极管,挑战传统的白炽灯照明和荧光照明。
WO2004036962A1公开了一种包括发光结构和荧光屏的发光器件,其中该发光结构能够发射波长小于480nm的一级光,该荧光屏包括通式如下的绿色磷光体(Sr1-a-bCabBacMgdZne)SixNyOz:Eua,其中0.002≤a≤0.2,0.0≤b≤0.25,0.0≤c≤0.25,0.0≤d≤0.25,0.0≤e≤0.25,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5。
现有技术中磷光体增强的发光器件典型地使用如下布置其上具有发蓝光的LED的半导体芯片由环氧树脂层覆盖,所述环氧树脂层包含一种或者多种转换磷光体的颜料颗粒。这些磷光体颗粒将蓝光转换成白光或者彩色光,如上所述。
然而,现有技术中包括微晶磷光体粉末的照明系统的问题在于它们不能用于许多应用,因为它们具有许多缺点。
首先,难以沉积厚度均匀的层。由于颜色均匀需要均匀的厚度,所以难以保证颜色均匀。在磷光体比较厚的区域中,光看起来呈绿白色,而在磷光体层较薄的部分中,光看起来呈蓝白色。
第二,这些传统磷光体颗粒为多晶的。多晶磷光体往往是不透明的。结果,磷光体颗粒吸光,这降低了光输出。此外,颗粒使蓝光散射,导致光提取效率较低。第三,颗粒易于结块,因此难以提供具有已知尺寸的颗粒的均匀层。


发明内容
因此,目的是要提供一种照明系统,用于产生将适当的光提取效率和透明度与真实的色彩再现相结合的白光。
根据本发明的另一个目的,提供一种用于产生绿光的照明系统。
因此,本发明提供一种照明系统,包括辐射源和整块陶瓷发光转换器,该整块陶瓷发光转换器包括至少一种磷光体,该磷光体能够吸收该辐射源发射出的光的一部分并且发出波长不同于所吸收的光的波长的光,其中所述至少一种磷光体是通式为(Sr1-a-b-c-d-e-fCabBacMgdZneCef)Six-gGegNyOz:Eua的铕(II)激发的氧氮硅酸盐(oxonitridosilicate),其中0.001≤a≤0.2,0.0≤b≤1.0,0.0≤c≤0.5,0.0≤d≤0.25,0.0≤e≤0.25,0.0≤f≤0.2,0.0<g<1.0,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5。
由于该整块的陶瓷发光转换器是半透明的,所以它不阻止光的传输并且使散射最小化。该整块的陶瓷发光转换器容易加工成均匀厚度,因此在整个表面上颜色转换效果相同,提供比现有技术中的器件更加均匀的复合光。
优选地,所述辐射源为发光二极管。
根据本发明的一个实施方案,所述整块陶瓷发光转换器为第一发光转换元件,还包括一个或者多个第二发光转换器元件。
第二发光转换器元件可以是包括第二磷光体作为发光材料的涂层。可替换地,第二发光转换器元件可以是包括第二磷光体的第二整块陶瓷发光转换器。
根据本发明的另一个方面,提供包括至少一种磷光体的陶瓷发光转换器,其中所述磷光体能够吸收一部分辐射源所发出的光并且发出波长与所吸收的光的波长不同的光,其中所述至少一种磷光体是通式为(Sr1-a-b-c-d-e-fCabBacMgdZncCef)Six-gGegNyOz:Eua的铕(II)激发的氧氮硅酸盐,其中0.001≤a≤0.2,0.0≤b≤1.0,0.0≤c≤0.5,0.0≤d≤0.25,0.0≤e≤0.25,0.0≤f≤0.2,0<g<1,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5。
这种转换器是有效的,因为对于高能量辐射,例如在电磁波频谱的UV到蓝色范围中的辐射来说,它是良好的转换器。它还是有效的,因为它是由高能量辐射输入的转换产生的光能量的良好发送器。否则该光将被吸收在该材料中并且会影响总转换效率。



图1示出包括本发明的陶瓷发光转换器的二色性白色LED灯的示意性侧视图,该陶瓷发光转化器位于发光二极管引线框结构所发射的光的通路中。
图2示出包括本发明的陶瓷发光转换器的三色性白色LED灯的示意性侧视图,该陶瓷发光转化器位于发光二极管引线框结构所发射的光的通路中。
图3示出包括本发明的陶瓷发光转换器的三色性白色LED灯的示意性侧视图,该陶瓷发光转化器位于发光二极管倒装芯片结构所发射的光的通路中。
图4示出包括本发明的陶瓷发光转换器的二色性绿色灯的示意性侧视图,该陶瓷发光转化器位于发光二极管倒装芯片结构所发射的光的通路中。
图5示出包括本发明的陶瓷发光转换器的RGB显示器的示意性侧视图,该陶瓷发光转化器位于发光二极管倒装芯片结构所发射的光的通路中。
图6示出通过Cu Kα辐射所测量的根据本发明的陶瓷发光转换器的XRD图。
图7示出SrSi2N2O2:Eu的晶体结构模型。
图8示出与发蓝光二极管相比较,绿色539nm CLC照明系统的输出特性。
附图标记列表 1发光二极管 2整块陶瓷发光转换器 3反射器 4线接合 5电极 6磷光体涂层 7基板
具体实施例方式 整块陶瓷发光转换器 本发明集中在整块陶瓷发光转换器(CLC),该陶瓷发光转换器包括通式为(Sr1-a-b-c-d-e-fCabBacMgdZneCef)Six-gGegNyOz:Eua的铕(II)激发的氧氮硅酸盐磷光体,其中0.001≤a≤0.2,0.0≤b≤1.0,0.0≤c≤0.5,0.0≤d≤0.25,0.0≤e≤0.25,0.0≤f≤0.2,0.0<g<1.0,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5,位于包括一级辐射源的照明系统的任何构造中,所述一级辐射源包括但不局限于放电灯、荧光灯、LED、LD、OLED和X射线管。如在此处所用的,术语“辐射”包括在电磁波频谱的UV、IR和可见区域中的辐射。
通常,整块陶瓷发光转换器是陶瓷体,其当被高能电磁光子激发时发射可见的或近可见的频谱范围内的电磁辐射。
整块陶瓷发光转换器的特征在于它的典型微观结构。整块陶瓷发光转换器的微观结构是多晶的,即隐晶、微晶或者纳米晶的晶粒的不规则集聚体。晶粒成长,使得紧密接触并且共用晶界。宏观上整块陶瓷似乎是各向同性的,然而,通过SEM(扫描电子显微镜)可以容易地检测多晶的微观结构。
所述整块陶瓷发光转换器还可以在其晶粒的晶界处包含第二相,这改变了陶瓷的光散射性质。这种晶粒间的材料可以散射光,从而因在晶界处的折射率差异而引起增加陶瓷材料中的光程。第二相材料可以是晶体的或者玻璃质的。
因为它们的整块多晶微观结构,陶瓷发光转换器是透明的或者至少具有低光吸收的高光学半透明性。
包括发绿先的铕激发的氧氮硅酸盐磷光体的CLC 根据本发明的整块陶瓷发光转换器包括通式为(Sr1-a-b-c-d-e-fCabBacMgdZneCef)Six-gGegNyOz:Eua的铕(II)激发的氧氮硅酸盐,其中0.001≤a≤0.2,0.0≤b≤1,0.0≤c≤0.5,0.0≤d≤0.25,0.0≤e≤0.25,0.0≤f≤0.2,0.0<g<1.0,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5,该整块陶瓷发光转换器具有高度物理完整性,这种性质致使该材料可用于加工、构造和抛光以改进光提取并且使得能够产生光导效果。
这类磷光体材料是以氧取代的氮硅酸盐的铕(II)激发发光为基础的。该磷光体包括主晶格和掺杂剂离子。主晶格具有层状结构,该层状结构包括[Si2N6/3O2/1]的交替层的叠层,其中硅由氮和氧四面包围。金属(例如稀土碱金属和锌以及铕(II))的阳离子,以及最终铈作为共活化剂嵌入在这些层之间,参见图7。
优选地,稀土碱金属选自钙和锶。这些材料的主晶格可以是五元素(两种阳离子)氧氮硅酸盐,例如铕(II)激发的氧氮硅酸锶SrSi2N2O2:Eu,或者可以包括多于五种元素,例如铕(II)激发的氧氮硅酸锶钡(Sr,Ba)Si2N2O2:Eu。
铕(II)的比例z优选在0.001<a<0.2的范围内。当铕(II)的比例z较低时,发光减弱,因为光致发光的激发发射中心的数量因为铕(II)阳离子而降低,并且当a大于0.2时,出现密度淬火(density quenching)。密度淬火是指在为增加荧光材料的亮度所添加的活化剂的浓度增大超过最佳水平的时候出现的发射强度的降低。
这些铕(II)激发的氧氮硅酸盐响应电磁波频谱中更多的能量部分,而不仅仅是电磁波频谱中可见的部分。
特别地,根据本发明的磷光体尤其可被具有例如200到420nm这样的波长的UV发射线激发,但是还可由发蓝光的组件发射的波长在400到495nm范围内的LED光以高效率激发。因此,所述整块陶瓷发光转换器的荧光材料具有用于将来自氮化物半导体发光组件的蓝光转换成白光或者有色绿光的理想特性。如图8中所示,根据本发明的磷光体-转换的发光二极管有效地将发蓝光二极管发射的光转换成具有539nm峰值波长的绿光。
整块陶瓷发光转换器的制造 通过如下步骤制造根据本发明的整块陶瓷发光转换器在第一步骤中,制备荧光微晶磷光体粉末材料,在第二步骤中,将微晶材料均衡地压制成丸粒并且在升高的温度下烧结所述丸粒,并且烧结时间足以使得压实成光学上的半透明体。
制造本发明的微晶磷光体粉末的方法不作特别限制,并且可以通过任何能够提供根据本发明的磷光体的方法来制造所述微晶磷光体粉末。可以制造下述通式的一系列组合物(Sr1-a-b-c-d-e-fCabBacMgdZncCef)Six-gGegNyOz:Eua,其中0.001≤a≤0.2,0.0≤b≤1.0,0.0≤c≤0.5,0.0≤d≤0.25,0.0≤e≤0.25,0.0≤f≤0.2,0.0<g<1.0,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5,它们形成1.5<x≤2.5,1.5<y≤2.5以及1.5<z≤2.5的均质陶瓷。
用于制造根据本发明的磷光体的优选方法称作固态法。在这个方法中,在固态下混合磷光体前体材料,并且加热其使得前体反应而形成磷光体材料的粉末。
在一特定实施方案中,通过下述技术作为磷光体粉末制备这些发黄绿色(yellow to green)光的磷光体为了制备二价金属的混合氧化物,通过搅拌将稀土碱金属或者锌和铕(III)的高纯度硝酸盐、碳酸盐、草酸盐和醋酸盐溶解在25-30ml的去离子水中。搅拌这些溶液同时在电炉(hotplate)上加热直到蒸发掉水,根据组成而产生白色或者黄色浆料。
在120℃下整夜(12小时)干燥这些固体。将产生的固体精细研磨并且放到高纯度的氧化铝坩锅中。将坩锅装载到含木炭的盆中,随后装到管式炉中,之后用流动的氮气/氢气将它们吹扫净化几个小时。炉子参数为10℃/min到1300℃,接着是在1300℃下停留4小时,然后关闭炉子并且使得冷却到室温。
以预定比率将这些金属氧化物与氮化硅Si3N4、二氧化硅SiO2和焊剂混合。
将混合物放置到高纯度氧化铝坩锅中。将坩锅装载到含木炭的盆中,随后装到管式炉中,之后将用流动的氮气/氢气将它们吹扫净化几个小时。炉子参数为10℃/min到1200℃,接着是在1200℃下停留4小时,然后炉子被缓慢冷却到室温。
在1300℃下进行第二次退火步骤之前,再一次精细研磨样品。
通过在略微低的温度下在流动的氩气中的额外的第三次退火可以改善发光输出。
磷光体粉末材料还可以通过液体沉淀制成。在这种方法中,对包括可溶性磷光体前体的溶液进行化学处理以沉淀出磷光体颗粒来或者磷光体颗粒前体。典型地在升高的温度下煅烧这些颗粒,从而产生磷光体化合物。
在另外一个方法中,磷光体粉末颗粒前体或者磷光体颗粒分散在浆料中,然后进行喷雾干燥以蒸发液体。接着在升高的温度下在固态状态下烧结该颗粒,从而使粉末结晶并且形成磷光体。然后通过在升高的温度下烧结从而使所述粉末结晶并且形成磷光体,将喷雾干燥的粉末转换成氧氮硅酸盐磷光体。然后轻轻地将烧成的粉末压碎并且碾磨重新获得所需粒径的磷光体颗粒。
通过这些方法获得的精细颗粒状微晶磷光体粉末被用于制备根据本发明的陶瓷发光转换器。为了这个目的,使合适的粉末经受非常高的压力,该非常高的压力或者与在升高的温度下的处理结合进行或者在后面接着进行单独的热处理。优选均衡压制。
特别优选的是热均衡压力处理,或冷冷均衡压力处理接着烧结。还可以使用冷均衡压制和烧结的结合,接着热均衡压制。
需要认真监控致密化过程来控制晶粒生长并且除去残余的气孔。
磷光体材料的压制和热处理导致产生整块陶瓷体,该整块陶瓷体容易通过当前的金相学工艺进行锯割、加工和抛光。可以将多晶陶瓷材料锯割成1毫米或者更小宽度的晶片。优选地,将所述陶瓷抛光得到光滑的表面并且阻止因表面粗糙而引起的漫散射。
特定的实施方式 制备Sr0.96Si2N2O2:Eu0.04在氩气下将208.9g(1.415mol)的SrCo3与12.3g(0.059mol)的EuF3和206.8g(4.423mol)的Si3N4(最低98%纯度)在无水乙醇中混合。乙醇在氩气流中蒸发,然后在1300℃下在H2/N2气氛中在钨舟中的木炭上烧制干燥过的粉末混合物1小时。在碾磨之后,在1300℃下在H2/N2气氛中烧制粉末2小时,碾磨并用水清洗几次。
将磷光体粉末原料与有机二醇粘结剂混合,压制成丸粒并且通过在44800Psi下冷均衡压制进一步使其致密化。然后将陶瓷坯体(=未烧制的)放置在钨箔上,并且在1600℃下在上述同样的还原气氛中烧制2小时。冷却至室温后,将得到的氮化物陶瓷锯割成晶片。对这些晶片进行打磨和抛光,从而得到最终的半透明的氮化物陶瓷。
CLC微观结构以形成晶界网格(grain boundary network)的晶粒的统计粒状结构为特征。
所述陶瓷显示出SrSi2N2O2(3.743g/cm3)理论密度的98%的密度。通过在氮气气氛下(温度范围1600-1780℃,压力范围2000-30000PSI)对陶瓷热均衡压制以除去任何残留的内部孔隙,还可以进一步改善样品的密度。
所述磷光体陶瓷通过粉末X射线衍射(Cu,Kα线)。图7示出了整块陶瓷发光转换器的X射线衍射图,除了因为掺杂剂铕(II)阳离子的引入而导致的一些小偏离之外,该X射线衍射图与SrSi2N2O2的X射线衍射图类似。
包括发绿光的CLC的磷光体转换的发光器件 根据本发明的一个方面,提供一种照明系统,其包括辐射源和整块陶瓷发光转换器,该整块陶瓷发光转换器包括至少一种磷光体,该磷光体能够吸收该辐射源发射出的一部分光并且发射出波长不同于所吸收的光的光,其中所述至少一种磷光体是通式为(Sr1-a-b-c-d-e-fCabBacMgdZneCef)Six-gGegNyOz:Eua的铕(II)激发的氧氮硅酸盐,其中0.001≤a≤0.2,0.0≤b≤1,0.0≤c≤0.5,0.0≤d≤0.25,0.0≤e≤0.25,0.0≤f≤0.2,0.0<g<1.0,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5。
虽然本发明的整块陶瓷发光转换器被想到用于大范围的发光应用,但本发明通过特别参考包括辐射源的照明系统来描述,并且发现可特别应用于包括辐射源的照明系统中,其中辐射源优选为半导体光学辐射发射器以及其他响应电激发发射光学辐射的器件。半导体光学辐射发射器包括发光二极管LED、芯片激光二极管(LD)、发光聚合物(LEP)、有机发光器件(OLED)、聚合物发光器件(PLED)等。
在本发明中可以想到包括发光二极管或者发光二极管阵列和陶瓷发光转换器的照明系统的任何构造,其中陶瓷发光转换器包含通式为(Sr1-a-b-c-e-fCabBacMgdZneCef)Six-gGegNyOz:Eua的铕(II)激发的氧氮硅酸盐磷光体,其中0.001≤a≤0.2,0.0≤b≤1,0.0≤c≤0.5,0.0≤d≤0.25,0.0≤e≤0.25,0.0≤f≤0.2,0.0<g<1.0,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5,优选地,添加其他已知磷光体,所述其他已知磷光体当由如上所指出的,发射一级UV或者蓝光的LED来照射时,可以被结合获得特定颜色光或者白光。
用于将整块陶瓷发光转换器连接到发光二极管或者发光二极管阵列的可能构造包括安装引线框的LED和安装表面的LED。
现在对图1中示出的包括辐射源和整块陶瓷发光转换器的这种照明系统的一个实施方式的详细构造进行描述。
图1示出了具有陶瓷发光转换器的引线框安装型的发光二极管的示意图。
放置在反射罩3内部的发光二极管元件1是立方体形状的小型芯片并且具有设置在其下表面和上表面的电极5。背侧电极通过导电胶粘合到阴极上。顶侧(?)电极通过接合线(bond wire)4电连接到阳极上。
整块陶瓷发光转换器2设置在反射罩内。该整块陶瓷发光转换器构造成以下述方式定位的板由发光二极管发射的大多数光以大约垂直于该板的表面的角度进入到板中。为了实现这一点,在发光二极管的周围设置反射器以在朝向所述板的方向上反射由发光二极管发射的光。
在工作中,对半导体块(dice)施加电功率以激发该半导体块。当被激发时,该半导体块发射一级光,即UV或者可见蓝光。一部分被发射的一级光完全或者部分地被陶瓷发光转换器吸收。然后响应一级光的吸收,陶瓷发光转换器发射二级光,即经过转换的具有更长峰值波长的光,其主要是在足够宽的波带中的黄绿色的光。所发射出的一级光中余下未吸收的部分随着二级光一起透过陶瓷发光转换器。
反射器沿着总方向引导未吸收的一级光和二级光作为输出光。因此,输出光是包含由小型芯片(die)发射出来的一级光和由荧光层发射出来的二级光的复合光。
根据本发明的照明系统的输出光的色温或者色点将随着二级光与一级光相比较的光谱分布和强度而变化。
首先,可以通过选择合适的发光二极管来改变一级光的色温或者色点。
第二,可以通过在陶瓷发光转换器中适当地选择特定磷光体组合物来改变二级光的色温或者色点。
应当注意,还可以利用多个发光转换元件。例如,如果利用发射UV的LED,则需要至少两种磷光体来提供观察者感知为白光的光源。在这种情况下,可以增加第二整块陶瓷发光转换器。可替换地,可以增加树脂基发光转换器作为涂层或者发射器包装物。
图2示出了具有两个发光转换器的安装引线框型发光二极管的示意图。放置在反射罩3内的发光二极管元件1包裹在由透明聚合物材料例如硅、树脂或者环氧树脂制得的保护涂层6中。保护涂层具有遍布其中分布的发光-转换材料。该发光-转换材料可以是一种或者多种荧光材料,例如磷光体或者荧光染料。
根据本发明的发绿光的整块陶瓷发光转换器位于树脂包装物的顶部。
通常,在绝缘基板例如蓝宝石上制造发光二极管,并且两个触点在该器件的同一侧上。可以如此安装这种器件,使得通过触点提取光,在这种情况下这些器件被称为向上外延型(epitaxy-up)器件,或者通过器件的与触点相对的表面提取光,在这种情况下它们被称为倒装芯片(flip chip)器件。
图3示意地说明了包括整块陶瓷发光转换器的固态照明系统的特定结构,其中芯片以倒装芯片构造封装在基板上,两个电极与各自的引线接触而没有使用接合线。将LED小型芯片上侧向下倒装并且粘合到导热基板上。将根据本发明的发绿光的整块陶瓷发光转换器安装到LED小型芯片的顶部。
在发光二极管和整块陶瓷发光转换器的外部形成其中分散有第二荧光材料的树脂涂层。
工作中,发光二极管发射出来的光被整块陶瓷发光转换器进行波长转换并且与第二发光转换器的经过波长转换的光混合,从而提供白光或者彩色光。
图4示出了包括本发明的陶瓷发光转换器的绿色灯的示意侧视图,其中陶瓷发光转换器定位于具有倒装芯片布置的发光二级光发射的光的通路上。
图5说明了安装在板上并且结合有整块陶瓷发光转换器的多个LED的横截面视图,该多个LED用作RGB显示器或者光源。
发射白光的磷光体转换的发光器件 根据本发明的一个方面,照明系统的输出光可以具有使得它看起来是“白色”光的光谱分布。所谓的“白色LED”实际上是使用两种、三种或者多种彩色光源以模拟白色光发射器。
二色性白光 在根据本发明的发射白光的照明系统的第一实施方案中,有利地可以通过选择发光材料来制造器件,使得发射蓝光的二极管发射出来的蓝色辐射被转换到互补波长范围中,从而形成二色性白光。
在这种情况下,通过整块陶瓷发光转换器的磷光体材料产生黄绿色光,其包括通式如下的磷光体(Sr1-a-b-c-d-e-fCabBacMgdZneCef)Six-gGegNyOz:Eua,其中0.001≤a≤0.2,0.0≤b≤1.0,0.0≤c≤0.5,0.0≤d≤0.25,0.0≤e≤0.25,0.0≤f≤0.2,0.0<g<1.0,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5。
通过发射峰(emission maximum)位于380到480nm的蓝色LED获得了特别好的结果。特别考虑根据本发明的铕(II)激发的氧氮硅酸盐的激发光谱,已经发现最适宜的位于445到468nm。
根据本发明的发射白色光的照明系统可以特别优选地通过将根据本发明的经过抛光并且尺寸为4×4×0.3mm的陶瓷发光转换器安装到在458nm发射的1W(Al,In,Ga)NLED芯片上而实现。
Eu(II)激发的氧氮硅酸盐将由458nm(Al,In,Ga)N发光二级管发射的蓝色辐射的一部分转移到黄绿色光谱区域,因此转移到与蓝色色彩互补的波长范围。人类观察者将蓝色一级光和发黄绿色光的磷光体的二级光的结合感知为白光。
多色性白光 有利地可以通过选择发光材料来制造根据本发明的发白光的照明系统的第二实施方案,使得发蓝色光二极管发射出来的蓝色辐射被转换成形成多色性(尤其是三色性)白光的互补波长范围。在这种情况下,通过包含磷光体混合物的发光材料产生白光,该磷光体混合物包括作为第一整块陶瓷绿色发光转换器的Eu(II)激发的氧氮硅酸盐磷光体和第二发光转换器中的第二红色磷光体。
第二发光转换器可以被提供为第二整块陶瓷发光转换器或者被提供为传统的磷光体涂层。
可用的第二磷光体及其光学性质总结在下表中 发绿色光的磷光体转换的发光器件 另一组实施方案涉及发射出具有使得它看起来是“黄绿色”光的光谱分布的输出光的照明系统。
作为磷光体,包括通式如下的铕(II)激发的氧氮硅酸盐的整块陶瓷发光转换器特别适用作由一级UVA或者蓝色辐射源(例如发射UVA的LED或者发射蓝色光的LED)激发的黄绿色组分(Sr1-a-b-c-d-e-fCabBacMgdZneCef)Six-gGegNyOz:Eua,其中0.001≤a≤0.2,0.0≤b≤1.0,0.0≤c≤0.5,0.0≤d≤0.25,0.0≤e≤0.25,0.0≤f≤0.2,0.0<g<1.0,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5。
由此可以实现在电磁波频谱的黄绿色区域中发射的照明系统。
通过发射峰位于400到480nm的蓝色LED获得了特别好的结果。特别考虑根据本发明的Eu激发的氧氮硅酸盐的激发光谱,已经发现最适宜的位于410到455nm。
LED-磷光体系统的颜色输出对整块陶瓷发光转换器的厚度非常敏感,即如果转换器厚度大,则将有更少量的蓝色LED光穿透过厚磷光体层。然后组合的LED-磷光体系统看起来为黄绿色,因为磷光体的黄绿色二级光占优势。因此,整块陶瓷发光转换器的厚度是影响系统的颜色输出的关键变量。
在这种情况下,还可以通过适当地选择特定磷光体组成来改变所产生的黄绿色光的色调(在CIE色品图中的色点)。
在另一个实施方案中,有利地,通过合适地选择辐射源来制造根据本发明的发射黄绿色光的照明系统,使得通过根据本发明的整块陶瓷发光转换器,将发UV光的二极管所发射的UV辐射完全转换成单色的黄绿色的光。
权利要求
1.一种照明系统,包括辐射源和整块陶瓷发光转换器,该整块陶瓷发光转换器包括至少一种磷光体,该磷光体能够吸收一部分该辐射源发射出的光并且发出波长与所吸收的光的波长不同的光,其中所述至少一种磷光体是通式为(Sr1-a-b-c-d-e-fCabBacMgdZneCef)Six-gGegNyOz:Eua的铕(II)激发的氧氮硅酸盐,其中0.001≤a≤0.2,0.0≤b≤1.0,0.0≤c≤0.5,0.0≤d≤0.2 5,0.0≤e≤0.2 5,0.0≤f≤0.2,0.0<g<1,1.5≤x≤2.5,1.5≤y≤2.5以及1.5<z<2.5。
2.根据权利要求1的照明系统,其中所述辐射源为发光二极管。
3.根据权利要求1的照明系统,其中所述整块陶瓷发光转换器为第一发光转换器元件,还包括一个或者多个第二发光转换器元件。
4.根据权利要求3的照明系统,其中第二发光转换器元件为包含磷光体的涂层。
5.根据权利要求3的照明系统,其中第二发光转换器元件为包括第二磷光体的第二整块陶瓷发光转换器。
全文摘要
一种照明系统,包括辐射源和整块陶瓷发光转换器,该整块陶瓷发光转换器包括至少一种磷光体,该磷光体能够吸收一部分该辐射源发射出的光并且发出波长与所吸收的光不同的光,其中所述至少一种磷光体是通式为(Sr1-a-b-c-d-e-fCabBacMgdZneCef)Six-gGegNyOz∶Eua的铕(II)激发的氧氮硅酸盐,其中0.001<a<0.2,0.0<b<1.0,0.0<c<0.5,0.0<d<0.2 5,0.0<e<0.2 5,0.0<f<0.2,0.0<g<1.0,1.5<x<2.5,1.5<y<2.5以及1.5<z<2.5。
文档编号C09K11/79GK101129095SQ200680005296
公开日2008年2月20日 申请日期2006年2月10日 优先权日2005年2月17日
发明者P·施米特, V·巴克曼, S·戈尔什, W·巴塞尔特 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1