混合动力汽车及其控制方法

文档序号:3872437阅读:188来源:国知局
专利名称:混合动力汽车及其控制方法
技术领域
本发明涉及混合动力汽车及其控制方法,特别涉及能够利用来自内燃 机和电动机的双方的动力而行驶的混合动力汽车及其控制方法。
背景技术
以往以来,已知能够通过模式选择开关的操作而切换高输出模式和低 输出模式的电动车辆(例如,参照专利文献l)。在该电动车辆中,如果在 以低输出模式下的行驶中由于行驶电机的输出不足而使实际加速度以预定 的比率低于要求加速度,则行驶电机的输出增加到不超过高输出模式中的 输出的程度。另外,以往以来,也已知以内燃机为行驶驱动源并且具有通常模式和能源节省模式作为运行模式的车辆(例如,参照专利文献2)。在 该车辆中,对于加速踏板位置传感器的预定的同样的输出,在选择能源节 省模式时相比于选择通常模式时减少对内燃机的燃料供应量。 专利文献l:日本特开平10 - 248106号公净艮 专利文献2:日本特开2006 - 151309号公报(图8 )发明内容然而,近年来,能够利用来自内燃机和电动机的双方的动力而行驶的 混合动力汽车广为普及,但是如果对这样的混合动力汽车设置模式选择开 关,能够将运行模式切换到通常模式和低输出模式、能源节省模式这样的 使效率优先的模式中的任意一种模式,则能够实现进一步的能量效率的改 善。但是,上述各专利文献,对在混合动力汽车中选择使效率优先的模式 时进行怎样的控制没有任何公开。于是,本发明的目的在于在能够利用来自内燃机和电动机的双方的 动力而行驶的混合动力汽车中选择效率优先模式时,比较适当地控制内燃机和电动机而使能量效率提高。根据本发明的混合动力汽车及其控制方法,为了达成上述的目的采用 以下的方案。根据本发明的混合动力汽车,具备 能够输出行驶用的动力的内燃机; 能够输出行驶用的动力的电动机; 能够与所述电动机交换电力的蓄电单元;效率优先模式选择开关,其用于选择使能量效率优先的效率优先模式; 要求驱动力设定单元,其设定行驶所要求的要求驱动力; 目标运行点设定单元,其基于所述设定的要求驱动力,设定所述内燃 机的目标运行点;和控制单元,其在利用来自所述内燃机和所述电动机的双方的动力行驶 时所述效率优先模式选择开关断开的情况下,控制所述内燃机和所述电动 机,使得所述内燃机在所述设定的目标运行点运行并且获得基于所述设定 的要求驱动力的动力,在利用来自所述内燃机和所述电动机的双方的动力行驶时所述效率优先模式选择开关接通的情况下,控制所述内燃机和所述 电动机,使得所述内燃机在所述设定的目标运行点运行并且使得由所述电 动机输出的动力比所迷效率优先模式选择开关断开时低。在该混合动力汽车中,在利用来自内燃机和电动机双方的动力行驶时 效率优先模式选择开关断开的情况下,控制内燃机和电动机,使得内燃机 在基于行驶所要求的要求驱动力而设定的目标运行点运行并且得到基于要 求驱动力的动力。另外,在利用来自内燃机和电动机的双方的动力行驶时效率优先^t式选择开关接通的情况下,控制内燃机和电动机,使得内燃机比效率优先模式选择开关断开时低。这样,在利用来自内燃机和电动机的 双方的动力行驶时选择效率优先模式的情况下,如果使由电动机输出的动 力比效率优先模式选择开关断开时降低,则行驶用的动力比效率优先模式 选择开关断开时会些许降低,但是能够使由电动机产生的电力消耗量、电动才几等中的损失减少而4吏车辆的能量效率提高。另外,在利用来自内燃机和电动机的双方的动力行驶时效率优先模式选择开关接通的情况下,若使内燃机的输出降低则反而会产生使内燃机的效率降低的可能,但是在该混合动力汽车中,对于某要求驱动力的内燃机的目标运行点与效率优先模式选择开关的操作状态无关而被同样地设定,因此能够抑制这样的内燃机的效率的降低。因此,在该混合动力汽车中,在利用来自内燃机和电动机的双方的动力行驶时选择效率优先模式的情况下,能够比较适当地控制内燃机和电动机而使能量效率提高。
另外,可以设为所迷控制单元,在利用来自所述内燃机和所迷电动机双方的动力行驶时所述效率优先模式选择开关接通的情况下,使对所述电动机的转矩指令值相比于所述效率优先模式选择开关断开时减小预定量。
进而,可以设为所述混合动力汽车还具备动力传递单元,该动力传递单元具有连接于预定的车轴的车轴侧旋转要素和连接于所述内燃机的内燃机轴并且能够相对于所述车轴侧旋转要素差动旋转的内燃机側旋转要素,能够将来自所述内燃机轴的动力的至少一部分向所述车轴侧输出。在这种情况下,可以设为所述动力传递单元是连接于所述车轴和所述内燃机的所述内燃机轴,伴随电力和动力的输入输出而能够将所述内燃机的动力的至少一部分向所述车轴侧输出并且能够与所述蓄电单元交换电力的电力动力输入输出单元。
并且,可以设为所述电力动力输入输出单元包括能够输入输出动力的发电用电动机、和被连接于所述车轴、所述内燃机的所述内燃机轴和所述发电用电动机的旋转轴这3轴,将基于相对于这3轴中的任意2轴输入输出的动力的动力相对于剩余的轴输入输出。在这种情况下,可以设为所述控制单元,在利用来自所述内燃机和所述电动机双方的动力行驶时所述效率优先模式选择开关接通的情况下,使从所述蓄电单元向所述电动机供给的电力相比于所述效率优先模式选择开关断开时降低预定比例,设定对所述电动机的转矩指令。也就是说,能够在电动机和发电用电动机之间调整电力的收支的混合动力汽车中,在由来自蓄电单元的放电电力进行电动机的驱动时效率优先模式选择开关接通的情况下,如果使从蓄电单元向电动机供给的电力相比于效率优先模式选择开关断开时降低预定比例而设定对电动机的转矩指令,则能够使由电动机产生的电力消耗量、电动机、蓄电单元等中的损失降低而使车辆的能量效率提高。
另外,可以设为所述动力传递单元是无级变速器。根据本发明的混合动力汽车的控制方法,该混合动力汽车具备能够输出行驶用的动力的内燃机、能够输出行驶用的动力的电动机、能够与所述电动机交换电力的蓄电单元、和用于选择使能量效率优先的效率优先模式的效率优先模式选择开关,所述混合动力汽车的控制方法包括
步骤U),该步骤基于行驶所要求的要求驱动力,设定所述内燃机的目标运行点;
步骤(b),该步骤在利用来自所述内燃机和所述电动机双方的动力行驶时所述效率优先模式选择开关断开的情况下,控制所述内燃机和所述电动机,使得所述内燃机在在步骤(a)设定的目标运行点运行并且获得基于所述要求驱动力的动力,在利用来自所述内燃机和所述电动机双方的动力行驶时所述效率优先模式选择开关接通的情况下,控制所述内燃机和所述电动机,使得所述内燃机在在步骤(a )设定的目标运行点运行并且使得由所述电动机输出的动力比所述效率优先模式选择开关断开时低。
如该方法所述,在利用来自内燃机和电动机的双方的动力行驶时选择效率优先模式的情况下,如果使由电动机输出的动力比效率优先模式选择开关断开时降低,则行驶用的动力比效率优先模式选择开关断开时会些许降低,但是能够使由电动机产生的电力消耗量、电动机等中的损失减少而使车辆的能量效率提高。另外,在利用来自内燃机和电动机的双方的动力行驶时效率优先模式选择开关接通的情况下,若使内燃机的输出降低则反而会产生使内燃机的效率降低的可能,但是基于该方法,对于某要求驱动力的内燃机的目标运行点与效率优先模式选择开关的操作状态无关而被同样地设定,因此能够抑制这样的内燃机的效率的降低。因此,根据该方法,在利用来自内燃机和电动机的双方的动力行驶时选择效率优先模式的情况下,能够比较适当地控制内燃机和电动机而使能量效率提高。
另外,可以设为步骤(b),在利用来自所述内燃机和所述电动机双方的动力行驶时所述效率优先模式选择开关接通的情况下,使对所述电动机的转矩指令值相比于所述效率优先模式选择开关断开时减小预定量。进
而,可以设为在上述方法中,所述混合动力汽车还具备动力传递单元,该动力传递单元具有连接于预定的车轴的车轴侧旋转要素和连接于所述内燃机的内燃机轴并且能够相对于所述车轴侧旋转要素差动旋转的内燃机侧旋转要素,能够将来自所述内燃机轴的动力的至少一部分向所述车轴侧输出。在这种情况下,可以设为所述动力传递单元是连接于所述车轴和所述内燃机的所述内燃机轴,伴随电力和动力的输入输出而能够将所述内燃机的动力的至少一部分向所述车轴侧输出并且能够与所述蓄电单元交换电力的电力动力输入输出单元。并且,可以设为所述电力动力输入输出单元包括能够输入输出动力的发电用电动机、和3轴式动力输入输出单元,该3轴式动力输入输出单元被连接于所述车轴、所述内燃机的所述内燃机轴和所述发电用电动机的旋转轴这3轴,将基于相对于这3轴中的任意2轴输入输出的动力的动力相对于剩余的轴输入输出。在这种情况下,可以设为步骤(b),在利用来自所述内燃机和所述电动机双方的动力行驶时所述效率优先模式选择开关接通的情况下,使从所述蓄电单元向所述电动机供给的电力相比于所述效率优先模式选择开关断开时降低预定比例,设定对所述电动机的转矩指令。另外,可以设为在上述方法中,所述动力传递单元是无级变速器。


图1是本发明的第一实施例的混合动力汽车20的概略结构图。图2是表示由第一实施例的混合动力ECU70执行的驱动控制例程的一例的流程图。
图3是表示要求转矩设定用图的一例的说明图。
图4是举例表示发动机22的工作线与目标转速NeA和目标转矩TeA之间相关关系曲线的说明图。
图5是对表示动力分配集成机构30的旋转要素中的转速与转矩之间力学关系的列线图进行举例表示的说明图。
图6是第 一实施例的变形例的混合动力汽车20A的概略结构图。
图7是第一实施例的另一种变形例的混合动力汽车20B的概略结构图。
图8是第一实施例的再一种变形例的混合动力汽车20C的概略结构
图9是本发明的第二实施例的混合动力汽车20D的概略结构图。图IO是表示由第二实施例的混合动力ECU执行的驱动控制例程的一例的流程图。
具体实施例方式
接下来,用实施例说明用于实施本发明的最佳方式。实施例1
图1是本发明的第一实施例的混合动力汽车20的概略结构图。如该图所示的混合动力汽车20具备发动机22,经由减震器28连接于发动机22的输出轴即曲轴26的3轴式动力分配集成机构30,连接于动力分配集成机构30的能够发电的电机MG1,安装在作为连接于动力分配集成机构30的车轴即齿圏轴32a上的减速齿轮35,经由该减速齿轮35连接于齿圏轴32a的电才几MG2,和控制混合动力汽车20的整体的混合动力用电子控制单元(以下,称为"混合动力ECU" ) 70等。
发动机22是接受汽油、轻油这样的碳氢化合物类燃料的供给而输出动力的内燃机,接受由发动机用电子控制单元(以下,称为"发动机ECU")24对燃料喷射量、点火正时、吸入空气量等的控制。向发动机ECU24输入来自相对于发动机22设置并用于检测该发动机22的运行状态的各种传感器的信号。并且,发动机ECU24与混合动力ECU70进行通信,基于来自混合动力ECU70的控制信号、来自所述传感器的信号等运行控制发动机22并且根据需要将与发动机22的运行状态相关的数据输出到混合动力EC簡。
动力分配集成机构30具备外齿齿轮的太阳轮31,与该太阳轮31配置在同心圆上的内齿齿轮的齿圏32,与太阳轮31啮合并且与齿圏32啮合的多个小齿轮33,和以使其自由地自转并且公转的方式支撑多个小齿轮33的行星架34,动力分配集成机构30被构成为以太阳轮31、齿圈32和行星架34作为旋转要素进行差动作用的行星齿轮机构。在作为内燃机侧旋转要素的行星架34上连结有发动机22的曲轴26,在太阳轮31上连结有电机MG1,在作为车轴侧旋转要素的齿圏32上经由齿圏轴32a连结有减速齿轮35,动力分配集成机构30,在电机MG1作为发电机工作时,将从行星架34输入的来自发动机22的动力按照其传动比分配到太阳轮31侧和齿圏32侧;在电机MG1作为电动机工作时,将从行星架34输入的来自发动机22的动力和从太阳轮31输入的来自电机MG1的动力集成,输出到齿圏32側。向齿圏32侧输出的动力,从齿圏轴32a经由齿轮机构37及差动齿轮38最终输出到驱动轮即车轮39a、 39b。
电机MG1及电机MG2都由周知的能够作为发电机工作并且能够作为电动机工作的同步电动发电机构成,经由变换器41、 42与二次电池即电池50进行电力的交换。连接变换器41、 42与电池50的电力线54,作为各变换器41, 42共用的正极母线和负极母线构成,由电才几MG1、 MG2中的任意一方发电产生的电力能够由另一方的电机消耗。因此,电池50根据从电机MG1、 MG2中的任意一方产生的电力、不足的电力而充》文电,如果通过电机MG1、 MG2达到电力收支的平衡,则电池50不进行充放电。电机MG1、 MG2都由电机用电子控制单元(以下,称为"电机ECU")40驱动控制。向电机ECU40输入用于驱动控制电机MG1、 MG2所必要的信号,例如来自检测电机MG1、 MG2的转子的旋转位置的旋转位置检测传感器43、 44的信号,由未图示的电流传感器检测出的施加于电机MG1、MG2的相电流等;从电机ECU40输出对变换器41、 42的开关控制信号等。电机ECU40基于从旋转位置检测传感器43、 44输入的信号,执行未图示的转速计算程序,计算电机MG1、 MG2的转子的转速Nml、 Nm2。另夕卜,电机ECU40与混合动力ECU70进行通信,基于来自混合动力ECU70的控制信号等而驱动控制电机MG1、 MG2,并且根据需要将与电机MG1、MG2的运行状态相关的数据输出到混合动力ECU70。
电池50由电池用电子控制单元(以下,称为"电池ECU") 52管理。向电池ECU52输入用于管理电池50所必要的信号,例如来自设置在电池50的端子间的未图示的电压传感器的端子间电压,来自安装在连接于电池50的输出端子的电力线54上的未图示的电流传感器的充;^文电电流,来自安装在电池50上的温度传感器51的电池温度Tb等。电池ECU52根据需要通过通信将与电池50的状态相关的数据输出到混合动力ECU70、发动机ECU24。进而,电池ECU52为了管理电池50,还基于由电流传感器检测出的充;^文电电流的累计值而计算剩余容量(SOC)。
混合动力ECU70被构成为以CPU72为中心的微处理器,除CPU72之外还包括存储处理程序的ROM74、暂时存储数据的RAM76、和未图示的输入输出端口及通信端口。经由输入端口向混合动力ECU70输入来自点火开关(启动开关)80的点火信号、来自用于检测变速杆81的操作位置即变速位置SP的变速位置传感器82的变速位置SP、来自用于检测加速踏板83的踩下量的加速踏板位置传感器84的加速踏板开度Acc、来自用于检测制动踏板85的踩下量的制动踏板行程传感器86的制动踏板行程BS、来自车速传感器87的车速V等。另外,在本实施例的混合动力车20的驾驶座旁边设置有用于选择相比于驾驶性能而使燃料消耗率等的能量效率优先的ECO模式(效率优先模式)作为行驶时的控制模式的ECO开关(效率优先模式选择开关)88,该ECO开关也连接于混合动力ECU70。当ECO开关由驾驶者等开启时,通常时(开关断开对)设定为值0的预定的ECO标志Feco裙二没定为值1,并且按照预先确定的效率优先时用的各种控制步骤控制混合动力汽车20。并且,混合动力ECU70如上所述,经由通信端口与发动机ECU24、电机ECU40、电池ECU52等相连接,与发动机ECU24、电机ECU40、电池ECU52等进行各种控制信号、数据的交换。
在如上所述构成的第一实施例的混合动力汽车20中,基于对应于由驾驶者对加速踏板83的踩下量的加速踏板开度Vcc与车速V,计算应当向作为车轴的齿圏轴32a输出的要求转矩,控制发动机22、电机MG1和电机MG2,使得对应于该要求转矩的动力被输出到齿圏轴32a。作为发动机22、电机MG1和电机MG2的运行控制模式,包括转矩变换运行模式,该模式运行控制发动机22,使得从发动机22输出与要求转矩相当的动力,并且驱动控制电机MG1和电机MG2,使得从发动机22输出的全部动力由动力分配集成机构30、电机MG1和电机MG2进行转矩变换而输出到齿圏轴32a;充放电运行模式,该模式运行控制发动机22,使得从发动机22输出与要求动力和电池50的充放电所必要的电力之和相当的动力,并且驱动控制电机MG1和电机MG2,使得伴随电池50的充放电而从发动机22输出动力的全部或者一部分伴随由动力分配集成才几构30、电机MG1和电机MG2进行转矩变换而将要求动力输出到齿圏轴32a;电机运行模式,该模式进行运行控制使得发动机22的运行停止、将与要求动力相当的动力从电机MG2输出到齿圏轴32a。
接下来,对如上所述构成的混合动力汽车20的动作进行说明。图2是表示由混合动力ECU70每隔预定时间(例如,每隔数msec)执行的驱动控制例程的一例的流程图。
在图2的驱动控制例程开始时,混合动力ECU70的CPU72执行输入控制所必要的数据的处理(步骤SIOO),其中所述数据包括来自加速踏板位置传感器84的加速踏板开度Acc,来自车速传感器87的车速V,电机MG1、 MG2的转速Nml、 Nm2,充放电要求功率Pb*,电池50的充放电所容许的电力、即输入输出限制Win、 Wout, ECO标志Fcco的值等。这里,电4几MG1、 MG2的转速Nml、 Nm2为通过通信从电机ECU40输入的值。另外,充i文电要求功率Pb*,通过通信将由电池ECU52基于电池50的剩佘容量SOC等而作为电池50应当充放电的电力设定的值从电池ECU52输入。同样,电池50的输入输出限制Win、 Wout,通过通信将基于电池50的温度Tb和电池50的剩余容量SOC而设定的值从电池ECU52输入。在步骤S100的数据输入处理之后,基于所输入的加速踏板开度Acc和车速V,设定应当向连结在驱动轮即车轮39a、 39b上的作为车轴的齿圈轴32a输出的要求转矩Tr*,然后设定对发动机22所要求的要求功率?6* (步骤S110)。在本实施例中,预先设定加速踏板开度Acc、车速V和要求转矩T"之间的关系,作为要求转矩设定用图存储在ROM74中,作为要求转矩Tr气对应于给出的加速踏板开度Acc和车速V的值从该图导出/设定。图3表示要求转矩设定用图的一例。另夕卜,在本实施例中,要求功率Pe^十算为将设定的要求转矩T一乘以齿圏轴32a的转速Nr得到的值、充放电要求功率PM (但是放电要求侧为正)和损失Loss的总和。另夕卜,齿圏轴32a的转速Nr,如图所示能够通过将电机MG2的转速Nm2除以减速齿轮35的传动比Gr来求得,或者通过车速V乘以换算系数k来求得。接下来,基于在步骤S110设定的要求功率Pe*,以使发动机22高效地运行的方式设定作为发动机22的目标运行点的目标转速NeA和目标转矩Te* ( S120 )。在本实施例中,基于预先确定的用于使发动机22高效地工作的工作线和要求功率Pe*,,没定发动才几22的目标转速NeA和目标转矩Te*。图4是举例表示发动机22的工作线、目标转速Ne+和目标转矩Te-之间相关关系曲线。如该图所示,目标转速Ne+和目标转矩Te、能够由工作线与表示要求功率Pe* (Ne*xTe*) —定的相关关系曲线的交点来求得。
如此设定了发动机22的目标转速NeA和目标转矩Te*,那么使用目标转速Ne*、齿圏轴32a的转速Nr ( Nm2/Gr)和动力分配集成机构30的传动比p (太阳轮31的齿数/齿圏32的齿数),按照下式(1)计算电机MG1的目标转速Nml*,进而执行基于计算出的目标转速Nm"和当前的转速Nml的式(2)的计算,设定电机MG1的转矩指令TmP ( S130 )。这里,式(1)是关于动力分配集成机构30的旋转要素的力学关系式。另外,在图5中对表示动力分配集成机构30中的旋转要素的转速和转矩的力学关系的列线图进行举例表示。图中,左侧的S轴表示与电机MG1的转速Nml一致的太阳轮31的转速;中央的C轴表示与发动机22的转速Ne—致的行星架34的转速;右侧的R轴表示将电机MG2的转速Nm2除以变速器60的当前的传动比得到的齿圏32的转速Nr。另外,R轴上的两个粗线箭头表示从电机MG1输出转矩Tml时,由该转矩输出作用到齿圏轴32a上的转矩;和从电机MG2输出的转矩Tm2经由减速齿轮35而作用到齿圈轴32a上的转矩。用于求得电机MG1的目标转速NmP的式(1)利用该列线图中的转速的关系能够容易地导出。并且,式(2)是用于使电机MG1以目标转速NmP旋转的反馈控制的关系式,式(2)中,右边第二项的"kl"是比例项的增益,右边第三项的"k2"是积分项的增益。如果在步骤S130设定了电机MG1的转矩指令Tml、则使用下面的式(3)及式(4 ),通过将电池50的输入输出限制Win、 Wout与转矩指令TmP和当前的电机MG1的转速Nml的乘积得到的电机MG1的消耗电力(发电电力)的偏差除以电机MG2的转速Nm2,计算作为能够从电机MG2输出的转矩的上下限的转矩限制Tmin、 Tmax,该转矩限制(步骤S140 )。Nml*=Ne*.(l+p)/ p — Nm2/(Gr.p)…(l)
Tml央-上次Tml*+kl(Nml*- Nml)+k2f(Nml*- Nml)dt ,(2)
Tmin=(Win-Tml*.Nml)/Nm2 .(3)
Tmax-(Wout-Tml*'Nml)/Nm2…(4)接下来,判断在步骤S100输入的ECO标志Feco是否为值l,也就是说判断ECO开关88是否由驾驶者等设置为开启(步骤S150)。在ECO开关88被设置为关闭、ECO标志Feco为值0的情况下,基于要求转矩Tr*、转矩指令Tml、动力分配集成机构30的传动比p和减速齿轮35的传动比Gr,使用式(5)计算作为应该从电机MG2输出的转矩的暂定电机转矩Tm2tmp (步骤S160 );然后作为利用在步骤S140计算出的转矩限制Tmin、 Tmax限制暂定电机转矩Tm2tmp的值i殳定电机MG2的转矩指令Tm2* (步骤Sl卯)。通过这样的设定电机MG2的转矩指令Tm2*,能够将输出到作为车轴的齿圏轴32a的转矩设定为在电池50的输入输出限制Win、 Wout的范围内进行了限制的转矩。另外,式(5)从图5的列线图能够容易地导出。如果这样地设定了发动机22的目标转速Ne、目标转矩Te*、电机MG1、 MG2的转矩指令Tml、 Tm2*,则分别将发动4几22的目标转速NeA和目标转矩Te+发送到发动机ECU24,将电机MG1、 MG2的转矩指令TmP、 Tm2A发送到电机ECU40 (步骤S200 ),再次执行步骤S100以下的处理。接收到目标转速NeA和目标转矩TeA的发动机ECU24,执行用于得到目标转速NeA和目标转矩Te+的控制;接收到转矩指令Tml*、 Tm2A的电机ECU40,进行变换器41、 42的开关元件的开关控制,使得使用转矩指令Tm"控制电机MG1并且使用转矩指令1加2*控制电机MG2。
Tm2tmp=(Tr*+Tml*/p)/Gr…(5)另一方面,在步骤S150判定为ECO标志Feco为值1的情况下,也就是说在ECO开关88由驾驶者等设为开启的情况下,进而判断在步骤S100输入的充放电要求功率PM是否处于预定值Pref (较小的正值或者是0)以上、即充放电要求功率PbM乍为放电电力是否处于值Pref以上(步骤S170)。在充放电要求功率PbM、于预定值Pref、主要利用由电机MG1发电产生的电力驱动电机MG2的情况下,使用上述式(5 )设定暂定电机转矩Tm2tmp (步骤S160 ),进而执行步骤Sl卯及S200的处理。与此相对,在步骤S170判定为充放电要求功率PM处于预定值Pref以上的情况下,也就是说,在ECO开关88被设为开启并且主要利用来自电池50的放电电力驱动电机MG2的情况下,使用下式(6)计算作为应该从电机MG2输出的转矩的暂定电机转矩Tm2tmp (步骤S180)。这里,式(6)为从作为电机MG2原来要求的转矩由图5的列线图导出的转矩中减去转矩的减少部分而得到的值设为Tm2tmp,所述减少部分由于使从电池50向电机MG2供给的电力相比于ECO开关88关闭时降低预定比例r而引起。如果这样在步骤S180设定了暂定电机转矩Tm2tmp,则与ECO开关88关闭时同样,执行步骤Sl卯及S200的处理,然后再次执行步骤S100以下的处理。由此,在混合动力汽车20中,在由来自电池50的放电电力驱动电机MG2并且ECO开关88接通的情况下,由电机MG2输出的转矩相比于ECO开关88关闭时降低,向作为车轴的齿圏轴32a输出的转矩相比于要求转矩T"减小。如此,在本实施例的混合动力汽车20中,虽然ECO开关88接通时可能输出比驾驶者所要求的转矩(要求转矩Tr*)小的行驶用转矩,但驾驶者在选择了 ECO模式时基本上会执行比较平稳的运行,因此即使如此行驶用转矩相比于要求转矩T—有所减小,驾驶者等也很少感觉到不适。并且,上述比例r可以经过实验等而设定为伴随这样的行驶用转矩的减小而感觉不到不适的程度的值。Tm2tmp=(Tr*+Tml*/p-rPb*/Nm2)/Gr ...(6)如以上所作说明,在第一实施例的混合动力汽车20中,在利用来自发动机22和电机MG2的双方的动力行驶时ECO开关88断开的情况下,控制发动机22和电机MG1、 MG2,使得发动机22在基于要求转矩Tr* (要求功率Pe* )而在步骤S120设定的目标运行点(目标转速Ne+及目标转矩Te*)运行并且得到基于要求转矩Tr+的动力(步骤S130 ~ S160、 S190、S200 )。另夕卜,在利用来自发动机22和电机MG2的双方的动力行驶时ECO开关88接通的情况下,控制发动机22和电机MG1、 MG2,使得发动机22在基于要求转矩Ti^而在步骤S120设定的目标运行点运行并且使由电机MG2输出的动力相比于ECO开关88关闭时降低(步骤S130 ~ S150、S170~S200)。这样,在利用来自发动机22和电机MG2的双方的动力行驶时选择ECO模式的情况下,如果使电机MG2的输出转矩比ECO开关88关闭时降低,则向作为车轴的齿圏轴32a输出的行驶用转矩比ECO开关88关闭时降低而驾驶性能有些许降低,但是能够使由电机MG2产生的电力消耗量、电才几MG2、变换器42、电池50中的损失减少而使车辆的能量效率提高。另外,在利用来自发动机22和电机MG2的双方的动力行驶时ECO开关88接通的情况下,若使发动机22的输出降低则反而会产生使发动机22的效率降低的可能,但是在混合动力汽车20中,对于某要求转矩Ti^的发动机22的目标运行点与ECO开关88的操作状态无关而被同样地设定,因此能够抑制发动机22的效率的降低。因此,在本实施例的混合动力汽车20中,在利用来自发动机22和电机MG2的双方的动力行驶时选择ECO模式的情况下,能够比较适当地控制发动机22和电机MG2而使能量效率提高。
此外,第一实施例的混合动力汽车20,将电机MG2的动力输出到连接于齿圈轴32a的车轴,但是本发明的适用对象并不限于此。也就是说,本发明也适用于如作为图6所示变形例的混合动力汽车20A那样的情况,该车辆20A将电机MG2的动力输出到与连接于齿圏轴32a的车轴(连接有车轮39a、 39b的车轴)不同的车轴(图6中连接于车轮39c、 39d的车轴)。另外,在上述实施例的混合动力汽车20中,将发动机22的动力经由动力分配集成机构30而输出到作为连接于车轮39a、 39b的车轴的齿圈轴32a,但是本发明的适用对象并不限于此。也就是说,本发明也适用于如作为图7所示变形例的混合动力汽车20B那样的情况,该车辆20B具有双转子电动才几230,所述双转子电动机230包括连接在发动机22的曲轴上的内转子232和连接在向车轮39a、 39b输出动力的车轴上的外转子234,将发动机22的动力的一部分传递到车轴并且将剩余的动力转换成电力。
进而,上述混合动力汽车20具有拥有作为车轴侧旋转要素的齿圏32和作为内燃机侧旋转要素的行星架34的动力分配集成机构30,但本发明也适用于作为将发动机22的动力向车轴侧传递的动力传递单元而具备无级变速器(以下称为"CVT")来代替动力分配集成机构30的情况,以图8表示作为如此车辆的一例的混合动力汽车20C。该图所示变形例的混合动力汽车20C包括前轮驱动系统,该前轮驱动系统将来自发动机22的动力经由液力变矩器130、前进后退切换机构135、带式CVT140、齿轮才几构37、差动齿轮38等输出到例如前轮即车轮39a、 39b;后轮驱动系统,该后轮驱动系统将来自作为同步电动发电机的电机MG的动力经由齿轮机构37'、差动齿轮38'等输出到例如后轮即车轮39c、 39d;和控制车辆整体的混合动力ECU70。在这种情况下,液力变矩器130以具有锁止机构的液压式变矩器构成。另外,前进后退切换机构135包括例如双小齿轮(double-pinion)的行星齿轮机构、制动器和离合器,执行前进后退的切换、液力变矩器130与CVT140的连接/断开。CVT140包括连接在作为内燃机侧旋转要素的输入轴141上的可以改变槽宽的主动轮143,连接在作为车轴侧旋转要素的输出轴142上的同样可以改变槽宽的从动轮144,和巻绕于主动轮143以及从动轮144的槽的带145。并且,CVT140利用来自由CVT用电子控制单元146驱动控制的液压电路147的液压油(工作油),改变主动轮143及从动轮144的槽宽,以此将输入到输入轴141上的动力无级变速后输出到输出轴142。并且,CVT140可以作为环形CVT来构成,电机MG经由变换器45连接有由发动机22驱动的交流发电机29 、输出端子连接在从该交流发电机29引出的电力线上的电池(高压电池)50。由此,电机MG由来自交流发电机29、电池50的电力而驱动,或进行再生而发电产生的电力对电池50充电。如此构成的混合动力汽车20C,与驾驶者的加速踏板83的操作相应地,主要将来自发动机22的动力输出到例如前轮即车轮39a、 39b而行驶,根据需要除向车轮39a、 39b输出动力外,还将来自电机MG的动力输出到例如后轮即39c、 39d而通过四轮驱动行驶。
实施例2
接下来,参照图9及图10,对本发明的第二实施例的混合动力汽车20D进行说明。为回避重复说明对于在构成第二实施例的混合动力汽车20D的要素中与第一实施例的混合动力汽车20共同的要素附以与第一实施例同样的符号,省略详细说明。图9是第二实施例的混合动力汽车20D的概略结构图。在该图所示的混合动力汽车20D中,经由离合器C1,发动机22的曲轴26和作为同步电动发电机的电机MG (转子)相连接,并且电机MG(转子)连接于例如无级自动变速器90的输入轴91。并且,将来自自动变速器卯的输出轴92的动力经由差动齿轮38最终输出到驱动轮即车轮39a、 39b。另外,混合动力汽车20D也具有与第一实施例的混合动力汽车20同样的未图示的ECO开关,通过开启ECO开关能够选择相比于驾驶性能而使燃料消耗率等能量效率优先的ECO模式。这样的混合动力汽车20D,基本上将来自发动机22的动力输出到车轮39a、 39b而行驶,在例如加速时等的预定条件下,使用来自电池50的电力使电机MG输出辅助转矩,利用来自发动机22和电机MG双方的动力而行驶。并且,在第二实施例的混合动力汽车20D中,由控制车辆整体的未图示的混合动力ECU,每隔预定时间(例如,每隔数msec)执行图IO所例示的驱动控制例程。
在图10的驱动控制例程开始时,包含在混合动力汽车20D的混合动力ECU中的CPU (图示省略),执行输入控制所必要的数据的处理(步骤S300),其中所述数据包括加速踏板开度Acc、车速V、自动变速器90的输入轴91的转速Ni、自动变速器90的输出轴92的转速No、电池50的剩余容量SOC、 ECO标志Fcco的值等。这里,转速Ni、 No是由设置在输入轴91及输出轴92上的未图示的旋转位置检测传感器检测到的值,剩余容量SOC是从管理电池50的未图示的电池ECU发送的值。在步骤S300的数据输入处理之后,基于所输入的加速踏板开度Acc和车速V,设定应当向连结在车轮39a、 39b上的作为车轴的输出轴92输出的要求转矩Tr*,进而设定对车辆整体所要求的车辆要求功率P* (步骤S310)。在本实施例中,也预先确定加速踏板开度Acc、车速V和要求转矩T"之间的关系,作为要求转矩设定用图存储在混合动力ECU的ROM中,作为要求转矩Tr* ,对应于给出的的加速踏板开度Acc和车速V的值从该图导出/设定。另外,在本实施例中,车辆要求功率PH十算为由设定的要求转矩T"与在步骤S300输入的输出轴92的转速No的乘积。
接下来,判断在步骤S300输入的加速踏板开度Acc与上次执行图10例程时的加速踏板开度Acc的偏差、即加速踏板开度偏差AAcc是否处于预定值a以上(步骤S320 )。然后,在加速踏板开度偏差AAcc小于预定值a的情况下,行驶用动力仅由发动机22提供,将在步骤S310设定的车辆要求功率PA作为应当使发动机22输出的发动机要求功率PeH殳定(步骤S330)。另外,在加速踏板开度偏差AAcc处于预定值a以上,驾驶者有较大程度的加速要求的情况下,进一步判断在步骤S300输入的电池50的剩余容量SOC是否处于预定值Srcf以上(步骤S340 )。在步骤S340判定为电池50的剩余容量SOC小于预定值Sref的情况下,行驶用的动力仅由发动机22提供,将在步骤S310设定的车辆要求功率PM乍为对发动机22所要求的发动机要求功率Pe^殳定(步骤S330)。与此相对,在步骤S340判定为电池50的剩余容量SOC处于预定值Sref以上的情况下,执行基于在步骤S310设定的车辆要求功率P*、车辆要求功率?*的上次值的退火算法处理(annealing process,平滑处理)或者微分处理(rate process,比率处理),设定应当使发动机22输出的发动机要求功率Pe* (步骤S350 )。也就是说,在混合动力汽车20D中,在进行了加速要求的情况下,考虑到对驾驶者的加速要求的响应性,不急剧改变对于相比于电机MG而对转矩指令的响应性低的发动机22的发动机要求功率Pe气而使具有较高响应性的电才几MG输出不足的动力。
如果在步骤S330或者S350设定了发动机要求功率Pe*,则基于设定的发动机要求功率Pe+而使用与图4同样的图,以使发动机22高效运行的方式设定发动机22的目标转矩TeA和自动变速器90的输入轴91的目标转速Ni* (步骤S360 )。这里,在本实施例的混合动力汽车20D中,因为发动机22 (曲轴26 )的转速与输入轴91的转速是一样的,所以目标转矩Te*和目标转速NP表示发动机22的目标运行点。步骤S360的处理之后,将输入轴91的目标转速NP除以在步骤S300输入的输出轴92的转速得到的值设定为自动变速器90的目标变速比(步骤S370 )。接下来,判断车辆要求功率PA与发动机要求功率P浐的偏差是否大于0 (步骤S380),如果车辆要求功率PA与发动机要求功率Pe+—致,则没有必要使电机MG输出动力,所以将对电机MG的转矩指令Tn^设定为0(步骤S3卯)。然后,将上述那样设定的目标转矩Te*、目标转速NP、目标变速比f、转矩指令Tn^适当发送到均未图示的发动机用电子控制单元、变速器用电子控制单元、电机用电子控制单元(步骤S430),再次执行步骤S300以下的处理。
另 一方面,在步骤S380判定为车辆要求功率PA与发动机要求功率Pe*的偏差大于O的情况下,使动力从发动机22和电机MG两者输出,在这种情况下,首先判断在步骤S300输入的ECO标志Feco是否为值0、即ECO开关是否由驾驶者等设为关闭(步骤S400)。然后,在ECO开关被设为关闭,ECO标志Feco为值0的情况下,为了佳发动才几要求功率Pe* 相对于车辆要求功率Pa的不足部分由来自电机MG的动力供给,按照下 式(7)将车辆要求功率P+与发动机要求功率Pe4々偏差除以目标转速M* 得到的值,设定为对电机MG的转矩指令Tn^ (步骤S410)。与此相对, 在ECO开关被z没为开启,ECO标志Feco为值l的情况下,使用下式(8) 设定对电机MG的转矩指令Tn^ (步骤S420)。这里,式(8)将对电机 MG的转矩指令值设定得比ECO开关关闭时减少预定比例r。如果这样在 步骤S410和S420设定了转矩指令Tm*,则将设定的目标转矩Te* 、目标 转速Ni、目标变速比f、转矩指令Tn^适当发送到发动机用电子控制单 元、变速器用电子控制单元、电机用电子控制单元(步骤S430),再次执 行步骤S300以下的处理。
Tm*=( P*-Pe*)/Ni*…(7)
Tm*=(l-r)'( P*-Pe*)/M*…(8) 如此,本发明也适用于具有发动机22和专门由来自电池50的电力驱 动的电机MG、能够利用来自发动才几22和电机MG的双方的动力而行马史 的混合动力汽车20D。也就是说,在混合动力汽车20D中,在利用来自发 动机22和电机MG的双方的动力行驶时选择ECO模式的情况下,如果使 电机MG的输出转矩相比于ECO开关关闭时降低,则向作为车轴的输出 轴92输出的行驶用转矩比ECO开关关闭时降低而驾驶性能有些许降低, 但是能够使电机MG的电力消耗量、电机MG、变换器45、电池50等中 的损失减少并且能够抑制发动机22的效率的降低,使车辆的能量效率提 高。另外,利用来自发动才几22的动力和来自由电池50的电力驱动的电机 MG的动力而使图8所例示的具备CVT140的混合动力汽车20C加速时也 可以利用应用了图10所示例程的处理。
这里,对上述实施例及变形例的主要要素与记载在发明内容栏里的发 明的主要要素之间的对应关系进行说明。也就是说,能够向齿圏轴32a等 输出动力的发动机22与"内燃机"相当;电机MG、 MG2或者双转子电 动机230与"电动机"相当;电池50与"蓄电单元"相当;用于选择ECO模式的ECO开关88与"效率优先模式选择开关"相当;执行图2或者 图10的驱动控制例程的混合动力ECU70等与"要求驱动力设定单元,,、"目 标运行点设定单元"以及"控制单元,,相当。另外,动力分配集成机构30 及CVT140与"动力传递单元"相当,该动力分配集成机构30包括作为 车轴侧旋转要素的齿圏32和作为内燃机侧旋转要素的行星架34,该 CVT140包括作为车轴侧旋转要素的输入轴141和作为内燃机侧旋转要素 的输出轴142;电机MG1及动力分配集成机构30、双转子电动机230与 "电力动力输入输出单元"相当;电机MG1、交流发电机29或者双转子 电动机230与"发电用电动机"相当;动力分配集成机构30与"3轴式动 力输入输出单元"相当。另外,因为实施例是用于具体说明实施记载在发 明内容栏里的发明的最佳方式的 一例,所以这些实施例的主要要素与记载 在发明内容栏里的发明的主要要素之间的对应关系并不限定于记载在发明 内容栏里的发明的要素。也就是说,实施例只不过是记载在发明内容栏里 的发明的具体例子,对记载在发明内容栏里的发明的解释,应当基于该栏 里的记载来进行。
以上使用实施例对本发明的实施方式进行了说明,但是本发明完全不 限于上述实施例,在不脱离本发明要旨的范围内,当然能够进行各种变更。 本发明能够在混合动力汽车的制造产业等利用。
权利要求
1.一种混合动力汽车,该混合动力汽车具备能够输出行驶用的动力的内燃机;能够输出行驶用的动力的电动机;能够与所述电动机交换电力的蓄电单元;效率优先模式选择开关,该效率优先模式选择开关用于选择使能量效率优先的效率优先模式;要求驱动力设定单元,该要求驱动力设定单元设定行驶所要求的要求驱动力;目标运行点设定单元,该目标运行点设定单元基于所述设定的要求驱动力,设定所述内燃机的目标运行点;和控制单元,该控制单元在利用来自所述内燃机和所述电动机双方的动力行驶时所述效率优先模式选择开关断开的情况下,控制所述内燃机和所述电动机,使得所述内燃机在所述设定的目标运行点运行并且获得基于所述设定的要求驱动力的动力,在利用来自所述内燃机和所述电动机双方的动力行驶时所述效率优先模式选择开关接通的情况下,控制所述内燃机和所述电动机,使得所述内燃机在所述设定的目标运行点运行并且使得由所述电动机输出的动力比所述效率优先模式选择开关断开时低。
2. 根据权利要求l所述的混合动力汽车,其中,所述控制单元,在利用来自所述内燃机和所述电动才几双方的动力行马史 时所述效率优先模式选择开关接通的情况下,使对所述电动机的转矩指令 值相比于所述效率优先模式选择开关断开时减小预定量。
3. 根据权利要求l所述的混合动力汽车,其中, 所述混合动力汽车还具备动力传递单元,该动力传递单元具有连接于对于所述车轴侧旋^要素差动旋转的内燃机侧i转要素,能够将来自所述 内燃机轴的动力的至少一部分向所述车轴侧输出。
4.根据权利要求3所述的混合动力汽车,其中,伴随电力和动力的输入输出而能够将所述内燃机的动力的至少一部分向所 述车轴侧输出并且能够与所述蓄电单元交换电力的电力动力输入输出单 元。
5. 根据权利要求4所述的混合动力汽车,其中, 所述电力动力输入输出单元包括能够输入输出动力的发电用电动机;和3轴式动力输入输出单元,该3轴式动力输入输出单元被连接于所述车基于相对于这3轴中的任意2轴输入输出的动力而确定的动力相对于剩余 的轴输入输出。
6. 根据权利要求5所述的混合动力汽车,其中,所述控制单元,在利用来自所述内燃机和所述电动机双方的动力行驶 时所述效率优先模式选择开关接通的情况下,使从所述蓄电单元向所述电 动机供给的电力相比于所述效率优先模式选择开关断开时降低预定比例, 设定对所述电动机的转矩指令。
7. 根据权利要求3所述的混合动力汽车,其中, 所述动力传递单元是无级变速器。
8. —种混合动力汽车的控制方法,该混合动力汽车具备能够输出行驶 用的动力的内燃机、能够输出行驶用的动力的电动机、能够与所述电动机 交换电力的蓄电单元、和用于选择使能量效率优先的效率优先模式的效率 优先才莫式选择开关,所述混合动力汽车的控制方法包括步骤(a),该步骤基于行驶所要求的要求驱动力,设定所述内燃机的 目标运行点;步骤(b),该步骤在利用来自所述内燃机和所述电动机双方的动力行 驶时所述效率优先模式选择开关断开的情况下,控制所述内燃机和所述电 动机,使得所述内燃机在由步骤(a)设定的目标运行点运行并且获得基于 所述要求驱动力的动力,在利用来自所述内燃机和所述电动机双方的动力 行驶时所述效率优先才莫式选择开关接通的情况下,控制所述内燃机和所述电动机,使得所述内燃机在由步骤(a )设定的目标运行点运行并且使得由 所述电动机输出的动力比所述效率优先模式选择开关断开时低。
9. 根据权利要求8所述的混合动力汽车的控制方法,其中,步骤(b),在利用来自所述内燃机和所述电动机双方的动力行驶时所 述效率优先模式选择开关接通的情况下,使对所述电动机的转矩指令值相 比于所述效率优先模式选择开关断开时减小预定量。
10. 根据权利要求8所述的混合动力汽车的控制方法,其中, 所述混合动力汽车还具备动力传递单元,该动力传递单元具有连接于对于所述车轴侧旋转要素差动旋转的内燃机侧i转要素,';能够将来自所述 内燃机轴的动力的至少 一部分向所述车轴侧输出。
11. 根据权利要求10所述的混合动力汽车的控制方法,其中,伴随电力和动力的输入输出而能够将所述内燃机的动力的至少一部分向所 述车轴侧输出并且能够与所述蓄电单元交换电力的电力动力输入输出单 元。
12. 根据权利要求ll所述的混合动力汽车的控制方法,其中, 所述电力动力输入输出单元包括能够输入输出动力的发电用电动机;和3轴式动力输入输出单元,该3轴式动力输入输出单元被连接于所述车基于相对于^3轴中的任^2轴输入输出的动力而确定的动力相对于剩余 的轴输入输出。
13. 根据权利要求12所述的混合动力汽车的控制方法,其中,步骤(b),在利用来自所述内燃机和所述电动机双方的动力行驶时所 述效率优先模式选择开关接通的情况下,使从所述蓄电单元向所述电动机 供给的电力相比于所述效率优先模式选择开关断开时降低预定比例,设定 对所述电动机的转矩指令。
14. 根据权利要求ll所述的混合动力汽车的控制方法,其中, 所述动力传递单元是无级变速器。
全文摘要
在混合动力汽车20中,在利用来自发动机22和电机MG2的双方的动力行驶时ECO开关88接通的情况下,控制发动机22和电机MG1、MG2,使得发动机22在基于要求转矩Tr<sup>*</sup>在步骤S120设定的目标运行点运行并且使得由电机MG2输出的动力比ECO开关断开时降低(步骤S130~S150,S170~S200)。
文档编号B60L11/14GK101568459SQ20078004836
公开日2009年10月28日 申请日期2007年10月25日 优先权日2006年12月28日
发明者中川正, 前田昌彦, 矢口英明, 阵野国彦 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1