用于检测物体接近的静电电容式检测装置、传感器单元、控制系统以及其方法

文档序号:3932579阅读:164来源:国知局
专利名称:用于检测物体接近的静电电容式检测装置、传感器单元、控制系统以及其方法
技术领域
本发明涉及一种用来检测出物体接近的静电电容式检测装置以及方法,更具体而言,是与以下内容相关的,即可以检测出,应被检测出的对象物体(以下,称为检测对象)的接近的静电电容式检测装置以及方法,包括有该静电电容式检测装置的传感器单元、以及包括有该传感器单元的控制系统。
背景技术
最近,不用钥匙即可对汽车等的门进行上锁以及开锁的操作的,无钥匙进入系统得到了广泛地使用,在许多这种无钥匙进入系统中,采用了在门把手内加装了,用于检测出用户对门把手的触摸的静电电容式触摸传感器。利用相关的静电电容式触摸传感器,可以测量出其内部的传感器的电极上的杂散电容。这种杂散电容是通过用户与门把手相接触而增加的。而静电电容式触摸感应器是, 当传感器电极的杂散电容的检测值为预定值以上的时候,就可以检测出用户对门把手的接触。然而,在雨天的时候,因为作为导体的雨水积聚在传感器的电极附近,于是传感器电极的杂散电容就会增加。因此,尽管用户没有接触门把手,还是产生了用户触摸了门把手的错误检出,从而进行了上锁或开锁的操作。在这里,很容易积聚雨水的传感器的电极附近,是指门把手的上面和门板之间的边界区域。着眼于此,就有了下述技术提案,即,使门板附近的传感器电极的触摸检测灵敏度低于远离门板的传感器电极的触摸检测灵敏度。(参照专利文献1,以下称为“现有例”)。 在此现有例中,或是在靠近门板的传感器电极部分上形成有切缺部,或是采用以下的结构, 即在传感器电极附近的,收容有静电电容式触摸传感器的门把手外壳,其靠近门板部分的介电常数高于远离门板部分的介电常数。在先技术文献专利文献专利文献1 日本专利特开2009-133777号公报

发明内容
发明所要解决的问题作为导体的雨水积聚在传感器的电极附近,由此而发生传感器电极的杂散电容的增加,进而由于这种杂散电容增大以致发生错误检出。从防止起因于此的错误检出观点来看,上述的现有例是一种很优异的技术。但是,在现有技术中,或是传感器的电极形状很复杂,或是门把手的外壳的结构很复杂,从而降低了产品的生产性。因此,就非常希望有一种既可不招致生产性降低,又可以有效地防止雨天或者洗车时的水滴或者水流所导致的错误检出的技术。
本发明是鉴于上述情况而做出的,以提供一种结构简单,可以高精度地检测出检测对象的接近的静电电容式检测装置以及检测办法为目的的。另外,本发明还是,以提供包括该静电电容式检测装置的传感器单元,以及包括该传感器单元的控制系统为目的的。解决问题的手段当导电物体接近与周围的导体之间形成电容的传感器电极时,该传感器电极的杂散电容会增加,而其增加的速度是根据该导电性物体的大小等而变化的。因此,本发明者通过进行各种实验,反复地推演,得到了以下的想法,即根据导电性的检测对象,和与该检测对象的相异处应能被辨别出来的导电性物体(以下也称为“检测对象以外的物体”)的大小等差异相对应的传感器电极的杂散电容的时间变化率有所不同的考虑,从而可以区别出检测对象的接近和检测对象以外的物体的接近的想法。本发明就是基于相关的想法而做出的。S卩,本发明的第1观点是一种静电电容式检测装置,其可以检测出导电性检测对象的接近的静电电容式检测装置,其特征为,包括与周围的导体之间形成电容的传感器电极;计量根据前述传感器电极与前述检测对象之间的位置关系而变化的前述传感器电极的杂散容量的计量部;以及在满足以下的条件的情况下,判定前述检测对象的接近的判定部, 即包含前述检测部所检测出的杂散容量的时间变化率,和根据前述检测对象以及与该检测对象的相异处应能被辨别出来的物体的组合而决定的预定时间变化率之间的大小关系是属于预定关系的接近检测条件。这种静电电容式检测装置中,计量部是计量传感器电极的杂散容量的。这样,根据由计量部所计量的杂散容量,判定部可以算出所计量的杂散容量的时间变化率(例如,在预定的时间长度的期间内的平均时间变化率。)接着,判定部要判定是否下述接近检测条件得到了满足,既包含根据前述检测对象以及与该检测对象的相异处应能被辨别出来的物体的组合而决定的预定时间变化率,与算出的平均时间变化率之间大小关系是属于预定关系的接近检测条件。在这个接近检测条件得到满足的情况下,判定部判定检测对象已接近。因此,根据本发明的静电容量检测装置,可以以简单的构成,高精度地检测出检测对象的接近。本发明的静电电容式检测装置中,在前述接近检测条件里,可以包含前述所计量的杂散容量大于根据前述检测对象而决定的预定值的情况。这种情况下,在预定的时间长度的期间内,加上传感器电极的杂散容量的平均时间变化率,就可以评价出该杂散容量的增大量。因此,就可以以更高的精度检测出检测对象的接近。另外,作为“预定值”,可以采用(a)当检测对象不存在于传感器电极的周围状态下的传感器电极的杂散容量的估计值,与检测对象接近于传感器电极情况下的传感器电极的杂散容量的估计值之间的某个值,也可以采用(b)检测对象不存在于传感器电极的周围状态下的传感器电极的杂散容量的计量值的移动平均值,再乘以由实验、模拟或经验等预先决定的1以上的值而得到的值。本发明的第2观点是一种传感器单元,其特征为,包括本发明的静电电容式检测装置;和进行无线信号接收和发送的天线。这种传感器单元,利用构成该传感器单元的上述本发明的静电电容式检测装置,可以检测出被识别的检测对象的接近。而且,利用构成传感器单元的天线,可以与外部进行无线通信。因此,例如,可以通过把本发明的传感器单元配设于车辆的门把手内,来检测出用户的手指的接近。而且,还可以采用这个传感器单元,作为利用无线通信进行正规用户认证的车辆无钥匙进入系统的构成要素。本发明的第3观点是一种控制系统,其特征为,包括一种本发明的传感器单元和一种控制装置,该控制装置在收到从前述传感器单元的静电电容式检测装置出来的,检测对象接近的报告的情况下,利用前述传感器单元的天线进行正规用户的认证,前述控制装置,在前述认证成功的情况下,实行预定的控制。在这种控制系统中,在收到从作为本发明的传感器单元的构成要素的上述本发明的静电电容式检测装置所发出的,检测对象接近报告的情况下,控制装置通过使用该传感器单元的天线的无线通信,进行正规用户的认证。然后,当该认证成功的情况下,控制装置进行预定的控制,比如说,控制系统为车辆的无钥匙进入系统的情况下,实行上锁控制或者开锁控制。因此,根据本发明的控制系统,可以防止起因于检测对象接近的错误检测而导致的控制动作的实行。本发明的第4观点是一种用于检测物体接近的方法,该检测物体接近的方法,是被用于静电电容式检测装置的,而该静电电容式检测装置具有与周围的导体相互作用而形成电容的传感器电极,该检测物体接近的方法的特征为,该方法包括计量根据前述传感器电极与导电性检测对象之间的位置关系而变化的前述传感器电极的杂散容量的计量阶段; 以及在满足以下条件的情况下,判定前述检测对象的接近的判定阶段,即包含前述计量阶段所计量出的杂散容量的时间变化率,和由前述检测对象以及与该检测对象的相异处应能被辨别出来的物体的组合而决定的预定时间变化率之间的大小关系是属于预定关系的接近检测条件。这个用于检测物体接近的方法是在计量阶段中,计量出传感器电极的杂散容量。 这样,根据在计量阶段中所计量的杂散容量,在判定阶段中,首先,算出所计量的杂散容量的时间变化率(例如,在预定的时间长度的期间内的平均时间变化率。)接着,在判定阶段, 判定出是否下述接近检测条件得到了满足,即包含由前述检测对象以及与该检测对象以外的物体的组合而决定的预定时间变化率,与算出的平均时间变化率之间大小关系是属于预定关系的接近检测条件。在这个接近检测条件得到满足的情况下,判定出检测对象已接近。因此,根据本发明的用于检测物体接近的方法,可以以简单的构成,高精度地检测出检测对象的接近。发明的效果如上所述,根据本发明的用于检测物体接近的静电电容式检测装置以及方法,就不会受到外壳或传感器形状以及构成的影响,以简单的构成,达到高精度地检测出检测对象的接近的效果。另外,本发明的传感器单元可以在下述情况下采用,即检测对象的接近,和在通过无线通信进行正规用户的认证之上,构建进行控制动作的控制系统的时候。另外,通过本发明的控制系统,可以达到防止起因于检测对象接近的错误检出而导致进行控制动作的效果。


图1是用于说明与本发明的一个实施例相关的控制系统,无钥匙进入系统,的构成的框图。图2是用于说明图1的传感器单元的配置位置的图。图3是用于说明图1的传感器单元构成的,传感器单元的爆炸立体图。图4是用于说明图3的天线单元的构成的,长方体形状的芯材的立体图。图5是用于说明图3的天线单元的底面侧的构成的图。图6是用于说明图3的检测部构成的框图。图7是用于说明在图6阈值表的内容的图。图8是用于说明图6的第1以及第2判定部的状态转换的图。图9是用于说明图6的第1以及第2判定部的状态转换和阈值之间关系的图。图10是用于说明的图1的控制装置的构成的框图。图11是用于说明图6的第1以及第2判定部的处理的流程图。
具体实施例方式下文中,参照图1至11,对本发明的一个实施例进行说明。同时,在下面的说明和附图中,相同的或类似的要素将被赋予同样的符号,并省略重复的描述。本发明的“对象”包括人体和人体以外的对象。本发明的“接近”是指物体或对象,从不靠近传感器等的状态, 移动到靠近传感器的位置。图1显示了与一个实施例相关的控制系统,无钥匙进入系统800,的大致构成。如此图1所示,无钥匙进入系统800包括传感器单元100,控制装置300,开锁部410和上锁部 420。在这里,传感器单元100,如图2所示,在被配置在车门910的门把手920的外壳中的。另外,本实施例中,传感器单元100,虽然被配置在门把手920内,但是也可以使其露在门把手920的车体侧的表面之外。上述的传感器单元100,如图3所示,包括外壳部件110,由作为传感器电极的第1 传感器电极120以及检测单元130所构成的静电电容式检测装置150,和天线单元160。其次,将第1传感器电极120,检测单元130,和天线单元160组装在外壳部件110内之后,用树脂进行封装成型,从而制造出了传感器单元100。在这里,作为用于封装成型的树脂,可以是聚乙烯,聚丙烯,聚苯乙烯,苯乙烯性 (AS (AerylonitriIe Styrene)丰对月旨或 ABS (Acrylonitrile Butadiene Styrene)丰对月旨),聚氯乙烯等热塑性树脂,或是酚树脂,尿素树脂,三聚氰胺树脂,环氧树脂等热固性树脂,或是硅树脂等。也可以是从这些绝缘树脂组成的群中,选择任意的一种或多种的树脂的混合物, 作为封装成型的树脂来使用。而且,作为封装的方法,除了射出成型以外,还可以考虑把熔融的上述树脂充填在外壳部件110中的方法。另外,在不超出本发明的主旨的范围内,还可以采用各种各样的封装方法。上述的外壳部件110被形成为,向着+Z方向开放,并以X轴方向为纵向方向的箱形部件,且是由树脂成型而成的。在这里,作为外壳部件110的树脂材料而言,可以是聚乙烯,聚丙烯,聚苯乙烯,苯乙烯性树脂(AS树脂或ABS树脂),聚氯乙烯等热塑性树脂;或酚醛树脂,尿素树脂,三聚氰胺树脂,环氧树脂等热固性树脂;或是硅树脂等。也可以是从这些绝缘树脂组成的群中,选择任意的一种或多种的树脂的混合物,作为部件成型的树脂来使用。此外,外壳部件110的内底面上,还形成有载置第1传感器电极120用的多个第1突起台,用于载置天线单元160用的爪部以及第2突起台(均未图示)。上述第1传感器电极120,是用于开锁控制时的传感器电极,其是通过被焊接到形成于外壳部件110的内表面的第1突出台,从而固定在外壳部件110上的。在这第1传感器电极120的-χ方向一侧部分上,配置有用于载置检测单元130的凸状弯曲突起部1211; 1212。在这里,弯曲突起部1211; 1212,是把第1传感器电极120的一部分向+Z方向弯曲成 L形而成的。上述检测单元130包括印刷电路板131。这个印刷电路板131上,形成有用于使弯曲突起部121pl212上方(+Z方向侧)前端部穿过的,在Y轴方向延伸的狭缝状开口 13 , 1322。在这里,狭缝状开口 132^13 的Y轴方向的长度,比弯曲突起121ρ1212的上方前端部的Y轴方向的长度要长,同时,比弯曲突起121”1212的肩部下方(-Z方向侧)的Y轴方向的长度要短。因此,通过使弯曲突起部121pl212上方前端部穿过狭缝状开口 13 ,1322, 可以把印刷电路板131载置在第1传感器电极120上方,从而可以分隔开第1传感器电极 120和印刷电路板131。因此,可以抑制第1传感器电极120的杂散电容的检测灵敏度上的偏差,从而安定地检测出电容的变化。另外,在弯曲突起部121p 1212上方前端部穿过狭缝状开口 1321; 13 的状态下,通过用焊锡焊接印刷电路板131的+Z方向侧的表面上形成的配线图案,和弯曲突起部121” 1212,来把印刷电路板131固定在第1传感器电极120上。而且,印刷电路板131的+Z方向侧的表面上的-X方向侧部分上,还形成有作为传感器电极的第2传感器电极133的矩形图案。这个第2传感器电极133是在上锁控制时使用的传感器电极。而且,在印刷电路板131的+Z方向侧表面上的+X方向侧部分,还搭载有检测部 134。这个检测部134,是由LSI (Large Scale Integrated circuit)元件,和电阻器等离散元件所组成的。这个检测部134,与操作电源,或用于向控制装置300进行信号传输的、由多条线所构成的接线部件139连接在一起。相关的检测部134的功能构成将在后面介绍。上述天线单元160包括矩形状芯材161和绕组162。在这里,矩形状芯材161,如图4所示,包括(i)以X轴方向为纵向方向的磁性芯材166,(ii)覆盖于磁性芯材166外, 以X轴方向为纵向方向,为管状部件的底座部件(骨架部件)167。另外,作为磁性芯材166 的材料,可以采用镍锌铁氧体,锰锌铁氧体等铁氧体,或铁硅铝,非晶金属等软磁性金属,或者上述两者的混合物。返回图3,天线单元160上的绕组162是,把导线卷绕在底座部件167表面上形成的。这个天线单元160是,通过使矩形状芯材161的底座部件167与形成于外壳部件110 的内表面的上述爪部相啮合,同时焊接在第2突起台上,从而固定在外壳部件110上的。另外,在矩形状芯材161的-Z方向侧的表面上,如图5所示,在对应第1传感器电极120的多个位置上,形成有比绕组162厚度更高的突起部164。因此,当天线单元160固定在外壳部件110上时,可以在防止第1传感器电极120与绕组162之间的接触,同时,还可以一定的间隔来分隔两者。因此,可以抑制第1传感器电极120的杂散电容的检测灵敏度上的偏差,从而安定地检测出电容的变化。而且,绕组162,与用于向控制装置300进行信号传输的接线部件169连接在一起。因为本实施例中的传感器单元100具有如上构成,所以即使没有另行准备隔片部件,也可以可靠地预防第1传感器电极120,检测单元130的印刷电路板131,以及天线单元 160的绕组部162相接触。上述检测部134,可以分别独立地检测出手指相对于第1传感器电极120的接近, 以及手指相对于第2传感器电极133的接近。具有相关功能的检测部134,如图6所示,包括计量部210,和判定部220。上述计量部210计量了第1传感器电极120的杂散电容以及第2传感器电极133 的杂散电容。具有相关功能的计量部210包括,第1计量部211i和第2计量部2112。上述第1计量部是计量第1传感器电极120的杂散电容SC1的。在本实施例中,第1计量部211i采用了,通过计量利用由第1传感器电极120的杂散电容和具有预定电阻值的电阻元件所构成的积分电路的充/放电时的振荡频率,来计量第1传感器电极120 上的杂散电容。然而,也可以采用其他如电桥电路等计量方法。第1计量部211工的计量结果,计量电容值MC1,被发送到判定部220。另外,所谓“预定电阻值”是,从以下观点出发,即考虑到第1传感器电极120杂散电容的预想变化范围的测量精度的妥当性,基于实验、模拟、或经验等,而预先确定好的。上述第2计量部2112是计量第2传感器电极133的杂散电容SC2的。本实施例中, 第2计量部2112具有与上述第1计量部2111同样的构成,采用了以下的方式,即通过计量利用由第2传感器电极133的杂散电容和具有预定电阻值的电阻元件所构成的积分电路的充/放电时的振荡频率,来计量第2传感器电极133上的杂散电容。第2计量部2112的计量结果,计量电容值MC2,被发送到判定部220。上述判定部220判定了,人体(通常是手指)相对于第1传感器电极120的接近, 以及人体(通常是手指)相对于第2传感器电极133的接近。具有相关功能的判定部220, 包括第1判定部22^和第2判定部2212。此外,在本实施例中,利用了人体接近时的第1传感器电极的120以及第2传感器电极133的杂散电容的时间变化率比水滴或水流接近时大的事实,第1判定部22^和第2 判定部2212可以辨别出是检测对象的人体的接近,还是与人体接近不同的,应能被辨别出来的雨滴等水滴或者水流的接近。上述第1判定部22^包括阈值表225p此外,上述第2判定部2212包括阈值表
2 2 5二 ο阈值表22 (j = 1,2)中,如图7所示,ON阈值THNj,OFF阈值THFj ( < THNj)及時間変化率閾值ΤΗΔ」(>0)已被注册。参照这三种阈值,第j判定部221」的内部状态,如图 8所示,在接近状态与脱离状态之间进行转换。在下面的说明中,“ON阈值”,“OFF阈值”以及“时间变化率阈值”分别被简记为“阈值”。另夕卜,在本实施例中,“阈值ΤΗΝ/,和“阈值THFj”,是考虑到第j电极传感器(120, 133)的预期杂散电容的变化范围,而事先确定的。而且,“阈值ΤΗΔ/’是从可以辨别出人体接近,与水滴或是水流接近的观点,基于实验、模拟或经验等,预先决定的。在这里,“阈值 THN1,,、“阈值THF1 ”以及“阈值TH Δ工,,,和“阈值THN2,,、“阈值THF2”以及“阈值THA2"根据电极面积,接近的人体部分的面积等差异,彼此之间的值也有所不同。第j判定部22、.中判断从脱离状态到接近状态的转换条件,即接近条件,是计量电容值MCj的时间变化率大于阈值ΤΗΔ」,而且,计量电容值MCj等于阈值ΤΗΝ」。另外,第j 判定部22^中判断从接近状态到脱离状态的转换条件,即脱离条件,是计量电容值Mq小于阈值THFjtl因此,如图9中实线所示,计量电容值MCj小于阈值THFj的状态下,即脱离状态的值开始,一旦以比阈值TH Δ j更大的时间变化率急速地增加,并超过阈值ΤΗ ,此时第j判定部221」的内部状态由脱离状态向接近状态转换。而且,在成为接近状态之后,计量电容值MCj —旦低于阈值THFj,此时第j判定部221」的内部状态由接近状态向脱离状态转换。此外,由图9中虚线所示,计量电容值MCj从小于阈值THFj的脱离状态值开始,以比阈值THAj更小的时间变化率缓慢地增加的情况下,即使计量电容值MCj超过阈值THNj, 此时第j判定部22^的状态也不会转换为接近状态,而是继续保持脱离状态。回到图6,第1判定部在预定的周期内,收集从第1计量部211工发送的计量电容值MC115接着,如上所述,基于收集结果和在阈值表225i注册的3种阈值,内部状态从脱离状态向接近状态转换的情况下,第1判定部判定人体已接近,并将接近报告DR1送往控制装置300。此外,第2判定部2212在预定的周期内,收集从第2计量部2112发送的计量电容值MC2。接着,如上所述,基于收集结果和在阈值表22 注册的3种阈值,内部状态从脱离状态向接近状态转换的情况下,第2判定部2212判定人体已接近,并将接近报告送往控制装置300。回到图1,上述的控制单元300,通过利用天线单元160与IC卡等外部移动设备之间的通信,进行正规用户的认证处理。而且,控制装置300,基于该认证结果以及从检测部 134送来的接近报告DRp ,对门910进行的开锁控制和上锁控制。具有相关功能的控制装置300,如图10所示,包括门状态检测部310、开锁控制部320、上锁控制部330以及认证部;340。上述门状态检测部310可以检测出门910的开闭状态以及上锁状态。即,门状态检测部310可以检测出门910处于以下三个状态中的哪一个。(i)关闭的状态,并且,处于上锁状态,即等待开锁状态,(ii)关闭的状态,并且,处于开锁状态,即等待上锁状态,以及(iii)开放状态,即开状态门状态检测部310所检出的门状态的检测结果,被送往开锁控制部320以及上锁控制部330。上述开锁控制部320接收了,从检测部134发送的接近报告DR1,以及从门状态检测部310发送的门状态检测结果。接着,当门910处于等待开锁状态,且接到了接近报告 DR1的情况下,开锁控制部320将认证要求送至认证部340。之后,开锁控制部320从认证部340接收到作为这个认证要求的应答的认证成功报告。最后,开锁控制部320将开锁指令KOC送至开锁部410。上述上锁控制部330接收了,从检测部134发送的接近报告DR2,以及从门状态检测部310发送的门状态检测结果。接着,当门910处于等待上锁状态,且接到了接近报告 DR2的情况下,上锁控制部330将认证要求送至认证部340。之后,上锁控制部330从认证部340接收到作为这个认证要求的应答的认证成功报告。最后,上锁控制部330将上锁指令KLC送至上锁部420。上述的认证部340接收到开锁控制部320或上锁控制部330送来的认证要求。接到认证要求的认证部340通过天线单元160,与外部移动设备之间进行通信,从而进行正规用户的认证。接着,认证部340将认证是否成功的认证处理结果,发送给发行了该认证要求的开锁控制部320或上锁控制部330。回到图1,上述开锁部410接到从控制装置300送来的开锁指令K0C。接到这个开锁指令KOC的开锁部410将门910的门锁打开。上述上锁部420接到从控制装置300送来的上锁指令KLC。接到这个上锁指令KLC 的上锁部420将门910的门锁锁上。[动作]其次,将对具有上述构成的无钥匙进入系统800的动作进行说明。<人体接近第1传感器电极120时的检测动作>首先,对人体接近第1传感器电极120时的检测动作进行说明。此外,在开始时, 假定不存在接近第1传感器电极120的物体,且第1判定部2211内部状态为脱离状态。而且,已经开始由第1计量部21^计量第1传感器电极120的杂散电容了,且第1判定部2211 定期地收集计量电容值MC115当检测到人体接近第1传感器电极120的时候,如图11所示,首先在步骤S11,从前一回的计量电容值MC1Cn = Tp))的收集时刻开始经过预定的时间(ΔΤ)之后,第1判定部开始收集新的计量电容值MC1Cn = Tn = ΤΡ+ΔΤ))。接着,在步骤S12,对从前一回收集时刻开始到这一回收集时刻为止的期间内,计量电容值MC1 (T)的时间变化率FI^ = (MC1 (Tn) -MC1 (Tp) ) / Δ Τ)是否大于阈值TH Δ :进行判定。在步骤S12中的判定结果为否定的情况下(步骤S12 :Ν),第1判定部22、判定人体未接近第1传感器电极120。接着,第1判定部221工在把计量电容值MC1 (Tp)更新成这一回收集到的计量电容值MC1 (Tn)之后,返回步骤Sll进行处理。之后,反复进行步骤S11, S12的处理。如果在步骤S12的测定结果是肯定的(步骤S12 =Y)则处理前进到步骤S13。在此步骤S13,第1判定部对计量电容值MC1 (Tn)是否大于阈值THN1进行判定。在步骤S13中的判定结果为否定的情况下(步骤S13:N),第1判定部判定人体未接近第1传感器电极120。接着,第1判定部221工在把计量电容值MC1 (Tp)更新成这一回收集到的计量电容值MC1 (Tn)之后,返回步骤Sll进行处理。之后,反复进行步骤Sll至 S13的处理。另一方面,在步骤S13中的判定结果为肯定的情况下(步骤S13 :Y),则判断人体已接近第1传感器电极120,前进至步骤S14进行处理。在这个步骤S14,第1判定部221工的内部装态由脱离状态向接近状态转换,同时把接近报告DR1发送给控制装置300。之后, 第丄判定部??“在把计量电容值此工^)更新成这一回收集到的计量电容值MC1 (Tn)之后, 前进至步骤S15进行处理。
在步骤S15中,从前一回的计量电容值MC1 (Tp)的收集时刻开始经过预定的时间 (Δ T)之后,第1判定部开始收集新的计量电容值MC1 (Tn)。接着,在步骤S16,第1判定部对计量电容值MC1 (Tn)是否小于阈值THF1进行判定。在步骤S16中的判定结果为否定的情况下(步骤S16 :N),第1判定部221工判定人体未脱离第1传感器电极120。接着,第1判定部2211在把计量电容值MC1 (Tp)更新成这一回收集到的计量电容值MC1 (Tn)之后,返回步骤S15进行处理。之后,反复进行步骤S15, S16的处理。另一方面,在步骤S16中的判定结果为肯定的情况下(步骤S16 :Y),第1判定部 221!判定人体脱离了第1传感器电极120,内部装态由接近状态向脱离状态转换。之后,第 1判定部221工在把计量电容值MC1 (Tp)更新成这一回收集到的计量电容值MC1 (Tn)之后,返回至步骤Sll进行处理。之后,反复进行步骤Sll至S16的处理。这样做就使得,每当第1判定部22、的内部状态处于脱离状态的情况下,且检测出人体的接近的时候,第1判定部22^就会发送接近报告DR1至控制装置300。<人体接近第2传感器电极133时的检测动作>其次,对人体接近第2传感器电极133时的检测动作进行说明。关于这个动作,图 11处理的主体为第2判定部2212,并且,第2判定部2212不但基于定期收集而得的计量电容值的MC2结果,以及阈值ITO2, THF2, THA2来进行人体接近的判定,而且也同样执行上述的对于人体接近第1传感器电极120时的检测动作。这样做就使得,每当第2判定部221s 的内部状态处于脱离状态的情况下,且检测出人体的接近的时候,接近报告就会被从第 2判定部2212发送给控制装置300。〈开锁控制动作〉其次,对控制装置300的开锁动作进行说明。另外,假设状态检测部310已经开始检测动作,且将门状态检测结果依次向开锁控制部320报告。每当接收到开锁控制部320、和检测部134所发送的接近报告DR1,就开始由控制装置300执行开锁控制动作。接到接近报告DR1后,开锁控制部320参照门状态检测结果, 判定门910是否处于等待开锁的状态。当这个判定结果为否定的情况下,开锁控制部320 立即终止这一回的开锁控制动作。这样做就使得,门继续保持在开锁控制部320在接收到接近报告DR1时的状态。另一方面,当门910是否处于等待开锁的状态的判定结果为肯定的情况下,开锁控制部320将认证要求发送给认证部340。接到认证要求的认证部340通过天线单元160, 向外部发送送信认证用信号。这样,发送到外部的送信认证用信号,在被正规用户所携带的移动设备(以下,称为“正规移动设备”)所接收之后,正规移动设备将正确对应于送信认证用信号的正规返信认证用信号返送回去。认证部340通过天线单元160接收到这个正规返信认证用信号之后,对送信认证用信号内容和正规返信认证用信号内容进行对照,从而成功地认证正规的用户。之后,认证部340把正规用户认证成功的内容的报告发送给开锁控制部320。在收到认证成功的报告,开锁控制部320将开锁指令KOC发送到开锁部410,并终止本次开锁控制动作。这样做就使得,接收到开锁指令KOC的开锁部410将门910的门锁打开。另一方面,当送信认证用信号被非正规移动设备以外的移动设备所接收时,该移动设备将正规返信认证用信号以外的返信认证用信号返送回去。这种情况下,通过天线单元160接收信号的认证部340,对送信认证用信号内容和返信认证用信号内容进行对照,从而使正规的用户的认证失败。此外,在送信认证用信号的传输范围内,无论是否为正规的移动设备,如果不存在任何移动设备的情况下,则认证部340就不可能收到任何返信认证用信号。在这种情况下, 认证部340所进行的正规的用户的认证也就失败了。正规用户认证失败的情况下,认证部340将正规用户认证失败内容的报告,认证失败报告,发送给开锁控制部320。接到认证失败报告后,开锁控制部320不会发送开锁指令KOC至开锁部410,而是终止本回的开锁控制动作。这样做就使门的状态继续保持在开锁控制部320在接收到接近报告DR1时的状态。〈上锁控制动作〉其次,对控制装置300的上锁动作进行说明。另外,门状态检测部310已经开始检测动作,且将门状态检测结果依次向上锁控制部330报告。每当接收到上锁控制部330、和检测部134所发送的接近报告D&,就开始执行控制装置300的上锁控制动作。接到接近报告后,上锁控制部330参照门状态检测结果, 判定门910是否处于等待上锁的状态。当这个判定结果为否定的情况下,上锁控制部330 立即终止这一回的上锁控制动作。这样做就使得,门继续保持在上锁控制部330在接收到接近报告DR2时的状态。另一方面,当门910是否处于等待上锁的状态的判定结果为肯定的情况下,上锁控制部330将认证要求发送给认证部340。接到认证要求的认证部340进行与上述开锁控制动作的时候同样的处理,并将认证成功报告或者认证失败报告发送给上锁控制部330。在收到认证成功的报告后,上锁控制部330将开锁指令KLC发送到上锁部420,并终止本次上锁控制动作。这样做就使得,接收到上锁指令KLC的上锁部420将门910锁上。另一方面,接到认证失败报告后,上锁控制部330不会发送上锁指令KLC至上锁部 420,而是终止本回的上锁控制动作。这样做就使门的状态继续保持在上锁控制部330在接收到接近报告时的状态。如上所述,在本实施例中,辨别人体接近传感器电极,还是水滴或者水流的接近, 是通过传感器电极120、134上的杂散电容的时间变化率是否大于阈值TH Δ ρ TH Δ 2来进行的。因此,根据本实施例,可以不会混淆人体接近,和水滴或水流的接近,从而高精度地检测出人体相对于传感器电极的接近。而且,本实施例中,高精度地检测出人体相对于传感器电极的接近的同时,并根据其检测结果,进行门的开锁控制以及上锁控制。因此,可以防止水滴或者水流所引起的门的开锁控制以及上锁控制的错误动作。[实施例的变形]本发明不仅局限于上述实施方案,还可以有各种变形。比如,上述实施例中,为了辨别人体接近传感器电极,还是水滴或者水流的接近, 传感器电极的杂散电容的时间变化率比事先注册的时间变化率的阈值更大作为一个条件,从而检测出人体对于传感器电极的接近。相对于此,根据检测对象,和应与该检测对象可以分别出来的物体之间的物性关系,也可以把传感器电极的杂散电容的时间变化率比事先注册的时间变化率的阈值更小作为一个条件,从而检测出人体对于传感器电极的接近。而且,有2种以上的检测对象,只使用1种时间变化率阈值与计量电容值进行比较,不能分辨出检测对象,和应与该检测对象可以分别出来的物体(检测对象以外的物体) 的情况下,也可以如下所述那样,检测出检测对象相对于传感器电极的接近。S卩,事先注册好上限时间变化率阈值和下限时间变化率阈值,把传感器电极的杂散电容的时间变化率处于上限时间变化率阈值和下限时间变化率阈值之间作为一个条件,从而检测出检测对象相对于传感器电极的接近。此外,在上述实施例中,考虑到传感器电极的杂散电容的预想变化范围,从而事先决定好了“ON阈值”和“OFF阈值”。反过来,也可以基于传感器电极的杂散电容的计量值而决定“ON阈值”和“OFF阈值”。比如,可以对传感器电极的杂散电容的计量值的移动平均值,乘以事先预定的1以上的值,从而决定“ON阈值”和“OFF阈值”。在上述实施例中,本发明的控制系统被应用到了车辆的无钥匙进入系统中,但本发明的控制系统也可以应用在车辆后备箱开启系统,建筑物的门的无钥匙进入系统里。此外,上述实施例中,本发明的静电电容式检测装置是被应用到车辆无钥匙进入系统静电电容式检测装置中,但本发明的静电电容式检测装置也可以适用于各种触摸传感
ο工业上的可利用性如上所述,本发明的静电电容式检测装置适用于有必要防止把检测对象接近,和检测对象以外的物体接近混淆在一起的静电电容式检测装置。另外,本发明的传感器单元也可以被用于,构建进行检测对象的接近的检测,和利用无线通信进行正规用户认证,并进行控制动作的控制系统所需的传感器单元。另外,本发明的控制系统,也可以适用于进行检测对象的接近的检测,和利用无线通信进行正规用户认证,并进行控制动作的控制系统。
权利要求
1.一种静电电容式检测装置,其可以检测出导电性检测对象的接近,其特征为,包括与周围的导体之间形成电容的传感器电极;计量根据前述传感器电极与前述检测对象之间的位置关系而变化的前述传感器电极的杂散容量的计量部;以及在满足以下的条件的情况下,判定前述检测对象的接近的判定部,即包含前述检测部所检测出的杂散容量的时间变化率,和根据前述检测对象以及与该检测对象的相异处应能被辨别出来的物体的组合而决定的预定时间变化率之间的大小关系是属于预定关系的接近检测条件。
2.如权利要求1所述的静电电容式检测装置,其特征为在前述接近检测条件中,包含有前述所计量的杂散电容,比根据前述的检测对象所决定的预定值要大的情况。
3.—种传感器单元,其特征为,包括如权利要求1或者2所述的静电电容式检测装置;和进行无线信号的接发信的天线。
4.如权利要求3所述的一种传感器单元,其特征为,该传感器单元被配置在车辆的门把手内。
5.—种控制系统,其特征为,包括如权利要求3或者4所述的传感器单元,和一种控制装置,其在接收到前述传感器单元的静电电容式检测装置所发出的检测对象接近的报告时,利用前述传感器单元的天线进行正规用户的认证;前述控制装置在前述认证成功的情况下,进行预定的控制。
6.一种用于检测物体接近的方法,该检测物体接近的方法,是被用于一种静电电容式检测装置的,而该静电电容式检测装置具有与周围的导体相互作用而形成电容的传感器电极,该检测物体接近的方法的特征为,该方法包括计量根据前述传感器电极与导电性检测对象之间的位置关系而变化的前述传感器电极的杂散容量的计量阶段;以及在满足以下条件的情况下,判定前述检测对象的接近的判定阶段,即包含前述计量阶段所计量出的杂散容量的时间变化率,和根据前述检测对象以及与该检测对象的相异处应能被辨别出来的物体的组合而决定的预定时间变化率之间的大小关系是属于预定关系的接近检测条件。
全文摘要
本发明提供了一种装置以及其使用方法,该装置以及使用方法可以高精度地检测出应被检测出的物体对象的接近。具体而言,计量部(210)计量出第1以及第2传感器电极(120、133)上的杂散电容,根据这里计测出的杂散电容,判定部(220)算出所计量的杂散电容在规定时间长的时间里的平均时间变化率。接着,判定部(220),判定出是否下述接近检测条件得到了满足,即包含由检测对象以及与前述检测对象的相异处应能被辨别出来的物体的组合而决定的预定时间变化率,与算出的平均时间变化率之间大小关系是属于预定关系的接近检测条件。在这个接近检测条件得到满足的情况下,判定部(220)判定出检测对象已接近。
文档编号B60J5/00GK102472827SQ201080036688
公开日2012年5月23日 申请日期2010年7月5日 优先权日2009年8月31日
发明者三浦芳则, 六嘉孝信, 守屋仁 申请人:胜美达集团株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1