用于控制电动机扭矩的车辆系统的制作方法

文档序号:3856004阅读:98来源:国知局
专利名称:用于控制电动机扭矩的车辆系统的制作方法
技术领域
本发明涉及用于响应电动机温度而控制电动机扭矩的车辆系统。
背景技术
混合动力电动车辆(HEVs)利用内燃机与电动机的结合来提供驱动车辆所需的动力。这种安排提供了优于只具有内燃机的车辆的改进的燃油经济性。改进HEV的燃油经济性的一种方法是在发动机低效运行并且不需要其高效运行驱动车辆的时间段中将发动机关闭。在这些情况中,电动机用于提供驱动车辆所需的所有动力。电池电动车辆(BEVs)利用一个或多个电动机来提供驱动车辆所需的动力,其不具有内燃机。通过消除发动机,BEVs可以提供优于HEVs的燃油经济性改进。—个或多个电动机各自包括固定在电动机外壳内的定子。电动机运行引起施加在定子上的反作用扭矩。定子固定在外壳上,以抵抗此反作用扭矩。

发明内容
在一个实施例中,车辆系统设有含外壳和定子的电动机。电动机配置为向车辆驱动提供电动机扭矩。车辆系统还设有至少一个控制器,其配置为接收表示外壳温度和定子温度之中的至少一个温度的输入、并且基于输入与预定的热数据的比较来控制电动机扭矩。在另一实施例中,车辆系统设有至少一个配置为接收表不电动机外壳和定子的温度的输入的控制器。该控制器基于外壳温度与定子温度之间的差来计算温度差值。控制器还将温度差值与预定的温度差比较以评估电动机性能,并且响应于电动机性能提供表示电动机扭矩请求的输出。在另一实施例中,车辆设有电动机,其具有外壳和定子,并且配置为向车辆驱动提供扭矩。至少一个传感器耦接至电动机并配置为提供表示外壳温度和定子温度中的至少一个温度的信号。至少一个控制器与电动机连通并且配置为基于信号与预定的热数据的比较来控制电动机扭矩。正因如此,各种实施例提供了一种或多种优势。电池电动车辆(BEVs)利用一个或多个电动机来提供驱动车辆所需的动力。这种布置提供了优于只具有内燃机的车辆以及HEVs的改进的燃油经济性。进一步地,BEVs连接至外部电源为高压电池充电。此外部源,可以是再生能源如光伏太阳能板或风力涡轮机,以降低车辆的碳足迹。车辆系统监控电动机温度以评估电动机性能,并响应于电动机性能控制电动机扭矩。


图1是根据一个或多个实施例在车辆内表不的用于控制电动机扭矩的车辆系统的不意图;图2是图1的车辆系统的电动机的放大截面图3是进一步说明图1的车辆系统的示意图;图4是说明根据一个或多个实施例用于控制电动机扭矩的方法的流程图;并且图5是图1的车辆系统的用户界面的正面透视图。
具体实施例方式按照要求,此处公开了本发明详细的实施例;然而,应当理解,所公开的实施例仅仅是本发明的示例,这些示例可以以各种不同和选择性的方式实现。附图不一定是按比例绘制的;一些特征可能被放大或缩小以显示具体部件的细节。因此,此处公开的具体结构性和功能性的细节不应视为对本发明的限制,而仅仅是为了教导本领域技术人员从多方面使用本发明而作为具有代表性的基础。参考图1,说明了根据一个或多个实施例用于控制电动机扭矩的车辆系统,并且总体上由数字20来表示。车辆系统20被描述在车辆22内。车辆系统20包括提供输出扭矩以驱动车辆22的电动机24。车辆系统20还包括彼此电连接的车辆控制器26和温度传感器28。传感器28接近电动机24安装;并且向车辆控制器26提供表示电动机24的温度的信号。车辆控制器26将与信号有关的温度值与预定的热数据进行比较以评估电动机热性能。车辆系统20还包括电连接至电动机24用以控制电动机输出扭矩的变速器控制模块(TCM) 30。TCM30与车辆控制器26连通并基于电动机热性能控制电动机24的输出扭矩。所述的实施例将车辆22描述为电池电动车辆,其是由电动机24驱动而无内燃机(未示出)辅助的全电动车辆。电动机24接收电能并提供机械转动输出动力。电动机24连接至变速箱38以通过预定的齿数比来调节电动机24的输出扭矩和速度。变速箱38通过输出轴42连接至一组驱动轮40。车辆22的其他实施例包括多个电动机(未示出)以驱动车辆22。电动机24还可以作为发电机运行以将机械能转化为电能。高压总线44将电动机24经过逆变器48电连接至能量存储系统46。根据一个或多个实施例,能量存储系统46包括主电池50和电池能量控制模块(BECM) 52。主电池50是能够输出电能以运行电动机24的高压电池。主电池50是由多个电池模块(未示出)组成的电池组。其中每个电池模块都包含多个电池单元(未示出)。根据至少一个实施例,电池单元使用液体冷却剂系统被加热或冷却。根据其他实施例,电池单元可以使用现有的车辆车厢空气来被空气冷却。BECM52充当主电池50的控制器。BECM52还包括管理每个电池单元的温度和充电状态的电子监控系统。车辆22的其他实施例预期到不同类型的能量存储系统,如电容器和燃料电池(未示出)。电动机24、TCM30、变速箱38以及逆变器48 —起被统称为变速器54。车辆控制器26与变速器54连通,以使变速器54的运行与其他车辆系统协调一致。尽管显示为单个控制器,但是车辆控制器26还可以包括多个可用于控制多个车辆系统的控制器。例如,车辆控制器26可以是车辆系统控制器/动力系统控制模块(VSC/PCM)。就这点而言,VSC/PCM的PCM部分可以是嵌入VSC/PCM内的软件,或者其可以是单独的硬件装置。车辆控制器26总体上包括任意数量的微处理器、专用集成电路(ASICs)、集成电路(ICs)、存储器(如闪存(FLASH)、只读存储器(ROM)、随机存储器(RAM)、可擦可编程存储器(EPROM)和/或电可擦可编程存储器(EEPROM))以及软件代码来彼此共同作用以执行一系列操作。车辆控制器26通过硬线车辆连接装置56使用通用总线协议(如控制器局域网(CAN))与其他控制器(如TCM30、BECM52)连通。TCM30配置为控制变速器54内的特定部件,如电动机24和/或逆变器48。TCM30包括用于监控电动机24的位置、速度和功耗的电动机控制器。车辆控制器26监控电动机24的温度并接收来自驾驶员的节气门请求(或所需的电动机扭矩请求)。使用此信息,车辆控制器26将电动机扭矩请求提供给TCM30。TCM30和逆变器48将主电池50供应的直流(DC)电压转化为用于响应于电动机扭矩请求而控制电动机24的信号。部分或所有这些各种控制器可以组成控制系统,出于参考的目的,其可以是车辆控制器26。尽管在作为BEV的车辆22的情况下做出说明和描述,但是应当理解,本发明的实施例可以在其他类型的车辆上执行,如那些由内燃机驱动的车辆,其不是单独具有内燃机就是除此之外还具有一个或多个电机(如HEVs、插电式混合动力电动车辆(PHEVs)等)。车辆控制器26通过用户界面60将信息提供给驾驶员。车辆控制器26接收表示车辆系统的当前运行情况的输入信号。例如,车辆控制器26可以接收来自BECM52表示电池50情况的输入信号,以及来自变速器54的输入信号,其表不电动机24和逆变器48的情况。车辆控制器26将输出提供给用户界面60,如电动机状态,其在视觉上传达给驾驶员。车辆22包括用于加热和冷却各种车辆部件的空调控制系统62。根据一个或多个实施例,空调控制系统62包括高压正温度系数(PTC)电加热器64和高压电动高压交流(HVAC)压缩机66。PTC64和HVAC压缩机66分别用于加热和冷却流向变速器54以及主电池50的流体。PTC64和HVAC压缩机66都可以从主电池50直接获取电能。空调控制系统62可以包括用于通过CAN总线56与车辆控制器26连通的控制器(未示出)。空调控制系统62的开/关状态传达给车辆控制器26,并且例如可以基于操作者所驱动的开关的状态,或者是基于相关功能的空调控制系统62的自动控制,如车窗除霜。根据一个实施例,车辆22包括副电池68,如12-伏电池。副电池68可以用于驱动各种车辆配件如前灯等等,在这里其被统称为配件70。直流到直流变换器72可以电插入主电池50与副电池68之间。直流到直流变换器72调节或“降低”电压水平以允许主电池50为副电池68充电。低压总线74将直流到直流变换器72电连接至副电池68和配件70。车辆22包括用于为主电池50充电的AC充电器76。电插头78将AC充电器76连接至外部电源供应(未示出)以接收AC电能。AC充电器76包括用于将接收自外部电源供应的AC电能转化或“整流”为DC电能以为主电池50充电的电子器件。AC充电器76配置为适配一个或多个来自外部电源供应(如110伏、220伏等)的传统电压源。在一个或多个实施例中,外部电源供应包括利用可再生能源产生电力的装置,如光伏(PV)太阳能板,或风力涡轮机(未示出)。图1中还不出了驾驶员控制系统80、动力转向系统82和导航系统84的简化不意图。驾驶员控制系统80包括制动、加速和挡位选择(换挡)系统(都未示出)。制动系统包括制动器踏板、位置传感器、压力传感器或它们的某种组合,以及与车辆车轮,如主驱动轮40,连接的机械连接装置,以实现摩擦制动。制动系统还可以配置为再生制动,其中制动能量可以被获取并储存为主电池50中的电能。加速系统包括具有一个或多个与制动系统中的传感器相似的传感器的油门踏板,其将信息如节气门请求提供给车辆控制器26。挡位选择系统包括换挡器以手动选择变速箱38的挡位设置。挡位选择系统可以包括换挡位置传感器以为车辆控制器26提供换挡器选择信息(如停车挡(P)、倒挡(R)、空挡(N)、前进挡(D)、低速档(L))。导航系统84可以包括导航显示器、全球定位系统(GPS)单元、导航控制器和输入(都未示出)以接收来自驾驶员的目的地信息或其他数据。这些部件可以是导航系统84独有的或与其他系统共享。导航系统84还可以传达与车辆22相关的距离和/或位置信息、它的目标目的地或其他相关的GPS航路点。图2描述了电动机24的放大截面图。根据一个或多个实施例,电动机24是多相同步电动机。电动机24包括外壳86和定子88。外壳86形成用于容纳定子88的内孔90。定子88形成总体上圆柱的形状,其具有接合内孔90的外表面92以将定子88固定在外壳86上。定子88是静止装置并且支承多个狭槽96内的电枢绕组94。电枢绕组94接收来自逆变器48(图1)的产生旋转磁场的交流电(AC)。所述实施例描述了三相同步电动机24,其中三个相位由字母“ a”、“b ”和“ c ”来表示。电动机24还包括在定子88内绕轴线A旋转的转子98。转子98包括固定在转子98上的永久磁铁100。磁铁100产生磁场,其相对于转子98的结构是静止的。由定子88产生的旋转磁场生成驱动(旋转)转子98绕轴线A对抗负载扭矩(如驱动车辆22的扭矩)的电磁扭矩。转子98的其他实施例包括用于产生磁场的励磁绕组(未示出)。根据至少一个实施例,由于定子88和外壳86的几何结构,定子88固定在外壳86上。控制内孔90的内径尺寸和外表面92的外径尺寸以提供外壳86与定子88之间的过盈配合或“压入配合”。定子88与外壳86之间的此界面抵抗由电磁扭矩引起的反作用扭矩,其约等于电动机输出扭矩。所述的实施例描述了额定功率约为92千瓦(kW)、最大输出扭矩约为246牛顿-米(Nm)的三相同步电动机24。因此,定子88的外表面92与外壳86的内孔90经受多达约246Nm的反作用扭矩。定子88和外壳86由不同材料制成,它们各自具有不同的热膨胀系数。根据一个或多个实施例,定子88由线性热膨胀系数约为1.lcm/cm/摄氏度(10~_5)的钢制成。根据一个或多个实施例,外壳86由线性热膨胀系数约为2.2cm/cm/摄氏度(10~_5)的铸铝制成。因为定子88和外壳86由不同的材料制成,它们各自具有不同的热膨胀系数,所以定子88和外壳86将以不同的比率膨胀。基于外壳86和定子88的几何结构,以及各自材料的热膨胀系数,计算电动机24以最大电动机扭矩运行时外壳86膨胀并且可以脱离定子88的热状态。参考图2和3,电动机24的温度由于不同的车辆运行情况而变化。当车辆22不运行时,外壳86和定子88的温度总体上相同。然而,当电动机24运行时(不是作为电动机就是作为发电机),定子88的温度总体上高于外壳86,这缘于流经电枢绕组94的电流所产生的热量。高温引起定子88膨胀并进一步接合外壳86。而且,当电动机24运行时车辆22冷却外壳86。空调控制系统62(图1)包括连接至外壳86的冷却剂管路104以提供冷却剂。所述实施例描述了穿过外壳86延伸的冷却剂管路104。在其他实施例中,流体通道或“水套”(未示出)穿过外壳86形成以使冷却剂流经外壳,并且冷却剂入口和出口管路在通道周围连接至外壳以提供经过外壳86的流体连通。在车辆22的正常运行情况下,冷却剂降低外壳86的温度,这引起外壳86的膨胀小于定子88,这提供了外壳86与定子88之间进一步的接合。在外壳86与定子88之间存在最低限度接合的一般条件是外壳86较热(较大的内孔90)而定子88较冷(较小的外表面92)时。
参考图3,车辆控制器26接收表示温度和位置测量值的信号。车辆控制器26还包括表示保持外壳86与定子88之间的接合的温度条件的预定的热数据。该预定的热数据包括预定的高温值,以及预定的温度差值。车辆系统20监控电动机24的温度,并且如果电动机温度超过预定的温度条件,则限制允许的电动机扭矩。车辆系统20包括温度传感器28 (图1)以测量电动机24的各种位置上的温度并为车辆控制器26提供相应的输入信号。温度传感器28包括外壳传感器106和定子传感器108。根据一个或多个实施例,外壳传感器106连接至制冷剂管路104。在制冷剂从电动机24流出时,外壳传感器106测量制冷剂的温度。在制冷剂流经外壳86时,制冷剂吸收来自外壳86的热量。因此,制冷剂的温度表不外壳86的温度。外壳传感器106可以位于制冷剂管路104内以及实际制冷剂路径内,或者位于制冷剂管路104的外部以测量被引导经过制冷剂管路104的热量。外壳传感器106为车辆控制器26提供表不外壳86的温度的外壳信号(TEMP_HSG)。根据一个或多个实施例,定子传感器108连接至定子88的电枢绕组94。如图3中所述,电枢绕组94形成环路,其从定子88的末端伸出。定子传感器108可以连接至绕组94的环路,以测量绕组94的温度。电枢绕组94通过传导将热量传递至定子88。因此,电枢绕组94的温度表示定子88的温度。定子传感器108为车辆控制器26提供表示定子88的温度的定子信号(TEMP_STAT)。车辆控制器26接收表示来自驾驶员的请求的输入信号(KEY_IN和APPS)。KEY_IN信号对应于点火钥匙(未示出)的位置或驱动循环的启动(对于没有钥匙的车辆来说)。KEY_IN信号表示驾驶员启动或停止车辆的请求。KEY_IN信号可以通过CAN总线56 (图1)或直接从钥匙传感器(未示出)接收。APPS信号对应于油门踏板(未示出)的位置,其表示驾驶员节气门请求。APPS信号可以通过CAN总线56或直接从驾驶员控制系统80接收。车辆控制器26将输入信号(TEMP_HSG和TEMP_STAT)与预定的数据比较以评估电动机性能。车辆控制器26基于驾驶员的节气门请求以及电动机性能为TCM30提供表示电动机扭矩请求的输出信号(Treq)。例如,在一个实施例中,车辆控制器26接收对应于最大电动机扭矩的驾驶员节气门请求的APPS信号。车辆控制器26确定电动机的热状态超过预定的热数据。因此,车辆控制器26通过为TCM30提供小于驾驶员的节气门请求的扭矩请求(Treq)来限制电动机扭矩。图4表不根据一个或多个实施例的基于电动机温度来控制电动机扭矩的方法110。该方法110由车辆系统20(图3中所示)的至少一个控制器(车辆控制器26和TCM30)来执行。车辆控制器26和TCM30总体上包括任意数量的微处理器、ASICs、ICs、存储器(如FLASH, ROM, RAM, EPROM和/或EEPROM),其与软件代码共同作用以执行方法110的操作。在操作112中,车辆控制器26接收来自车辆的各个系统或传感器的输入信号。该输入包括点火钥匙信号(KEY_IN)、油门踏板位置信号(APPS)、定子信号(TEMP_STAT)以及外壳信号(TEMP_HSG)。在操作114中,车辆控制器26将TEMP_STAT信号和TEMP_HSG信号与预定的高温值比较。预定的高温值表示当电动机24以最大电动机扭矩运行时的这样一种电动机24温度:超过该温度时外壳86膨胀并脱离定子88。例如,在一个实施例中,预定的高温值在五十五与六十五摄氏度之间。在另一实施例中,预定的高温值约为六十摄氏度。此高温可以出现在车辆停放在热环境(如亚利桑那沙漠)中时。外壳86和定子88的初始温度近似相等,这是因为电动机24未运行以加热定子88,并且空调控制系统未运行以冷却外壳86。如果操作114中的确定结果为肯定的,则车辆控制器26进入操作116。在操作116中车辆控制器26基于定子88的温度与外壳86的温度之间的差(TEMP_STAT-TEMP_HSG)来计算温度差值。车辆控制器26将温度差值与预定的温度差比较以评估电动机性能。预定的温度差表示当电动机24以最大电动机扭矩运行时保持定子88与外壳86之间的接合的最小值。例如,在一个实施例中,预定的温度差在三十与四十摄氏度之间。在另一实施例中,预定的温度差约为三十二摄氏度(89.6° F)。当定子88较冷而外壳86较热时预定的差值温度最大。如果操作114或操作116中的确定结果为否定的,则车辆控制器26进入操作118并且启用全电动机扭矩。车辆控制器26通过将基于驾驶员的节气门请求的扭矩请求提供给TCM30来启用全电动机扭矩,并且其不受电动机热性能的限制。如果操作116的确定结果为肯定的,则车辆控制器26进入操作120并限制电动机扭矩。车辆控制器26通过将扭矩请求提供给TCM30来限制电动机,该扭矩请求基于驾驶员对车轮扭矩的请求并且受电动机热性能限制。预定的热数据包括预定的电动机扭矩限度。预定的电动机扭矩限度是车辆控制器26将在操作120从TCM30请求的最大扭矩值。根据一个实施例,预定的电动机扭矩限度是最大电动机扭矩的百分比。例如,在一个实施例中,最大电动机扭矩约为246Nm,并且预定的电动机扭矩限度为172Nm,其为最大电动机扭矩的约百分之七十。如果驾驶员的节气门请求对应于200Nm的电动机扭矩,则车辆控制器26将在操作120通过将对应于预定的电动机扭矩限度(172Nm)的Treq信号提供给TCM30来限制电动机扭矩。车辆系统20和方法110的其他实施例预期到其他预定的电动机扭矩限度(如最大电动机扭矩的百分之五十或百分之六十)。然而,如果驾驶员的节气门请求对应于低于预定的电动机扭矩限度的电动机扭矩,则车辆控制器26不限制电动机扭矩。例如,在另一实施例中,最大电动机扭矩约为246Nm,并且预定的电动机扭矩限度为172Nm。如果驾驶员的节气门请求对应于IOONm的电动机扭矩,则车辆控制器26将提供给TCM30对应于IOONm的Treq信号。在此实例中,由于节气门请求低于预定的电动机扭矩限度(172Nm),因此车辆控制器26不限制扭矩请求(Treq)。参考图4和5,在操作120中车辆控制器26限制电动机扭矩之后,在操作122中,车辆系统20将此信息传达至驾驶员。车辆控制器26将电动机状态讯息提供给用户界面60,并且用户界面60将此信息传达至驾驶员。根据所述实施例,用户界面60为仪表板。用户界面60包括灯124 (或指示标记),其在操作122中响应于电动机性能被点亮。车辆系统20的其他实施例包括显示在触摸屏上的讯息或图像;或传达给驾驶员的音频消息。在操作122之后,车辆控制器26返回操作112。在一个或多个实施例中,车辆系统20在驱动循环过程中不改变用户界面60上的显示。例如,灯124在操作122中被点亮之后,车辆系统20可以在剩余的驱动循环中保持灯124被点亮,即使全电动机扭矩随后被启用。可以在驾驶员停放车辆之后关闭灯124,并且将点火钥匙置于关闭位置。车辆系统20可以保持灯124被点亮以避免灯124在驱动循环过程中重复开启或关闭。
图1的车辆系统20包括一个用于驱动车辆22的电动机24。因此,驾驶员将注意到电动机扭矩何时被限制为小于驾驶员的节气门请求的值。然而,在其他实施例中,车辆22包括多个电动机(未不出)或一个电动机以及一个发动机(未不出),其中一个动力源的扭矩可以补偿另一个源的有限的扭矩。正因如此,各种实施例提供了一种或多种优势。例如,车辆系统在极端温度条件下提供车辆驱动,这是通过监控电动机温度来评估电动机性能并响应于电动机性能来控制电动机扭矩实现的。尽管上文说明了示例性实施例,但是并不意味着这些实施例说明了本发明所有可能的形式。相反,说明书中所使用的词语为说明性的词语而不是为了限制,并且应当理解,在不背离本发明的思想和范围的情况下,可以做出各种变化。此外,可以结合各种实施的实施例的特征以形成本发明的另外的实施例。
权利要求
1.一种车辆系统,其特征在于,包含: 具有外壳和定子的电动机,其配置为向车辆驱动提供电动机扭矩;以及至少一个控制器,其配置为接收表示外壳温度和定子温度中的至少一个温度的输入,并且基于输入与预定的热数据的比较来控制电动机扭矩。
2.根据权利要求1所述的车辆系统,其特征在于,外壳形成内孔,并且定子形成具有适合接合内孔的外表面的总体上圆柱形的形状以将定子固定在外壳上;并且 其中预定的热数据表示保持外壳与定子之间接合的温度条件。
3.根据权利要求1所述的车辆系统,其特征在于,所述至少一个控制器包含与至少一个耦接至电动机的传感器连通的车辆控制器,该车辆控制器配置为: 接收表示来自至少一个传感器的外壳温度和定子温度中的至少一个温度的输入; 将外壳温度和定子温度中的至少一个温度与预定的热数据比较以评估电动机性能;以及 响应于电动机性能提供表示电动机扭矩请求的输出。
4.根据权利要求3所述的车辆系统,其特征在于,所述至少一个控制器还包含与电动机和车辆控制器连通的控制模块,其中控制模块配置为基于车辆控制器的输出来控制电动机扭矩,这是通过将对应于电动机扭矩请求的电流提供给电动机来实现的。
5.根据权利要求1所述的车辆系统,其特征在于,预定的热数据包含预定的高温,该预定的高温表示这样一种电动机温度:当电动机以最大电动机扭矩运行时,高于该温度时外壳膨胀并脱离定子,并且 其中所述至少一个控制器还配置为将外壳温度和定子温度中的至少一个温度与预定的高温比较以评估电动机性能。
6.根据权利要求5所述的车辆系统,其特征在于,预定的热数据包含预定的温度差,其表示当电动机以最大电动机扭矩运行时保持定子与外壳之间的接合的最小值;并且 其中所述至少一个控制器还配置为: 基于定子温度与外壳温度之间的差来计算温度差值;以及 将该温度差值与预定的温度差比较以评估电动机性能。
7.根据权利要求6所述的车辆系统,其特征在于,预定的热数据包含小于最大电动机扭矩的预定的电动机扭矩限度,并且其中所述至少一个控制器还配置为: 接收对应于所需电动机扭矩的节气门请求; 将节气门请求与预定的电动机扭矩限度比较;以及 当所需的电动机扭矩超过预定的电动机扭矩限度、外壳温度和定子温度超过预定的高温并且温度差值小于预定的温度差时,基于预定的电动机扭矩限度提供电动机扭矩请求。
全文摘要
本发明提供了一种具有车辆控制系统的车辆,其设有含外壳和定子的电动机。该电动机配置为向车辆驱动提供电动机扭矩。车辆系统还设有至少一个配置为接收表示外壳温度和定子温度中的至少一个温度的输入、并且基于输入与预定的热数据的比较来控制电动机扭矩的控制器。
文档编号B60L15/00GK103158579SQ20121055228
公开日2013年6月19日 申请日期2012年12月18日 优先权日2011年12月19日
发明者沙雷斯·施里康特·科扎雷卡, 泰瑞·弗罗贝尔 申请人:福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1