用于控制混合电动车辆的行驶模式间转换的系统和方法与流程

文档序号:12082700阅读:250来源:国知局
用于控制混合电动车辆的行驶模式间转换的系统和方法与流程

本发明涉及用于控制混合电动车辆的行驶模式间转换的系统和方法,且更具体地,涉及一种用于控制混合电动车辆的行驶模式间转换的系统和方法,其能够在使发动机首次启动时的燃料喷射补偿量最小化的条件下,执行从电动车辆(EV)模式到混合电动车辆(HEV)模式的行驶模式转换。



背景技术:

如图1中所示,现有技术的混合电动车辆的动力传动系统的示例包括:串联设置的发动机10和电动机12、设置在发动机10与电动机12之间配置成传递或切断发动机动力的发动机离合器13、配置成在执行变速的同时将电动机动力或电动机和发动机动力输出至驱动轮的变速器14、连接至发动机的曲轴皮带轮能够进行动力传递的用于启动发动机和为了对电池充电而发电的作为一种类型的电动机的启动发电一体机(ISG)11、配置成执行电动机控制和发电控制的逆变器、以及以可充放电的方式连接至逆变器为电动机提供电力的高电压电池。

电动机连接于自动变速器的混合电动车辆的动力传动系统被称为TMED(transmission mounted electric device)型系统,其提供各种行驶模式,诸如仅使用电动机动力的为纯电动车辆模式的电动车辆(EV)模式、使用发动机作为主动力并使用电动机作为辅助动力的混合电动车辆(HEV)模式、以及使用电动机发电来收集车辆的制动和惯性能量对电池充电的再生制动(RB)模式。

同时,如图2中所示,通过混合电动车辆的动力传动系统从EV模式到HEV模式的行驶模式转换包括启动发动机、使发动机速度与电动机速度同步、以及在同步后锁定发动机离合器。为防止启动发动机时的发动机失火,基于发动机速度、冷却液温度等执行附加的燃料喷射补偿控制。发动机速度或冷却液温度越低,燃料喷射补偿量越大。

当执行附加的燃料喷射补偿控制时,如图3中所示,实际扭矩大于发动机基准扭矩,结果燃料被过度消耗。此外,在从EV模式到HEV模式的行驶模式转换期间,当电动机速度低时,初始燃料喷射补偿量过大,结果燃料效率降低。其原因如下。

如图4A上部的图中所示,在发动机启动后,当电动机速度高时,执行将燃料喷射到发动机中以增加发动机速度,从而使发动机速度与电动机速度同步,并且执行附加的燃料喷射补偿,以防止在发动机特定的高每分钟转数(RPM)(燃料喷射补偿开始RPM)下发动机失火。具体地,如图4A下部的图中所示,附加的燃料喷射补偿量适当,结果燃料消耗低。在发动机速度与为高速的电动机速度即将同步前,发动机速度已增加至特定的高RPM(燃料喷射补偿开始RPM),因此发动机失火的可能性减小。

此外,如图4B上部的图中所示,在发动机启动后,当电动机速度低时,执行将燃料喷射到发动机中以增加发动机速度,从而使发动机速度与电动机速度同步,并且执行附加的燃料喷射补偿,以防止在发动机特定的低RPM(燃料喷射补偿开始RPM)下发动机失火。具体地,如图4B下部的图中所示,附加的燃料喷射补偿量过多,结果燃料消耗高。在发动机速度与为低速的电动机速度即将同步前,发动机速度已增加至特定的低RPM(燃料喷射补偿开始RPM),因此发动机失火的可能性增大。换言之,在从EV模式到HEV模式的行驶模式转换期间,当电动机速度低时,燃料喷射补偿量过多,因此燃料效率降低。



技术实现要素:

本发明提供一种用于控制混合电动车辆的行驶模式间转换的系统和方法,其能够在车辆加速行驶期间,在从低挡到高挡的换挡完成前(例如,在电动机速度降低前)执行从EV模式到HEV模式的行驶模式转换,以便使发动机首次启动时的燃料喷射补偿量最小化,从而提高燃料效率。

在一方面,本发明提供一种用于控制混合电动车辆的行驶模式间转换的系统,所述混合电动车辆包括发动机、连接至变速器的输入轴的电动机、以及设置在发动机与电动机之间以执行EV模式和HEV模式的离合器,所述系统可包括:换挡预测单元,配置成预测从低挡到高挡的换挡;以及行驶模式转换控制器,配置成作为换挡预测单元预测正在执行从低挡到高挡的换挡的结果,减小用于从EV模式到HEV模式的行驶模式转换的转换基准值。

在另一方面,本发明提供一种控制混合电动车辆的行驶模式间转换的方法,可包括:预测从低挡到高挡的换挡;作为预测从低挡到高挡的换挡的结果,将用于从EV模式到HEV模式的行驶模式转换的转换基准值减小至任意水平;以及在从EV模式到HEV模式的行驶模式转换期间,在从低挡到高挡的换挡完成前,在发动机的特定RPM下执行燃料喷射补偿控制。

附图说明

现在将参照附图中示出的示例性实施例详细说明本发明的以上和其他特征,附图在下文中仅以例示的形式给出,因此并不限制本发明,并且其中:

图1是示出根据现有技术的混合电动车辆的动力传动系统的图;

图2是示出根据现有技术的混合电动车辆的从EV模式到HEV模式的行驶模式转换处理的图;

图3是示出根据现有技术的附加燃料喷射补偿期间的发动机基准扭矩与实际扭矩之间的比较的图;

图4A是示出根据现有技术在从EV模式到HEV模式的转换时当电动机的速度高时的燃料喷射补偿控制处理的图;

图4B是示出根据现有技术在从EV模式到HEV模式的转换时当电动机的速度低时的燃料喷射补偿控制处理的图;

图5和图6是示出根据本发明的示例性实施例的控制混合电动车辆的行驶模式间转换的处理的图;

图7A至图7B是示出常规的燃料喷射补偿控制处理与根据本发明的示例性实施例的燃料喷射补偿控制处理之间的比较的图;并且

图8是示出根据本发明的示例性实施例的控制混合电动车辆的行驶模式间转换的处理的流程图。

应当理解的是,附图不一定按比例绘制,而是展现出说明本发明的基本原理的示例性优选特征的某种简化表示。如本文所公开的包括例如具体尺寸、方向、位置和形状的本发明的具体设计特征,将部分地由特定预期的应用和使用环境来确定。在附图中,贯穿附图的若干幅图中附图标记表示本发明的相同或等效的部分。

具体实施方式

应当理解的是,如本文所使用的术语“车辆”或“车辆的”或者其他类似术语包括一般的机动车辆,例如包括运动型多用途车(SUV)、公共汽车、卡车、各种商用车辆在内的乘用车辆,包括各种艇和船在内的水运工具、航空器等,并且包括混合动力车辆、电动车辆、插电式混合动力电动车辆、氢动力车辆以及其他替代燃料车辆(例如,从石油以外的资源获得的燃料)。如本文所提及的,混合动力车辆是具有两种或更多种动力源的车辆,例如具有汽油动力和电动力两者的车辆。

虽然示例性实施例被描述为使用多个单元来执行示例性处理,但是应当理解的是,示例性处理也可由一个或多个模块执行。此外,应当理解的是,术语控制器/控制单元是指包括存储器和处理器的硬件设备。存储器配置成存储模块,并且处理器被专门配置成执行所述模块,以执行以下进一步说明的一个或多个处理。

本文所使用的术语仅是为了说明特定实施例的目的,而非旨在限制本发明。如本文所使用的,单数形式“一个”、“一种”和“该”旨在同样包括复数形式,除非上下文另外明确指明。还将理解的是,当在本说明书中使用时,词语“包括”和/或“包含”指定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整数、步骤、操作、元件、部件和/或其群组的存在或添加。如本文所使用的,词语“和/或”包括一个或多个相关列出项目的任何和所有组合。

除非特别陈述或从上下文显而易见,否则如本文所使用的,词语“约”被理解为在本领域的正常公差范围内,例如在平均值的2倍标准差之内。“约”可理解为在所述值的10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%或0.01%内。除非从上下文另外明确,否则本文提供的所有数值均由词语“约”修饰。

现在将在下文中详细参照本发明的各种示例性实施例,其示例在附图中示出并在以下予以说明。虽然将结合示例性实施例说明本发明,但是将会理解本说明并非旨在将本发明限制于这些示例性实施例。相反,本发明旨在不仅涵盖这些示例性实施例,而且涵盖可包括在如所附权利要求所限定的本发明的思想和范围内的各种替换形式、改型、等效形式和其他示例性实施例。

本发明的特征在于,在车辆加速行驶期间在从混合电动车辆的低挡到高挡的换挡完成前(例如,在电动机速度降低前),可执行从EV模式到HEV模式的转换,从而提高燃料效率。图5和图6是示出根据本发明的示例性实施例的控制混合电动车辆的行驶模式间转换的处理的图,并且图8是示出根据本发明的示例性实施例的控制混合电动车辆的行驶模式间转换的处理的流程图。

首先,换挡预测单元可配置成在车辆加速行驶期间预测从低挡到高挡的换挡(S101)。换挡预测单元可以是由控制器操作的传感器。换挡预测单元可通过在变速器控制器(TCU)的换挡图中附加地设定换挡预测线而构成。此外,换挡预测单元可配置成在从当前挡位到高挡的换挡完成前,在发动机的启动时间与发动机离合器完全锁定的时间之间预测换挡。

因此,如图5中所示,可在包括驾驶者要求的扭矩和车辆速度的变速器控制器的换挡图中附加地设定换挡预测线。具体地,可在执行从低挡(N挡)到高挡(N+1挡)的换挡的实际换挡线(N挡→N+1挡换挡线)之前,附加地设定换挡预测线。因此,换挡预测单元可配置成确定当前的车辆行驶操作点是在换挡预测线之后且在实际换挡线之前的点,并且预测正在执行从低挡(N挡)到高挡(N+1挡)的换挡。

换挡预测单元可配置成预测从低挡到高挡的换挡,因为在换挡完成后,如前所述电动机的速度降低,结果燃料喷射补偿量过度增加。因此,可在从低挡(N挡)到高挡(N+1挡)的换挡完成前(在电动机速度降低前)执行燃料喷射补偿控制。之后,当换挡预测单元预测正在执行从低挡(N挡)到高挡(N+1挡)的换挡时,行驶模式转换控制器可配置成减小用于从EV模式到HEV模式的行驶模式转换的转换基准值(S102)。

例如,当换挡预测单元预测正在执行从低挡(N挡)到高挡(N+1挡)的换挡,并且将预测信号传送至作为混合电动车辆的最上位控制器的混合控制器(HCU)时,如图6中所示,混合控制器可配置成将用于从EV模式到HEV模式的行驶模式转换的转换基准值(例如,驾驶者要求的扭矩)减小至任意水平。减小用于从EV模式到HEV模式的行驶模式转换的转换基准值可被定义为将驾驶者要求的扭矩减小至任意水平,并且减小至任意水平的转换基准值(例如,驾驶者要求的扭矩)可被设定为校正扭矩基准值。

此外,可设定小于现有的转换基准值(例如,减小前的转换基准值或第一转换基准值)的第二转换基准值,或者如以下公式1中所示,可将小于1的因子(因子<1)应用于第一转换基准值,以便将转换基准值减小至校正扭矩基准值。

公式1

校正扭矩基准值=现有的转换基准值×因子(因子<1)

当用于从EV模式到HEV模式的行驶模式转换的现有的转换基准值减小至校正扭矩基准值时,基于驾驶者要求的扭矩的发动机启动时间变早,从而迅速实现从EV模式到HEV模式的行驶模式转换。除了从EV模式到HEV模式的行驶模式转换,发动机控制器还可配置成在从低挡到高挡的换挡完成前(例如,在电动机速度降低前),在发动机的特定RPM下执行燃料喷射补偿控制。此时,可将燃料喷射补偿量调整为大幅降低。此外,可执行燃料喷射补偿控制,使得在低挡的燃料喷射补偿量小于在高挡的燃料喷射补偿量。

此外,如图8中所示,当换挡预测单元未预测从低挡到高挡的换挡时,行驶模式转换控制器可配置成将用于从EV模式到HEV模式的行驶模式转换的转换基准值维持在现有的(例如,第一)转换基准值(减小前的转换基准值)(S103)。

参照示出常规的燃料喷射补偿控制处理与根据本发明的示例性实施例的燃料喷射补偿控制处理之间的比较的图7A至图7B,当换挡预测单元预测正在执行从低挡(例如,一挡)到高挡(例如,二挡)的换挡时,行驶模式转换控制器可配置成在从低挡到高挡的换挡完成前(例如,在电动机速度降低前),执行从EV模式到HEV模式的行驶模式转换,因此与常规的燃料喷射补偿控制处理中相比,能够更快速地将燃料喷射至发动机中,结果可使发动机速度增加至与电动机速度同步。

具体地,如图7A至图7B中所示,可在电动机速度降低前执行从EV模式到HEV模式的行驶模式转换,并且在发动机的特定RPM下的燃料喷射补偿量小于在常规的燃料喷射补偿控制处理中的燃料喷射补偿量,从而使在常规的燃料喷射补偿控制处理中在低电动机速度下由于过度的燃料喷射补偿导致的燃料消耗最小化,并且提高燃料效率。

从以上说明中显而易见,本发明具有以下效果。

根据本发明,可在从低挡到高挡的换挡完成前(在电动机速度降低前)执行从EV模式到HEV模式的行驶模式转换,然后可在电动机速度降低前执行燃料喷射补偿控制,从而使在常规的燃料喷射补偿控制处理中在低电动机速度下由于过度的燃料喷射补偿导致的燃料消耗最小化,并且提高燃料效率。

已参照示例性实施例详细说明了本发明。然而,本领域技术人员将会理解的是,在不脱离本发明的原理和思想的情况下,可在这些示例性实施例中进行改变,本发明的保护范围限定在所附权利要求及其等效形式中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1