马达转速反馈丢失期间的混合动力车辆动力传动系统控制的制作方法

文档序号:16975262发布日期:2019-02-26 18:55阅读:286来源:国知局
马达转速反馈丢失期间的混合动力车辆动力传动系统控制的制作方法

本申请总体上涉及在电机的转速反馈丢失期间操作混合动力传动系统。



背景技术:

混合动力车辆包括具有可在行驶周期期间选择的不同传动比的变速器。车辆还可包括连接在动力产生元件和变速器之间的变矩器。车辆动力传动系统的操作可使用各种速度信号和扭矩信号。例如,传感器可为动力产生元件提供旋转速度值。速度传感器信号可用于控制动力传动系统。在任何信号不可用或丢失的事件中,车辆动力传动系统会被停用。



技术实现要素:

一种混合动力传动系统包括变矩器,变矩器连接到电机并选择性地连接到发动机。混合动力传动系统还包括控制器,控制器被配置为:响应于在发动机被断开且变矩器打开时电机转速反馈的丢失,基于从电机的扭矩和变矩器的涡轮转速推导的变矩器的泵轮转速对齿轮箱进行换挡。

所述控制器可进一步被配置为:响应于电机转速反馈的存在,基于从电机转速反馈推导的泵轮转速对齿轮箱进行换挡。所述控制器可进一步被配置为:响应于在发动机被断开且变矩器锁止时电机转速反馈的丢失,基于从车轮转速推导的泵轮转速操作电机和齿轮箱。所述控制器可进一步被配置为:响应于在发动机被连接时电机转速反馈的丢失,基于从发动机的转速推导的泵轮转速操作发动机、电机和齿轮箱。

所述涡轮转速可以是从与齿轮箱相关联的车辆速度推导的。所述控制器可进一步被配置为基于所述泵轮转速估计变矩器的状态。所述控制器可进一步被配置为基于所述泵轮转速操作混合动力传动系统以控制车辆速度。

一种车辆包括变矩器,所述变矩器连接到电机并选择性地连接到发动机。车辆还包括控制器,所述控制器被配置为:响应于发动机与变矩器断开和电机转速反馈的丢失,基于从电机的扭矩和车辆的速度推导的变矩器的泵轮转速操作电机。

车辆还可包括连接到变矩器的输出的齿轮箱,所述控制器可进一步被配置为基于泵轮转速操作齿轮箱换挡。

所述控制器可进一步被配置为:响应于在发动机被断开且变矩器被锁止时电机转速反馈的丢失,基于从车轮转速推导的泵轮转速操作发动机和电机。所述控制器可进一步被配置为:响应于在发动机被连接时电机转速反馈的丢失,基于从发动机的转速推导的泵轮转速操作发动机和电机。车辆的速度可以是从车辆的至少一个车轮转速推导的。所述控制器可进一步被配置为基于所述泵轮转速估计变矩器的状态。所述控制器可进一步被配置为基于所述泵轮转速操作发动机和电机以控制车辆的爬行速度。

一种方法包括:响应于发动机与变矩器断开和电机转速反馈的丢失,基于从电机的扭矩和变矩器的涡轮转速推导的变矩器的泵轮转速,对齿轮箱进行换挡,齿轮箱连接到变矩器的输出,变矩器还连接到电机并选择性地连接到发动机。

所述方法还可包括:响应于电机转速反馈的存在,基于从电机转速反馈推导的泵轮转速,对齿轮箱进行换挡。所述方法还可包括:响应于在发动机被连接时电机转速反馈的丢失,基于从发动机的转速推导的泵轮转速,操作发动机、电机和齿轮箱。所述方法还包括:响应于在发动机被断开且变矩器被锁止时电机转速反馈的丢失,基于从车轮转速推导的泵轮转速,操作发动机、电机和齿轮箱。所述方法还可包括:基于所述泵轮转速,操作发动机、电机和齿轮箱以控制齿轮箱的转速输出。所述涡轮转速可以是从与混合动力传动系统相关联的车辆速度推导的。

根据本发明的一个实施例,所述涡轮转速是从车辆速度推导的。

附图说明

图1是具有混合动力传动系统的车辆的框图。

图2是用于计算泵轮转速的框图。

图3是用于管理泵轮转速的确定的流程图。

具体实施方式

在此描述本公开的实施例。然而,应理解,公开的实施例仅为示例,其他实施例可采取各种替代的形式。附图无需按比例绘制;可夸大或最小化一些特征以显示特定部件的细节。因此,在此公开的具体结构和功能细节不被解释为限制,而仅作为用于教导本领域技术人员以多种形式利用实施例的代表性基础。如本领域的普通技术人员将理解的,参照任一附图示出和描述的各种特征可与一个或更多个其他附图中示出的特征组合,以产生未明确示出或描述的实施例。示出的特征的组合为典型应用提供代表性实施例。然而,与本公开的教导一致的特征的各种组合和变型可以期望用于特定应用或实施方式。

参照图1,示出了根据本公开的实施例的混合动力电动车辆(hev)110的示意图。图1示出了部件之间的代表性关系。车辆内部件的物理位置和方位可以改变。hev110包括动力传动系统112。动力传动系统112包括驱动传动装置116的发动机114,传动装置116可以称为模块化混合动力传动装置(mht)。如下文将进一步详细描述的,传动装置116包括电机118(诸如电动马达/发电机(m/g))、相关联的牵引电池120、变矩器122和多级阶梯传动比自动变速器或者齿轮箱124。

发动机114和m/g118均是用于hev110的驱动源。发动机114通常代表可包括内燃发动机(诸如汽油、柴油或天然气驱动的发动机)或燃料电池的动力源。当发动机114和m/g118之间的分离离合器126至少部分地接合时,发动机114产生发动机功率和供应至m/g118的相应的发动机扭矩。m/g118可通过多种类型的电机中的任何一种来实现。例如,m/g118可以是永磁同步马达。如下文将描述的,电力电子装置156将由牵引电池120提供的直流(dc)电力调节至满足m/g118的要求。例如,电力电子装置可向m/g118提供三相交流电(ac)。

当分离离合器126至少部分地接合时,动力可从发动机114流动到m/g118或者可从m/g118流动到发动机114。例如,分离离合器126可被接合,并且m/g118可作为发电机运转以将由曲轴128和m/g轴130提供的旋转能量转换成电能以储存在牵引电池120中。分离离合器126也可以分离以将发动机114与动力传动系统112的其余部分隔离,使得m/g118可用作hev110的唯一驱动源。m/g轴130延伸穿过m/g118。m/g118连续地可驱动地连接到m/g轴130,而发动机114只有在分离离合器126至少部分地接合时才可驱动地连接到m/g轴130。

m/g118经由m/g轴130连接到变矩器122。因此,当分离离合器126至少部分地接合时,变矩器122连接到发动机114。变矩器122包括固定到m/g轴130的泵轮和固定到变速器输入轴132的涡轮。因此,变矩器122在轴130和变速器输入轴132之间提供液力耦合。当泵轮旋转得比涡轮快时,变矩器122将动力从泵轮传输到涡轮。涡轮扭矩和泵轮扭矩的大小通常取决于相对转速。当泵轮转速与涡轮转速的比值足够高时,涡轮扭矩是泵轮扭矩的数倍。还可设置变矩器旁通离合器134,变矩器旁通离合器134在接合时使变矩器122的泵轮和涡轮摩擦地或机械地连接,从而允许更高效的动力传递。变矩器旁通离合器134可作为起步离合器运转以提供平稳的车辆起步。可选地或组合地,对于不包括变矩器122或变矩器旁通离合器134的应用,可在m/g118和齿轮箱124之间设置类似于分离离合器126的起步离合器。在一些应用中,分离离合器126通常被称为上游离合器,起步离合器134(其可以是变矩器旁通离合器)通常被称为下游离合器。

齿轮箱124可包括齿轮组(未示出),所述齿轮组通过诸如离合器和制动器(未示出)的摩擦元件的选择性接合而被选择性地置于不同的传动比,以建立期望的多个离散或阶梯传动比。齿轮箱124可提供预定数量的传动比,传动比可在低挡(例如,第一挡)到最高挡(例如,第n挡)的范围内。齿轮箱124的升挡是转换为更高挡。齿轮箱124的降挡是转换为更低挡。可根据使齿轮组的某些元件按顺序连接和分离的换挡计划来控制摩擦元件,以控制变速器输出轴136和变速器输入轴132之间的传动比。齿轮箱124基于各种车辆工况和环境工况而通过相关联的控制器150(诸如,动力传动系统控制单元(pcu))自动地从一个传动比变换为另一传动比。然后,齿轮箱124将动力传动系统的输出扭矩提供到输出轴136。

应当理解,与变矩器122一起使用的液压控制式齿轮箱124仅是齿轮箱或变速器装置的一个示例;接收来自发动机和/或马达的输入扭矩然后以不同的传动比将扭矩提供到输出轴的任何多级传动比齿轮箱都是可接受用于本公开的实施例的。例如,齿轮箱124可通过包括一个或更多个伺服马达以沿着换挡导轨平移/旋转换挡拨叉以选择期望的传动比的机械式自动(或手动)变速器(amt)来实现。如本领域普通技术人员通常理解的,amt可用于(例如)扭矩要求较高的应用中。

如图1的代表性实施例所示,输出轴136连接到差速器140。差速器140经由连接到差速器140的相应车桥144驱动一对车轮142。差速器140将大致相等的扭矩传输到每个车轮142,同时在例如车辆转弯时允许轻微的速度差。可使用不同类型的差速器或类似装置将来自动力传动系统的扭矩分配到一个或更多个车轮。在一些应用中,扭矩分配可根据例如特定的操作模式或工况而变化。

动力传动系统112还可包括相关联的动力传动系统控制单元(pcu)150。虽然被示出为一个控制器,但是pcu可以是更大的控制系统的一部分,并且可以由整个车辆110中的各种其他控制器(诸如车辆系统控制器(vsc))来控制。因此,应当理解,动力传动系统控制单元150和一个或更多个其他控制器可统称为“控制器”,其响应于来自各种传感器的信号而控制各种致动器以控制多个功能,诸如启动/停止发动机114、运转m/g118以提供车轮扭矩或给牵引电池120充电、选择或计划变速器换挡等。控制器150可包括与各种类型的计算机可读存储装置或介质通信的微处理器或中央处理器(cpu)。计算机可读存储装置或介质可包括(例如)只读存储器(rom)、随机存取存储器(ram)和保活存储器(kam)中的易失性和非易失性存储器。kam是可用于在cpu掉电时存储各种操作变量的持久性或非易失性存储器。计算机可读存储装置或介质可使用多个已知存储器装置(诸如prom(可编程只读存储器)、eprom(电可编程只读存储器)、eeprom(电可擦除可编程只读存储器)、闪存或者能够存储数据的任何其它电、磁、光学或组合的存储装置)中的任何一种来实现,所述数据中的一些表示由控制器使用以控制发动机或车辆的可执行指令。

控制器150经由可被实现为提供各种原始数据或信号调节、处理和/或转换、短路保护等的单个集成接口的输入/输出(i/o)接口与各种发动机/车辆传感器和致动器进行通信。或者,可使用一个或更多个专用硬件或固件芯片而在将特定信号提供给cpu之前对所述特定信号进行调节和处理。如图1的代表性实施例总体上所示的,控制器(pcu)150可将信号传送到发动机114、分离离合器126、m/g118、起步离合器134、传动装置齿轮箱124以及电力电子装置156和/或从它们接收信号。尽管没有明确示出,但是本领域普通技术人员将认识到每个上述子系统内的可由控制器(pcu)150控制的各种功能或部件。可使用由控制器执行的控制逻辑直接或间接致动的参数、系统和/或部件的代表性示例包括燃料喷射正时、速率和持续时间、节气门位置、火花塞点火正时(针对火花点火式发动机)、进气/排气门正时和持续时间、前端附件驱动(fead)部件(诸如交流发电机、空调压缩机)、电池充电、再生制动、m/g运转、用于分离离合器126、起步离合器134和传动装置齿轮箱124的离合器压力等。通过i/o接口传送输入的传感器可用于指示(例如)涡轮增压器增压压力、曲轴位置(pip)、发动机转速(rpm)、车轮转速(ws1、ws2)、车速(vss)、冷却剂温度(ect)、进气歧管压力(map)、加速踏板位置(pps)、点火开关位置(ign)、节气门位置(tp)、空气温度(tmp)、排气氧(ego)或其他排气组分浓度或存在度、进气流动(maf)、变速器挡位、传动比或模式、传动装置油温(tot)、传动装置涡轮转速(ts)、变矩器旁通离合器134状态(tcc)、减速或换挡模式(mde)。

由控制器(pcu)150执行的控制逻辑或功能可由一个或更多个附图中的流程图或类似图表来表示。这些附图提供有可使用一个或更多个处理策略(诸如事件驱动、中断驱动、多任务、多线程等)来实现的代表性控制策略和/或逻辑。因此,所示的各个步骤或功能可以以所示的顺序执行、并行地执行或在某些情况下被省略。尽管并不总是明确地示出,但是本领域普通技术人员将认识到,根据所使用的特定处理策略,所示出的一个或更多个步骤或功能可重复执行。类似地,所述的处理顺序对于实现本文所述的特征和优点而言并不是一定需要的,而是为了便于说明和描述而提供的。控制逻辑可主要在由基于微处理器的车辆、发动机和/或动力传动系统控制器(诸如pcu150)执行的软件中实现。当然,根据具体应用,控制逻辑可在一个或更多个控制器中的软件、硬件或软件和硬件的组合中实现。当在软件中实现时,控制逻辑可设置在一个或更多个计算机可读存储装置或介质中,所述存储装置或介质存储有表示由计算机执行以控制车辆或其子系统的代码或指令的数据。计算机可读存储装置或介质可包括多个已知物理装置中的一个或更多个,所述物理装置使用电、磁和/或光学存储器来保存可执行指令和相关联的校准信息、操作变量等。

车辆的驾驶员使用加速踏板152来提供需求的扭矩、功率或驱动命令以推进车辆110。通常,踩下和释放加速踏板152分别产生可被控制器150解释为需要增加动力或减小动力的加速踏板位置信号。至少基于来自踏板的输入,控制器150命令来自发动机114和/或m/g118的扭矩。控制器150还控制齿轮箱124内的换挡正时以及分离离合器126和变矩器旁通离合器134的接合或分离。类似于分离离合器126,变矩器旁通离合器134可在接合位置和分离位置之间的范围内被调节。除了泵轮和涡轮之间的液力耦合产生的可变打滑之外,这在变矩器122中也产生可变打滑。或者,根据具体应用,变矩器旁通离合器134可被操作为锁止或断开而不使用调节的操作模式。

为了利用发动机114驱动车辆110,分离离合器126至少部分地接合以将发动机扭矩的至少一部分通过分离离合器126传递到m/g118,然后从m/g118传递通过变矩器122和齿轮箱124。m/g118可通过提供额外的动力使轴130转动来辅助发动机114。该操作模式可被称为“混合动力模式”或“电动辅助模式”。

为了使m/g118作为唯一的动力源而驱动车辆110,除了分离离合器126被操作为将发动机114与动力传动系统112的其余部分隔离以外,动力流动保持不变。在此期间,发动机114中的燃烧可被禁用或以其他方式关闭以节省燃料。牵引电池120通过高电压(hv)总线154将储存的电能传输到可包括(例如)逆变器的电力电子装置156。高电压总线154包括用于在模块之间传导电流的布线和导体,并且可包括正极侧导体和负极侧导体或返回侧导体。电力电子装置156将来自牵引电池120的dc电压转换成将被m/g118使用的ac电压。控制器150命令电力电子装置156将来自牵引电池120的电压转换为提供给m/g118的ac电压以向轴130提供正扭矩或负扭矩。该操作转模式可被称为“纯电动”操作模式。

在任何操作模式中,m/g118可用作马达并为动力传动系统112提供驱动力。或者,m/g118可用作发电机并将来自动力传动系统112的动能转换成电能而储存在牵引电池120中。例如,当发动机114为车辆110提供推进动力时,m/g118可用作发电机。在再生制动时期,m/g118还可用作发电机,其中,在再生制动中,来自旋转着的车轮142的旋转能量通过齿轮箱124回传并被转换成电能以储存在牵引电池120中。

应当理解,图1所示的示意图仅是示例性的,而不意在进行限制。可考虑利用发动机和马达二者的选择性接合以通过传动装置传输扭矩的其它构造。例如,m/g118可相对于曲轴128偏置,且可设置额外的马达以启动发动机114,和/或m/g118可设置在变矩器122和齿轮箱124之间。在不脱离本公开的范围的情况下,可考虑其他构造。

车辆110可利用m/g118启动发动机114。控制器150可命令分离离合器126闭合并经由电力电子装置156请求来自m/g118的扭矩。来自m/g118的扭矩使发动机114旋转,使得发动机转速增加到高于预定转速,届时,可命令发动机114提供燃料和火花以保持发动机继续旋转。在发动机转动和初始启动期间,变矩器122可提供一些扭转隔离。在一些车辆构造中,低电压起动机马达168也可连接到发动机114,以提供启动发动机114的辅助或备用装置。

控制器150可控制齿轮箱124的操作。控制器150可促进齿轮箱的挡位之间的切换。控制器150可协调齿轮箱124内的离合器的操作,以实现平顺的挡位转换。离合器可被液压致动,并且可使用电连接到控制器150的螺线管来控制压力。例如,为了实现换挡,可从第一离合器去除压力,同时将压力添加到第二离合器。第一离合器可称为即将分离的离合器,第二离合器可称为即将接合的离合器。在换挡期间,通过齿轮箱124的扭矩传递可通过离合器的操作从第一挡位转换到第二挡位。

车辆110还可包括电力转换器模块158和辅助电池160。辅助电池160可以是低电压电池(诸如,通常用于汽车的12伏电池)并可用于向附件162供电。辅助电池160的端子可电连接到低电压总线166。低电压总线166包括用于在连接的模块之间传导电流的布线和导体。电力转换器158可电连接在高电压总线154和低电压总线166之间。电力转换器模块158可以是被配置为将来自高电压总线154的电压转换为与低电压总线166兼容的电压水平的dc/dc转换器。电力转换器158还可被配置为将来自低电压总线166的电压转换为与高电压总线154兼容的电压。例如,电力转换器158可被配置为提供在高电压总线154和低电压总线166之间的双向电流流动。

m/g118可以是永磁(pm)电机。pm电机包括转子和定子。定子可包括用于产生磁场以使转子旋转的绕组。可控制通过定子绕组的电流以改变作用在转子上的磁场。pm电机的转子包括永磁体,其产生与定子磁场相互作用的磁场,以引起转子的旋转。转子转速可由定子产生的磁场的频率控制。由于pm电机的转子具有磁体,因此使转子旋转产生与定子绕组相互作用的磁场。结果是定子电路中的电压或反电动势(emf)。反电动势的大小随着转子的旋转速度而增加。

m/g118可以是三相电机。三相pm电机可包括连接到定子绕组的三个相端子。每个相端子连接到不同组的定子绕组。通过控制施加到每个端子的电流和电压,可控制定子磁场。可控制相位,使得每个相之间的电压的相角差为120度。

为了控制m/g118,可能需要转子或m/g轴130的转速或位置。电机速度传感器170可连接到m/g轴130并被配置为提供指示m/g轴130的旋转速度和/或位置的信号。例如,电机速度传感器170可以是旋转变压器或编码器。电机速度传感器170的输出信号可连接到控制器150和/或电力电子装置156。

动力传动系统中可包括其他速度反馈传感器。发动机速度传感器172可连接到曲轴128。例如,发动机速度传感器可以是连接到发动机114的曲轴128和/或凸轮轴的编码器。发动机速度传感器172可向控制器150提供指示曲轴的旋转速度的信号。

可包括一个或更多个车轮速度传感器174,以提供指示车轮142的旋转速度的信号。车轮速度传感器174可电连接到控制器150和/或其他控制器(例如,制动控制器)。例如,车轮速度传感器174可包括带齿的轮(toothedwheel)和磁性拾取器(magneticpickup)。车轮转速可用于产生车辆速度信号。车辆速度信号可用于控制动力传动系统和其他车辆功能。尽管提供了用于速度/位置感测元件的示例,但是该示例不旨在限制感测元件的选择。本文描述的系统和方法适用于其他速度感测元件。

在示例性配置中,电机速度传感器170、发动机速度传感器172和车轮速度传感器174被描绘为电连接到控制器150。在其他配置中,速度传感器可电连接到分开的控制器。速度传感器数据和状态可通过车辆网络(例如,控制器局域网(can)或其他车辆控制网络)传送到控制器150。

可持续地监测电机速度传感器170、发动机速度传感器172和车轮速度传感器174以确保正确的操作。控制器150可为正确的电连接而监测传感器并检查电压/电流信号是否在预定的可接受范围内。控制器150可监测速度传感器以确保信号是合理的。例如,可监测由传感器提供的转速反馈值,以确保一起采用的值指示合理的操作条件。例如,传感器可指示应该以固定的传动比变化的转速。控制器150可监测转速值以确保这些值在彼此的预定范围内。没有正确运行的速度传感器可被标记有诊断故障代码。

在车辆操作期间,可确定动力传动系统内的各种速度值以用于控制动力传动系统。电机速度传感器170、发动机速度传感器172和车轮速度传感器174可用于确定动力传动系统的其他部件的转速。可出于控制目的确定变矩器122的泵轮的转速。泵轮转速可用于动力传动系统控制系统内的各种计算。例如,期望的驾驶员需求扭矩可以是泵轮转速的函数。泵轮转速可进一步用于估计变矩器的状态并且用于使变矩器122在打开/打滑状态下操作。泵轮转速也可用于动力传动系统的速度控制,以用于爬行和开式变矩器的松开。此外,泵轮转速可用于计划和调节传动装置中的离合器换挡。在混合动力传动系统中,泵轮转速可用于确定分离离合器126的状态。

在传统的车辆中,由于发动机和泵轮直接连接,因此可使用发动机转速代替泵轮转速。可基于曲柄速度传感器和凸轮轴速度传感器冗余地确定发动机转速。双传感器允许在其中一个传感器不起作用的情况下确定泵轮转速。在混合动力传动系统中,泵轮连接到m/g轴130。这样,泵轮转速可从电机速度传感器170得出。由于可不存在冗余的m/g速度传感器,因此在电机速度传感器170不起作用的情况下泵轮转速可能是不能确定的。

当存在来自电机速度传感器170的信号或数据丢失时,可能期望计算泵轮转速的替代方法。电机速度传感器170的信号或数据的丢失可能由许多问题引起。例如,将电机速度传感器170连接到控制器150的导线可能被短路或断开,从而导致信号的丢失。其他原因可包括处理来自电机速度传感器170的信号的电路中的控制器150的硬件问题。如所讨论的,控制器150可监测电机速度传感器170的健康状况并标记传感器不起作用时的状况。当电机速度传感器170不起作用时,可采用用于计算泵轮转速的替代方法。

在发动机114和电机118均连接到变矩器122的操作模式下,发动机速度传感器172可用于确定泵轮转速。在该模式中,分离离合器126闭合,使得发动机114和电机118连接。当发动机114和m/g轴130以共同的转速旋转时,泵轮转速可计算为:

其中ωeng是发动机转速。

在分离离合器126打开的操作模式下,可使用确定泵轮转速的替代方法。在该模式中,发动机114和m/g118彼此分离。由于只有m/g118可用于提供推进,因此该模式可被称为纯电动模式(electric-onlymode,em-only)。泵轮转速估计可取决于变矩器的状态。当变矩器122被锁定时,可根据车辆速度估计泵轮转速,车辆速度可从车轮速度传感器174得出。变矩器118可在变矩器旁通离合器134闭合时被锁止。当变矩器122闭合时,m/g轴130通过具有预定传动比的齿轮连接到变速器输出轴136。泵轮转速可被估计为:

其中gr是变速器传动比,fd是差速器140的最终传动比,ωveh表示在车轮处得来的车辆速度。

当变矩器旁通离合器134打开时,泵轮不直接连接到变速器124。在这种情况下,泵轮转速不直接是车辆速度或变速器转速的函数。在这种情况下,可定义变矩器模型以估计泵轮转速。变矩器122可通过以下等式建模:

τtur=τimp*tr(4)

其中τimp是泵轮处的扭矩,τtur是涡轮处的扭矩,k是变矩器122的容量因子曲线,tr是扭矩比曲线,sr是转速比。容量因子曲线和扭矩比曲线可以是转速比的函数。对于惯性滑行,转速比大于1。可针对温度和油粘度变化进一步校正变矩器模型。变矩器模型参数可通过变矩器的测功计测试来获得。

可处理等式(3)-(5)来估计泵轮转速。通过将等式(3)乘以和除以涡轮转速得到:

经过进一步处理,得到以下等式:

术语(k*sr)-2是转速比的函数,并且可针对不同的sr值离线计算。可创建sr与(k*sr)-2之间的一对一映射函数并将该映射函数存储为二维查找表。在车辆运行期间,给定泵轮扭矩τimp和涡轮转速ωtur,量(k*sr)-2可如等式(7)中那样计算。可使用所创建的一对一映射来计算转速比sr。已知sr,泵轮转速可被计算为:

泵轮扭矩可从m/g118的扭矩导出。电机的扭矩可由电力电子装置156精确地计算。例如,可基于提供到m/g118的电流计算m/g118的扭矩。可基于从车轮速度传感器174得出的车辆速度ωveh来计算涡轮转速。例如,等式(2)可表示基于车辆速度的涡轮转速。在其他配置中,可存在涡轮速度传感器。

图2是描绘当分离离合器126和变矩器旁通离合器134打开时用于确定泵轮转速的计算的框图200。第一输入是电机扭矩(tm)202。第二输入是涡轮转速(ωt)204。第二输入行进通过平方函数206。在第一除法块208处,电机扭矩202除以涡轮转速204的平方。第一除法块的输出被行进到在sr和(k*sr)-2之间执行映射函数210的查找函数。映射函数的输出是转速比sr。在第二除法块212处,涡轮转速204除以sr以产生泵轮转速输出(ωi)214。

图3描绘了可在控制器(例如,pcu150)中实施的操作顺序的流程图300。在操作302处,可执行检查以确定是否存在m/g或电机(electricmachine,em)转速反馈的丢失。控制器150可监视诊断状况和故障代码,以确定m/g转速反馈是否可用。如果存在m/g转速反馈(例如,转速反馈没有丢失),则可执行操作314。在操作314处,可基于由电机速度传感器170提供的m/g转速来计算泵轮转速。然后,可执行操作316以基于泵轮转速操作混合动力传动系统。操作混合动力传动系统可包括操作发动机114、电机118、变矩器122、齿轮箱124和分离离合器126中的一个或更多个。例如,操作各个部件可包括将与相关联的部件的扭矩和/或转速输出控制到期望值。操作齿轮箱124可包括在齿轮箱124内换挡。

如果检测到m/g转速反馈的丢失,则可执行操作304。在操作304处,可执行检查以确定动力传动系统是否处于纯电动操作模式。当分离离合器126打开时,动力传动系统可处于纯电动操作模式。控制器150可监测分离离合器126的状态以确定操作模式。如果动力传动系统不处于纯电动操作模式,则可执行操作310。在操作310处,可从发动机转速推导泵轮转速。然后可执行操作316以基于所述泵轮转速操作混合动力传动系统。

如果动力传动系统处于纯电动操作模式,则可执行操作306。在操作306处,可执行检查以确定变矩器122是打开还是闭合。控制器150可监测变矩器旁通离合器134的状态。如果变矩器旁通离合器134闭合,则可执行操作312。在操作312处,泵轮转速可从如上所述的车辆速度或车轮转速推导。然后,可执行操作316以基于泵轮转速操作混合动力传动系统。

如果变矩器旁通离合器134打开,则可执行操作308。在操作308处,可使用上述的变矩器模型推导泵轮转速。泵轮转速可以是m/g扭矩和涡轮转速的函数。例如,图2的框图可被实施为该操作的一部分。然后,可执行操作316以基于所述泵轮转速操作混合动力传动系统。

在操作316处,可基于泵轮转速操作动力传动系统。例如,可基于泵轮转速计算期望的驾驶员需求扭矩。控制器150可基于泵轮转速实施爬行速度控制回路。此外,变速器124中的换挡离合器的计划可以是基于泵轮转速的。

所提出的系统为确定泵轮转速提供替代的方法。该系统对电机转速反馈的损失(通常将导致性能下降)具有鲁棒性。通过在变矩器旁通离合器打开时在纯电动操作模式下使用变矩器模型,可在很少或没有性能下降的情况下维持运转。

在此公开的处理、方法或算法可交付给处理装置、控制器或计算机,或者通过处理装置、控制器或计算机来实现,其中,所述处理装置、控制器或计算机可包括任何现有的可编程电子控制单元或专用的电子控制单元。类似地,所述处理、方法或算法可以以多种形式被存储为通过控制器或计算机可执行的数据和指令,其中,所述多种形式包括但不限于永久地存储在非可写存储介质(诸如,rom装置)上的信息以及可变地存储在可写存储介质(诸如,软盘、磁带、cd、ram装置和其它磁介质和光学介质)上的信息。所述处理、方法或算法也可以在软件可执行对象中被实现。可选地,可使用合适的硬件组件(诸如,专用集成电路(asic)、现场可编程门阵列(fpga)、状态机、控制器或者其它硬件组件或装置)或硬件、软件和固件组件的组合来整体或部分地实现所述处理、方法或算法。

虽然上文描述了示例性实施例,但是并不意味着这些实施例描述了权利要求涵盖的所有可能的形式。说明书中使用的词语为描述性词语而非限制,并且将理解在不脱离本公开的精神和范围的情况下可做出各种改变。如前所述,可组合各个实施例的特征以形成本发明未明确描述或说明的进一步的实施例。尽管各个实施例可能已经被描述为提供优点或者就一个或更多个期望特性来说优于其它实施例或现有技术实施方式,但是本领域普通技术人员认识到,根据具体应用和实施方式,为了达到期望的整体系统属性,可对一个或更多个特征或特性进行折衷。这些属性可包括但不限于成本、强度、耐久性、生命周期成本、市场性、外观、包装、尺寸、可维修性、重量、可制造性、易组装性等。因此,被描述为在一个或更多个特性上不如其它实施例或现有技术实施方式合意的实施例并不在本公开的范围之外,并且可期望用于特定的应用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1