制备光学半导体装置的方法

文档序号:4426821阅读:161来源:国知局
专利名称:制备光学半导体装置的方法
技术领域
本发明涉及一种制备光学半导体装置的方法。
背景技术
光学半导体装置是众所周知的,其包括用两层或多层树脂封装的光学半导体元件,所述树脂层按其折射率由光学半导体元件一侧至最外层逐步降低的顺序布置,以提高发光效率(见专利文件1)。
专利文件1JP 10-65220A(权利要求1)迄今为止,与光学半导体元件直接接触的第一封装树脂是通过浸渍或灌注法形成的。然而,采用浸渍或灌注法的树脂封装却具有如下缺点将液体树脂以预定量滴加在每个光学半导体元件上的操作是麻烦的;及所封装元件的密封剂的形状不均匀性,易于导致发光的不均匀。
为了减少这些缺点,本发明人发现一种制备光学半导体装置的方法,该方法包括在安装于导体上的光学半导体元件上形成树脂层,及模压该树脂层。然而,尽管在消除发光不均匀性上是有效的,但是该方法仍具有下列缺点。当各光学半导体元件的侧壁与导体成90°角时,则容易在侧壁与树脂层之间形成空隙,这可能是导致光学半导体装置功能和可靠性恶化的原因。

发明内容
因此,本发明的目的是提供一种制备光学半导体装置的方法,其中一个或多个光学半导体元件的树脂封装,可以容易和均匀地进行,进而制得功能和可靠性高的光学半导体装置。
从下面的说明书中,可以看出本发明的其它目的和作用。
本发明涉及一种制备光学半导体装置的方法,该方法包括(1)在一个或多个安装于导体上的光学半导体元件上,形成树脂层;及(2)模压于步骤(1)中形成的树脂层,其中每个光学半导体元件具有从其安装侧面至发光侧面逐渐变细的纵向断面。
根据本发明,可以容易和均匀地进行光学半导体元件的树脂封装,并且可以得到高质量的光学半导体装置,其具有均匀的发光效率以及高的功能和可靠性。


图1图示了本发明步骤(1)的一个实施方案,其中树脂层形成于光学半导体元件上。
图2图示了本发明步骤(1)的另一个实施方案,其中树脂层形成于光学半导体元件上。
图3图示了本发明步骤(2)的一个实施方案,其中树脂层是利用压模(stamper)模压的。
图4是根据本发明得到的发光二极管阵列的一个实施方案的断面图。
图5(A)至图5(C)是可用于本发明的光学半导体元件的实例的平面图和断面图。
附图中所用附图标记分别代表下列含义1树脂2光学半导体元件3基材4层合机5压铸模6导线7导体8压模9LED阵列10LED芯片11第一树脂层12第二树脂层13发光侧面14安装侧面
具体实施例方式
本发明的制备光学半导体装置的方法包括(1)在一个或多个安装于导体上的光学半导体元件上,形成树脂层;及(2)模压于步骤(1)中形成的树脂层,其显著特征之一在于,每个光学半导体元件具有从其安装侧面至发光侧面逐渐变细的纵向断面。
在步骤(1)中,对光学半导体元件没有特殊的限制,只要其是光学半导体装置中常用的元件。其实例氮化镓(GaN,折射率2.5),磷化镓(GaP,折射率2.9),及砷化镓(GaAs,折射率3.5)。其中优选GaN,因为其发射蓝光,且利用它和磷光体可以制备白色LED。
优选光学半导体元件的平面形状(即水平断面)为正多边形,因为这甚至可以促进光漫射。更优选其平面形状为正方形或正六边形,因为具有这种平面形状的光学半导体元件,可以在最密堆积状态下,由光学半导体晶片有效地切割出来。
每个光学半导体元件具有从面14至面13逐渐变细的纵向断面,其中所述面14是元件通过它安装到线路板的导体上的面(下文中可称为“安装侧面”),所述面13是通过它观察发光的面(在下文中可称为“发光侧面”),如图5所示。
本说明书中所用术语“逐渐变细(taper)”是指,在图5所示的光学半导体元件的纵向断面中,由光学半导体元件的每个侧壁与其安装侧面所形成的角(α)为锐角。优选该角(α)为40~70°。优选该范围的原因如下。只要该角度为40°或更大,在往线路板上安装时,光学半导体元件就可以令人满意地被芯片焊接机的真空固定头固定。另一方面,只要该角度为70°或更小,就可以充分地产生防止侧壁与树脂层之间形成空隙的作用。顺便提及,该角度不必恒定不变,侧壁可以根据需要具有两个或多个角度(例如,参见图5(B)),也可以具有光滑的曲面(例如,参见图5(C))。而且,当光学半导体元件具有平面形状,例如为正六边形时,在元件的纵向断面中,由侧壁与安装侧面形成的各个角度(共六个角)可以彼此相同或相异。
形成上述形状的工艺方法的实例包括使用粒径为1.0~0.05μm的金刚石磨料,研磨光学半导体元件的侧壁,以得到所需形状的方法;及通过将光学半导体晶片切割成光学半导体元件的方法,其中使激光倾斜地入射,以获得所需的形状。切割中所使用的激光的实例包括YAG激光,CO2激光,及激元(excimer)激光。激光的辐照能量根据芯片切割速度等而确定。
用于本发明的每个光学半导体元件的各个边在安装侧面上的长度,在正方形的情况下一般为0.2~0.4mm,在正六边形的情况下一般为0.1~0.2mm。元件的厚度一般为0.06~0.2mm。
对光学半导体元件欲安装于其上的导体没有特殊的限制,只要其是光学半导体装置中常用的导体。要用的导体可以是具有预定形状的引线框架,形成于线路板上的接线柱等,也可以是通过蚀刻使其具有预定形状的导体。
对其上欲安装一个或多个光学半导体元件和导体的线路板也没有特殊的限制。其实例包括通过将铜导线叠合在玻璃-环氧树脂基材上而制得的硬质线路板,及通过将铜导线叠合在聚酰亚胺薄膜上而制得的柔性线路板。在本发明中,从显著地发挥本发明的作用的观点来看,装置中优选于一个线路板上安装两个或多个导体及两个或多个光学半导体元件。
将光学半导体元件安装于线路板的方法的实例包括面朝上的焊接方法,适用于安装每个元件均具有布置于其发光侧面上的电极的光学半导体元件;及倒装晶片焊接方法,适用于安装每个元件均具有布置在与其发光侧面相反侧面上的电极的光学半导体元件。
在步骤(1)中,从提高光学半导体元件的发光效率的观点来看,用于构成树脂层的树脂的折射率(该树脂在下文中可以称为“第一树脂”)优选为1.6或更高,更优选为1.7~2.1。
封装光学半导体元件的树脂的实例包括聚醚砜,聚酰亚胺,芳族聚酰胺,聚碳化二亚胺,及环氧树脂。
其中,从容易低温低压处理的角度来看,优选聚碳化二亚胺作为构成步骤(1)的树脂层的树脂。更优选下面式(1)所示的聚碳化二亚胺 式中R代表二异氰酸酯残基,R1代表单异氰酸酯残基,n为1~100的整数。
在本发明中,式(1)所示的聚碳化二亚胺是这样得到的使一种或多种二异氰酸酯进行缩合反应,并用单异氰酸酯对所得聚合物的末端进行封端。
在式(1)中,R代表用作原料的二异氰酸酯的残基,R1代表用作另一原料的单异氰酸酯的残基。符号n为1~100的整数。
作为原料使用的二异氰酸酯和单异氰酸酯可以是芳族或脂族异氰酸酯。二异氰酸酯和单异氰酸酯可以仅由一种或多种芳族异氰酸酯或仅由一种或多种脂族异氰酸酯构成,也可以包含芳族异氰酸酯与脂族异氰酸酯的组合。从获得具有较高折射率的聚碳化二亚胺的角度来看,在本发明中优选使用芳族异氰酸酯。换言之,优选二异氰酸酯和单异氰酸酯中至少其一包含芳族异氰酸酯或者由一种或多种芳族异氰酸酯构成,或者优选二异氰酸酯和单异氰酸酯各自均由一种或多种芳族异氰酸酯构成。更优选的情形是,其中二异氰酸酯包含脂族异氰酸酯与芳族异氰酸酯的组合,而单异氰酸酯由一种或多种芳族异氰酸酯构成。特别优选的情形是,二异氰酸酯和单异氰酸酯各自均由一种或多种芳族异氰酸酯构成。
可用于本发明的二异氰酸酯的实例包括六亚甲基二异氰酸酯,十二亚甲基二异氰酸酯,2,2,4-三甲基六亚甲基二异氰酸酯,4,4′-二氯己基甲烷二异氰酸酯,亚二甲苯基二异氰酸酯,四甲基亚二甲苯基二异氰酸酯,异佛尔酮二异氰酸酯,环己基二异氰酸酯,赖氨酸二异氰酸酯,甲基环己烷2,4′-二异氰酸酯,4,4′-二苯基甲烷二异氰酸酯,4,4′-二苯醚二异氰酸酯,2,6-甲代亚苯基二异氰酸酯,2,4-甲代亚苯基二异氰酸酯,萘二异氰酸酯,1-甲氧基苯基2,4-二异氰酸酯,3,3′-二甲氧基-4,4′-二苯基甲烷二异氰酸酯,4,4′-二苯醚二异氰酸酯,3,3′-二甲基-4,4′-二苯醚二异氰酸酯,2,2-二[4-(4-异氰酸基苯氧基)苯基]-六氟丙烷,及2,2-二[4-(4-异氰酸基苯氧基)苯基]丙烷。
从使聚碳化二亚胺具有高折射率并且容易控制的角度来看,在这些二异氰酸酯中,优选使用选自下列中的至少一种甲代亚苯基二异氰酸酯,4,4′-二苯基甲烷二异氰酸酯,萘二异氰酸酯,六亚甲基二异氰酸酯,及十二亚甲基二异氰酸酯。更优选萘二异氰酸酯。
这些二异氰酸酯可以单独使用或以其两种或多种的混合物使用。然而,从耐热性方面来看,优选使用两种或三种二异氰酸酯的混合物。
用作原料的一种或多种二异氰酸酯优选包含一种或多种数量为10%摩尔或更多(上限为100%摩尔)的芳族二异氰酸酯,基于全部的二异氰酸酯。更可取的是,这些二异氰酸酯是上面作为优选实例而列举的二异氰酸酯。
可用于本发明的单异氰酸酯的实例包括环己基异氰酸酯,苯基异氰酸酯,对-硝基苯基异氰酸酯,对-和间-甲苯基异氰酸酯,对-甲酰基苯基异氰酸酯,对-异丙基苯基异氰酸酯,及1-萘基异氰酸酯。
优选的单异氰酸酯是芳族单异氰酸酯,因为芳族单异氰酸酯不彼此反应,且可以用这种单异氰酸酯有效地对聚碳化二亚胺进行封端。更优选使用1-萘基异氰酸酯。
这些单异氰酸酯可以单独使用或以其两种或多种的混合物使用。
从贮存稳定性来看,用于封端的单异氰酸酯的用量优选为1~10摩尔/100摩尔所用的二异氰酸酯成分。
根据本发明的聚碳化二亚胺的制备可以如此进行在用于形成碳二亚胺的催化剂的存在下,于预定的溶剂中,通过缩合反应将一种或多种作为原料的二异氰酸酯转化成碳二亚胺;并用单异氰酸酯对所得碳二亚胺聚合物进行封端。
二异氰酸酯缩合反应一般在0~150℃,优选10~120℃的温度下进行。
在组合使用脂族二异氰酸酯和芳族二异氰酸酯作为原料二异氰酸酯的情况下,优选使二异氰酸酯在低温下反应。反应温度优选为0~50℃,更优选为10~40℃。优选使用该范围内的反应温度,因为脂族二异氰酸酯与芳族二异氰酸酯可以充分地进行。
当需要反应混合物中存在的过量芳族二异氰酸酯进一步与由脂族二异氰酸酯和芳族二异氰酸酯形成的聚碳化二亚胺反应时,反应温度优选为40~150℃,更优选为50~120℃。只要反应温度在该范围,可以使用任何合乎需要的溶剂顺利地进行该反应。因此,该反应温度范围是优选的。
二异氰酸酯在反应混合物中的浓度优选为5~80%重量。只要二异氰酸酯浓度在该范围,碳二亚胺的形成就充分地进行,且反应是容易控制的。因此,优选该二异氰酸酯浓度范围。
采用单异氰酸酯的封端,可以在由二异氰酸酯形成碳二亚胺的初始、中间或最终阶段或者在碳二亚胺的整个形成过程中,通过向反应混合物中加入单异氰酸酯来完成。单异氰酸酯优选为芳族单异氰酸酯。
作为形成碳二亚胺的催化剂,可以有利地使用任何已知的磷化合物催化剂。其实例包括磷杂环戊烯(phospholene)氧化物如1-苯基-2-磷杂环戊烯1-氧化物,3-甲基-2-磷杂环戊烯1-氧化物,1-乙基-2-磷杂环戊烯1-氧化物,3-甲基-1-苯基-2-磷杂环戊烯2-氧化物,及这些物质的3-磷杂环戊烯异构体。
用于制备聚碳化二亚胺的溶剂(有机溶剂)是已知的。其实例包括卤代烃如四氯乙烯、1,2-二氯乙烷和氯仿,酮溶剂如丙酮、甲乙酮和环己酮,环醚溶剂如四氢呋喃和二氧六环,及芳烃溶剂如甲苯和二甲苯。这些溶剂可以单独使用或以其两种或多种的混合物使用。这些溶剂还可用来溶解所得的聚碳化二亚胺。
反应终点可以通过红外光谱(IR分析),根据碳二亚胺结构(N=C=N)吸收峰(2140cm-1)的出现及异氰酸酯吸收峰(2280cm-1)的消失来确定。
待形成碳二亚胺的反应完成之后,通常得到溶液形式的聚碳化二亚胺。然而,可以将所得溶液倒入不良溶剂如甲醇、乙醇、异丙醇或己烷中沉淀聚碳化二亚胺,并除去未反应的单体和催化剂。
在作为沉淀物回收的聚碳化二亚胺的溶液的制备中,将沉淀物以预定的方式洗涤并干燥,然后再次溶解于有机溶剂。通过进行该操作,聚碳化二亚胺溶液的稳定性得到提高。
如果聚碳化二亚胺溶液包含副产物,则该溶液可以通过例如用合适的吸附剂吸附性地除去副产物而纯化。吸附剂的实例包括氧化铝凝胶,氧化硅凝胶,活性碳,沸石,活性氧化镁,活性铝土矿,漂白土,活性粘土,及分子筛碳。这些吸附剂可以单独使用或以其两种或多种的混合物使用。
通过上述方法,可以得到本发明的聚碳化二亚胺。为了使构成步骤(1)中的树脂层的聚碳化二亚胺具有较高的折射率,优选该聚碳化二亚胺是骨架结构由芳族和脂族二异氰酸酯构成且末端用芳族单异氰酸酯封端的聚碳化二亚胺。更优选的是骨架结构由一种或多种芳族二异氰酸酯构成且末端用芳族单异氰酸酯封端的聚碳化二亚胺。
具体地,优选聚碳化二亚胺是这样的聚碳化二亚胺,其中10%摩尔或更多(上限为100%摩尔)的式(1)中的R所示的二异氰酸酯残基为一种或多种芳族二异氰酸酯的残基,且式(1)中的R1所示的单异氰酸酯残基为一种或多种芳族单异氰酸酯的残基。优选二异氰酸酯残基为至少一种选自下列物质的残基甲代亚苯基二异氰酸酯,4,4′-二苯基甲烷二异氰酸酯,萘二异氰酸酯,六亚甲基二异氰酸酯,及十二亚甲基二异氰酸酯,更优选萘二异氰酸酯残基。优选芳族单异氰酸酯为1-萘基异氰酸酯残基。
对于在一个或多个光学半导体元件上形成包含第一树脂的树脂层而言,实施该步骤的方法的实例包括片状树脂1借助于例如层合机4,层合在其上安装有光学半导体元件2的基材3上的方法,如图1所示;及树脂1通过例如压铸模5应用于其上安装有光学半导体元件2的基材3上,然后进行固化的方法,如图2所示。在图1和2中,每个光学半导体元件2均按照常规技术通过导线6与导体7相连。
在图1所示的方法中,片状树脂是通过例如下列方法得到的将树脂溶解于溶剂;并通过适当的技术如浇铸、旋涂或辊涂,使所得树脂溶液成形为具有适当厚度的薄膜;然后在可以除去溶剂又不导致固化反应发生的温度下干燥该薄膜。干燥已经形成薄膜的树脂溶液的温度,不能无条件地确定,因为它随树脂和溶剂的种类而变化。然而,优选该温度为20~350℃,更优选为50~200℃。当考虑到光学半导体元件的高度和用压模进行模压时,通过加热干燥而得到的片状树脂的厚度优选为约150~400μm。也可以彼此叠合地使用两层或多层这类树脂片。
当片状树脂是利用层合机等通过热压粘结法熔化并层压在基材上的,则优选树脂被加热至70~250℃,更优选100~200℃,且优选所施加的压力为0.1~10MPa,更优选为0.5~5MPa。当使用层合机时,其转速优选为100~2000rpm,更优选为500~1000rpm。
在图2所示的方法中,浇铸的压模条件包括加热温度优选为30~80℃,更优选为50~60℃,线速度优选为0.5~8m/分钟。施用之后的干燥温度优选为20~350℃,更优选为100~200℃,且干燥时间优选为10~60分钟。
紧接上述的步骤(1)的是步骤(2)。本发明的另一显著特征在于步骤(2)。通过模压形成于步骤(1)的树脂层,可容易地用平整的树脂层封装光学半导体元件,并且可以得到发光效率均匀的光学半导体装置。
树脂层的模压可以利用压模等进行。在本发明中,要使用的压模可以是例如通过激光加工而将聚酰亚胺片或聚碳酸酯片形成预定的模(die)而得到的,或者是用金属(如镍)镀敷这种作为母件(原件)的压模而制得的。
采用压模的树脂层的模压,可以按例如图3中所示的方式进行。压模8如此排列,使得具有凹陷或凸起的树脂层能够形成于光学半导体元件2的上方。将该集合物插到加热的压板与另一加热的压板之间,然后加热/加压,由此可以热固化和模制形成于步骤(1)中的树脂层。利用压模,可以用形状平整的树脂层一次封装很多的光学半导体元件。
例如,加热/加压的条件包括优选加热温度为70~250℃,更优选为100~200℃;优选加压的压力为0.1~10MPa,更优选为0.5~5MPa;且优选该加热/加压的时间为5秒至3分钟,更优选为10秒至1分钟。
通过将光学半导体元件上的树脂层模制成具有凹陷或凸起的形状,可以改善所得镜头的光调节和发光效率。
在本发明中,优选在步骤(2)之后还进行下面的步骤(3)(3)在步骤(2)中所压模的树脂层(下文中称为“第一树脂层”)上,形成包含第二树脂的第二树脂层,所述第二树脂具有比构成第一树脂层的第一树脂低的折射率。
对第二树脂没有具体的限制,只要其是根据它的折射率选取的。具体地,选择第二树脂,使其折射率低于第一树脂。然而,从增强树脂层界面的发光效率的角度来看,优选第一树脂与第二树脂的折射率差度{[(第一树脂的折射率)-(第二树脂的折射率)]/(第一树脂的折射率)×100}为5~35%。
第二树脂的实例包括与上述作为第一树脂的实例而提及的树脂相同的树脂。然而,从容易模制和低成本的角度来看,优选环氧树脂。
第一树脂层和第二树脂层可以适当地包含光散射填料如氧化硅,及添加剂如荧光剂。
第二树脂层可以通过从已知方法中适当选取的方法来形成,例如,注模法,浇铸法,传递模塑法,浸涂法,及采用分散剂的灌注法。
根据需要,可以在第二树脂层的外侧进一步形成一层或多层树脂层。这种情况下,优选所形成的多层树脂层,按其树脂的折射率向最外树脂层逐步降低顺序布置。
如本发明中所述,通过用压模模压光学半导体元件上的树脂层,可以容易和平坦地用树脂封装光学半导体元件,并且可以得到具有均匀发光效率的高质量的光学半导体装置。因此,优选根据本发明制备的光学半导体装置是包含基材及多个形成于基材上的光学半导体元件的光学半导体装置,特别是发光二极管阵列。通过本发明得到的发光二极管阵列的实例如图4中所示。在图4中,位于LED阵列9上的LED芯片10和导体7,已通过压模被第一树脂层11所封装,且第一树脂层11已被第二树脂层12所封装。
实施例现将参照下列实施例,更详细地说明本发明,但是不应理解为本发明受限于这些实施例。
在下列实施例和对比例中,所有合成反应均在氮气流中进行。IR分析是利用FT/IR-230(Nippon Bunko K.K.制造)进行的。
聚碳化二亚胺的制备实施例在装有搅拌器、滴液漏斗、回流冷凝器和温度计的500-mL四颈烧瓶中,加入29.89g(171.6mmol)的甲代亚苯基二异氰酸酯(异构体混合物;T-80,Mitsui-Takeda Chemical制造),94.48g(377.52mmol)的4,4′-二苯基甲烷二异氰酸酯,64.92g(308.88mmol)的萘二异氰酸酯,及184.59g的甲苯。将这些成分一起混合。
向其中加入8.71g(51.48mmol)的1-萘基异氰酸酯和0.82g(4.29mmol)的3-甲基-1-苯基-2-磷杂环戊烯2-氧化物。将所得混合物在搅拌下加热至100℃并保持2小时。
通过IR分析探测反应进程。具体地,先是归因于异氰酸酯N-C-O伸缩振动(2280cm-1)的吸收量降低,接着是归因于碳二亚胺N=C=N伸缩振动(2140cm-1)的吸收量的增加。通过IR分析确定反应终点之后,将反应混合物冷却至室温。从而,得到聚碳化二亚胺溶液(用于对比例1)。在该聚碳化二亚胺中,100%摩尔的二异氰酸酯残基为芳族二异氰酸酯残基。该聚碳化二亚胺由上述通式(1)表示,其中n为15~77。
接着,将该聚碳化二亚胺溶液涂布在由聚(对苯二甲酸乙二酯)薄膜构成的隔板(厚度50μm)[Toray Industries,Inc.制造]上,所述聚(对苯二甲酸乙二酯)薄膜已经用脱模剂(氟化的硅树脂)处理过。将该涂层在130℃加热1分钟,然后在150℃加热1分钟。其后,除去隔板,得到临时固化的片状聚碳化二亚胺(厚度50μm)。
将所得片状的聚碳化二亚胺在150℃的固化烘炉中固化。在589nm的波长和25℃的温度下,用多波长Abbe折射计(DR-M4,ATAGO有限公司制造),检验该固化的树脂的折射率。测得该固化树脂的折射率为1.748。
光学半导体元件的制备实施例制备光学半导体晶片基材(直径100mm;厚度100μm)在作为透明基材的蓝宝石基材上形成作为发光层的GaN层(p-型或n-型),然后在其上面形成电极。利用激光加工设备(Model 5330,ESI,Inc.制造),自该晶片基材切割出光学半导体元件。
在该切割步骤中,将波长为355nm、平均输出为5W、频率为30kHz的YAG激光的三次谐波,用fθ透镜聚焦,以便以直径为20μm的光束入射在晶片基材的表面上,并用电扫描器使该激光束以10mm/秒的速度移动。此外,将固定晶片基材的平台以40°角倾斜,以进行侧壁加工。由此制得正方形光学半导体元件,其α角为50°,厚度为100μm,且安装侧面各边的长度为350μm。
实施例1将4片得自上述“聚碳化二亚胺制备实施例”中的临时固化的片状聚碳化二亚胺堆叠起来,制得尺寸为50mm×30mm且厚度为200μm的片状物。将该片状物层合在尺寸为50mm×30mm的基材上,该基材上安装有7×18个得自上述“光学半导体元件制备实施例”中的光学半导体元件(间距2.5×2.2mm)。该层合是利用层合机,以500rpm的转速、100℃的辊温度和0.5MPa的辊压力进行的。由此形成第一树脂层。
接着,压模(由聚酰亚胺制成)叠放在第一树脂层上,并在200℃和1.5MPa下模压第一树脂层1分钟,所述压模具有直径为0.74、深度为0.17mm的凹陷,且以2.5×2.2mm的间距按4×4的形式排列。
叠放环氧树脂(NT-8006,Nitto Denko Corp.制造;折射率为1.560),作为低折射率树脂层(第二树脂层),并在120℃下固化5小时。由此,得到表面安装型的发光二极管阵列。
经测量,凸出部分中的高折射率树脂层的厚度为175μm,且总树脂厚度为300μm。由于高折射率树脂层的折射率为1.748,所以该树脂层与低折射率树脂层间的折射率差异为0.188。
在所得发光二极管阵列中,经测量,每个发光二极管的正面的发光量(绝对能量)平均为0.13μW/cm2/nm,其标准偏差为0.025μW/cm2/nm。
将所得发光二极管阵列用断面抛光设备(Struers Inc.制造)抛光,并检查阵列的断面。结果,在各光学半导体元件与树脂层间的界面上,未观察到任何空隙。
对比例1
按与实施例1相同的方式制备发光二极管阵列,只是将聚碳化二亚胺溶液滴在各光学半导体元件上,形成第一树脂层。
在所得发光二极管阵列中,经测量,每个发光二极管的正面的发光量平均为0.08μW/cm2/nm,其标准偏差为0.019μW/cm2/nm。
这些结果表明,由于实施例1无需进行如对比例1中所进行的将预定量的树脂滴在各光学半导体元件的操作,所以实施例1的制备工艺简单,且由此得到的二极管阵列的各LED芯片的发光效率的不均匀性降低。
对比例2按与实施例1相同的方式制备光学半导体装置,只是使用α角为90°的光学半导体元件。
在发光效率的均匀性方面,所得发光二极管阵列等同于实施例1的发光二极管阵列。然而,当用断面抛光设备(Struers Inc.制造)抛光该发光二极管阵列并检查该阵列的断面时,在光学半导体元件与树脂层间的界面上发现了空隙。从这些结果可以看出,在对比例2中制备的光学半导体装置的功能和可靠性随着时间的流逝而降低。
根据本发明制备的光学半导体装置适合用作个人电脑、移动电话等的表面光源。
尽管已经参照其具体实施方案详述了本发明,但是本领域的技术人员显而易见的是,在不脱离其构思和范围的情况下,可以对本发明作出各种替换和修改。
本发明基于2004年3月10日提交的日本专利申请第2004-066850号,其内容引入本文作为参考。
权利要求
1.一种制备光学半导体装置的方法,该方法包括(1)在一个或多个安装于导体上的光学半导体元件上,形成树脂层;及(2)模压于步骤(1)中形成的树脂层,其中每个光学半导体元件具有从其安装侧面至发光侧面逐渐变细的纵向断面。
2.根据权利要求1的方法,其中所述步骤(2)是利用压模(stamper)进行的。
3.根据权利要求1的方法,其中在步骤(2)之后还包括(3)于步骤(2)中所模压的树脂层上,形成包含第二树脂的第二树脂层,所述第二树脂的折射率低于构成压模树脂层的树脂。
4.根据权利要求1的方法,其中形成于步骤(1)中的树脂层包括下面式(1)所示的聚碳化二亚胺 式中R代表二异氰酸酯残基,R1代表单异氰酸酯残基,n为1~100的整数。
5.根据权利要求1的方法,其中所述光学半导体装置为发光二极管阵列。
全文摘要
本发明提供一种制备光学半导体装置的方法,该方法包括(1)在一个或多个安装于导体上的光学半导体元件上形成树脂层;及(2)模压于步骤(1)中形成的树脂层,其中每个光学半导体元件具有从其安装侧面至发光侧面逐渐变细的纵向断面。
文档编号B29C39/12GK1667845SQ200510008290
公开日2005年9月14日 申请日期2005年2月21日 优先权日2004年3月10日
发明者末广一郎, 堀田佑治 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1