定向热塑和颗粒物质的复合材料的制作方法

文档序号:4483578阅读:249来源:国知局
专利名称:定向热塑和颗粒物质的复合材料的制作方法
技术领域
本发明涉及纤维或薄片增强的热塑性复合材料及其制备方法。特别地,涉及纤维素纤维增强的热塑性组合物,更特别地,涉及强度、模量和密度值可与典型的硬木或软木相比的泡沫组合物及其制备方法。
1993年8月10日公开的US5,234,652(Woodhams)描述了高分子量聚乙烯熔融相挤塑以生产在流动方向模量和强度均显著增加的挤塑物的方法。所描述的方法中,使在或接近其熔融温度的高分子量塑性材料通过有聚流料道的模头以生产高取向的挤塑物,模头界面的塑性材料处于显著的拉伸状态,即塞状流过聚流模头料道。
US5,234,652中所描述的发明是基于这样的提议,即当聚合物链以平行方式充分地拉伸和取回时,得到取向的挤塑物其强度和模量显著增大。尽管此概念已广泛地适用于纤维和膜,但应用此概念于较厚型材的企图已受到聚合物链在升温下迅速恢复其未拉伸的平衡形态的自然趋势的限制。该应变恢复通常表现为称作喷模头膨胀的现象,其中当挤塑物离开被加热的模头时,熔融挤塑物弹性收缩和膨胀。在US5,234,652描述的方法中,聚合物以半固态挤塑,即在强制挤塑,在流动方向拉伸可变形的聚合物链并保持如此赋予挤塑物的取向性的条件下熔融相挤塑。在此熔融态挤聚条件下,在低挤塑温度、足够高分子量和塞状流下,分子松驰时间足够长以便在冷却至环境温度的过程中和之后充分保持产品的取向性。已证明高分子量聚乙烯特别适用于此方法。
已知各种挤塑方法用于连续生产整体结构泡沫产品。特别相关的是1973年10月9日公开的US3,764,642(P.E.Boutillier)。这些方法使用所谓“Celuka die”而提供有内泡沫芯的、需要求尺寸的、高密度的硬皮挤塑产物。
尽管聚合物的流体静力挤压已知道一段时间了(N.Inoue,M.Nishihara,HYDROSTATIC EXTRUSION,Theory and Applications,Section4,Polymers,Elsevier Applide Science Publishers,PP.333-362,1985),但该方法一般只限于柱塞挤压,其在类似于金属流体静力挤压的条件下伴有坯料变形。挤压模头方面的现有技术很多,如可从由W.Michaeli出版的教材(EXTRUSION DIES,Design and Engineering Computations,Hanser Publishers,1984)中了解。但是,稳定光滑地挤塑没有熔融断裂或模头膨胀的高取向聚合物的精确条件不为挤压工业领域的技术人员所知。
本发明揭示了一种方法,借此,可在或接近其软化温度下容易地挤压多数充气的聚合物而直接生产高取向的型材。
发明人已发现通过挤压方法可制备结构性能可与天然软木和硬木相媲美的、强度和模量均特别高的如纤维或薄片增强的热塑性复合物形式的可取向的颗粒材料。这些方法使包括基质和分散颗粒材料的热塑性聚合物链均在纵向流动方向取向,并以该优选的取向固化挤塑的型材,基本上防止聚合物链在随后冷却至环境温度的过程中松驰。
热塑性弹性熔融的流动定向使链分子的平衡结构变形而使链段在流动方向优选取向。这种链定向增加固体定向结构在取向方向的强度和模量。术语“可定向的颗粒”是指其一尺寸远大于另一尺寸并可基本上在一种方向定向平行或平面排列的各向异性颗粒。因此,以薄片和纤维为代表的并埋入聚合物基质中的这种重叠颗粒一般称为“增强填料”。
所观测的机械性质是这两种增强机理相加或协同作用的结果。实践中将很好地理解这种增强理论(短玻璃纤维、石棉、云母、滑石、Wollastonite、木纤维)。
因此,一方面,本发明提供一种包括定向塑性材料和定向颗粒材料的复合物的高模量制品的连续生产方法,所述方法包括步骤a使接近或在软化温度并混有可定向的颗粒物质的可定向塑性物质连续通过横截面积沿塑性流动的前进方向递减的料道,从而制备挤塑物;b使保持在或接近其熔融温度的挤塑物变形,而制备定向的、变形的挤塑物;和c冷却该变形的挤塑物以保持该定向而提供所述的复合物。
术语“可定向颗粒物质”是指纤维、薄片等形式的物质,其可如前所述基本上以平行或平面排列取向。优选可定向颗粒物质由纤维素物质形成。
术语“软化温度”是指接近结晶型聚合物熔点的温度,或就非晶形聚合物而论,接近玻璃转化温度的温度,在玻璃转化温度下粘度有突变。
在优选的方面,本发明提供一种制备高强度和高模量纤维素-热塑性塑料复合物的方法,其包括将切碎的纤维素纤维或纤维素颗粒与软化点低于约220℃的热塑性聚合物均匀地混合;通过在接近热塑性物质软化点的温度下固态挤压,挤压该混合物使之聚流流动通过模头,以使纤维素大分子和热塑性聚合物分子均在挤塑方向纵向取向;和定向后迅速冷却该挤塑物使其固化而保持所赋予的取向。
至少某些要求的大分子定向可通过当挤塑物从挤塑机模头流出时伸长或拉伸该挤塑物的步骤而赋予挤塑物。
本发明优选提供一种如前面所定义的方法,其中在有聚流区的模头中有聚流料道,该料道的几何形状使聚流区内弹性熔融的应变率沿流动方向递减。
本发明更优选提供一种如前面所定义的方法,其中模头中聚流料道的几何形状使聚流区内弹性熔融的伸长速率在流动方向恒定。
在更优选的方面,本发明提供一种定向塑性物质和定向颗粒物质的整体结构泡沫复合物的生产方法,所述方法包括如下步骤使合适的可定向颗粒物质与软化点低于约220℃的热塑性物质均匀地混合;通过在接近热塑性物质软化点的温度下熔融相挤塑,挤压该混合物使之通过聚流模头,以使整个熔融挤塑物的颗粒物质和热塑性聚合物链均占优势地在纵向取向,其条件是在保持高定向的、挤塑物表面基本上为固体外皮、同时允许挤塑物芯内产生泡沫,同时对挤塑物施加张力以使挤塑速率最大并降低模头压力;和挤塑物离开聚流模头后使之迅速冷却以保存所赋予的定向并防止模头膨胀,从而得到整体结构泡沫复合物产品。
挤塑物的平均密度最易于通过使用发泡剂控制,其中保持固体外皮的优选取向。优选混合物通过被润滑的模头,该模头被在紧邻混合物处润滑,以提供基本上的柱塞流。润滑剂也可混合在热塑性-颗粒物质中提供。
在优选的实施方案中,颗粒物质是通过碾磨、涂覆和纤维化适合的纤维素填料而得到的纤维素物质。
纤维定向和聚合物基质定向的复合作用极大地增加了挤塑方向的强度和模量,以致所得到的单方向复合物的机械性质可与木材相媲美。通过自发的泡沫膨胀可容易地调节挤塑物的平均密度。就“潮湿的”纤维素物质而论,木质填料的水含量可起“发泡剂”作用。水蒸发过程中的吸热冷却作用有助于降低厚型材挤塑物的内部温度,从而减少挤塑物的外冷却需求。如本领域技术人员所知,通过使挤塑物通过如适合的水冷却校准仪或真空分级机可精确地控制挤塑物的密度和最终尺寸。该冷却挤塑物的特征在于固体皮和细纹理(Textured)泡沫芯,其中总密度由芯的密度和外皮的厚度决定。因此,最终的产品密度可控制在各种木材的密度范围之内。达到稳定状态之后的模头压力一般小于42°MPa(6000psig),使用常规的单螺杆挤塑机允许挤聚速率为1.2m/min(4ft/min)。
在常规的挤塑方法中,常习惯于使引起模头膨胀的弹性变形最小。本发明的一个目的是要使挤塑过程中的弹性变形最大并永久地在挤塑物中保持此变形。这通过在接近软化点的温度下挤塑熔融物并使聚合物链的松驰时间足够并以允许物质的弹性恢复能够发生之前用水骤冷而容易地实现。用常规的螺杆挤塑方法,在粘度高时模头压力可能过高,优选采用适当的模头润滑减少摩擦。此外,起始条件要求熔融温度逐渐降低直至得到优选温度的型材。因此,熔融状态挤塑的条件必须逐渐达到以避免起始过程中压力过高。
纤维素组分可衍生自许多可得到的源如细木、锯屑、木屑、废新闻纸、杂志、书、卡片、木浆(机械、石磨、化学、机械-化学、漂白或未漂白的、泥、废屑)、层压薄片和各种农业废物(稻壳、小麦、燕麦、大麦和燕麦壳、椰子壳、花生壳、胡桃壳、稻草、玉米壳、玉米茎、黄麻、大麻、甘蔗渣、竹)。树脂组分可包括新鲜的或循环的(废的)热塑性塑料,其衍生自聚烯烃类(聚乙烯类、聚丙烯类及其共聚物),乙烯类(主要是氯乙烯共聚物)、和苯乙烯类(包括ABS和其马来酐共聚物),和某些情况下这些聚合物的混合物。由于木质或纤维素纤维在高于220℃的温度下有降解趋势,所以一般排除必须在此温度限之上加工树脂。因此,多数所谓工程树脂不能应用于本发明的方法中,因为它们的软化温度太高而需要高于纤维素分解温度(220℃)的加工温度。本发明的方法对热固性树脂如酚醛树脂、脲醛树脂、聚酯和环氧树脂也没有多大价值,因为这些液体树脂一般以不同的方式加工。
优选的塑性物质为平均分子量在20,000-500,000道尔顿之间,更优选在30,000-300,000道尔顿之间的聚乙烯。
为利用废纸、新闻纸、卡片材料等,必须首先将纸切碎,然后使其通过锤磨机以使切碎的纸散开并部分地纤维化。废木在经锤磨机、Wiley Mill或Szego Mill细磨之前可通过hog mill。较小的污物如胶料、纸添加剂、无机填料、粘结剂、纸釉、蜡涂层、颜料、食物残渣和墨汁在对挤塑的复合物没有明显损害的情况下一般容许。但这种杂质或污物的容许度主要决定于用途。极性蜡如马来化聚烯烃或脂肪酸可有利地用于碾磨过程中,辅助碾磨过程而提供经预处理使之憎水、密实化并在用于重力加料机时自由流动的纤维状物质。将一定重量的如此纤维化和表面处理的纤维素填料与适当的树脂混合,使之在热动混合器如Gelimat(Werner and Pfleiderer Inc.)或K-Mixer(Syner gistics Group Inc.)中经强烈混合。该强烈混合不仅使结合松散的木质纤维彼此分离,而且进一步使单个的木纤维分裂成很多更小的木碎片,一些木纤维减至原尺寸的十分之一。尽管经此攻击性作用,得到的纤维素碎片仍赋予高强度和刚度于复合物。试验表明这些复合物可重磨和重塑多次(约20)而其机械性质没有明显损失。此显著的耐用性归因于纤维素碎片的超常韧性,其抵抗再加工过程中的进一步破损。通常必须应用分散剂或偶联剂以使木质或纸纤维与热塑性树脂、特别是非极性聚烯烃树脂如聚乙烯和聚丙烯有效地混合,这些树脂不能自发地润湿纤维素表面。在此情况下,已发现加入某些极性聚合物或蜡如羧基聚烯烃、马来化聚烯烃或脂肪酸较有利。某些情况下这些添加剂对得到的复合物的机械性质可有很大影响。它们可在如上所述的碾磨和纤维化阶段加入或简单地在强烈混合之前加入树脂混合物中。在碾磨阶段纤维素纤维的预处理是特别希望的,以增加堆密度而提供可用于其它类型混合器如双螺杆混合器、单螺杆混合器和Banburys的增强填料。各种其它添加剂可在混合阶段掺入,如抗氧化剂、紫外线稳定剂、润滑剂、阻燃剂、颜料、发泡剂或交联剂。
木纤维的浓度可以改变,但当木纤维浓度大于约80wt.%时,混合物则变得难于挤塑。为使木纤维最大定向,模头优选应用表面润滑的聚流流动。润滑有助于促进熔融挤塑物的伸长流动(与常规的剪切流动相反),以使整个横截面的所有木纤维均优先在挤塑方向取向,即使所有平行的木类晶粒均流动取向。这种一致的平行取向使纵向的强度和刚度最大。如果适当地选择,液体润滑剂可以是用作涂层的适当染色的单体,以便该单体可在挤塑后随后聚合(如紫外线或电子束固化)。未润滑的剪刀流动采取抛物线流动形式,它干扰优选的平行取向。
木纤维的优先取向部分地贡献于复合物的强度和刚度。另外的刚度和强度是由在使聚合物链(或结晶微纤维)伸长和取向以通过在挤塑物有机会松驰之前冷却挤聚物“凝固”该取向的条件下挤塑复合物而赋予的。这种挤塑方法在本说明书中称为“熔融”态挤塑,一般在接近树脂(晶形或非晶形)软化点的温度下进行,以致聚合物链的松驰时间相对于总挤塑时间很长,即在聚流模头区弹性变形后恢复平衡链结构需要很长时间。因此,优选选取最低的实际挤塑温度以延长聚合物松驰时间,从而保存终产品中由聚流模头赋予的大部分取向。挤塑物在最终的剪切和打捆之前一般还由一系列校准仪或水冷却浴冷却。为使挤塑压力最小和促进模头区中的拉伸流动,采用表面润滑。适合的润滑剂包括硅酮油(DowCorning Inc.)、液体石蜡、Accuflow(Allied-Signal Inc.)、甘油、蓖麻油、脂肪酰胺和钛酸酯或盐(Kenrich Chemical Co.)。模头部件可装有多孔金属润滑嵌入环以促进润滑剂在进入模头之前均匀分布。润滑剂采用高压泵计量控制的速度。加压下引入蒸气或气体从而基本上使界面摩擦降至零(Brzoskowski et al,Rubber Chemistry and Technology 60(5),945-956,1987)。在这样的入口注射水以便在挤塑过程中同时润滑并冷却界面。某些情况下,可混合液体和气体润滑剂以使聚流区内摩擦最小。优选用拉伸机给挤塑物施加张力以使模头膨胀最小并降低模头压力。显然半固态化合物通过模头组件时遇到的任何摩擦力都将限制挤塑速率。一般使用一系列水冷校准仪、水浴或喷水系统使挤塑物在进入拉伸机之前迅速冷却。精确地控制由拉伸机施于挤塑物的张力以使挤塑率最大又不致因施加的张力太大而使挤塑物断裂。离开拉伸机之后,可将挤塑物切成任何要求的长度、包装和储存。
另一方面,本发明提供一种高模量制品,包括根据本发明如前面所定义的方法制备的定向颗粒物质和定向塑性物质的复合物。
为更好地理解本发明,将通过实施例并参考附图描述优选的实施方案,其中

图1为实现本发明熔融相挤塑方法的设备的主要部件的示意图;图2为图1设备的主要部件的轴向剖面图;图3为图1设备另一实施方案的主要部件的轴向剖面图;图4表示用于本发明实践中的图2和3装配的结构泡沫模头和心轴的沿A-A′线径向剖面图;图5表示图2和3模头装配生产的圆柱形泡沫型材沿B-B′线的剖面图;和图6表示用三个不同的模头结构进行固相挤塑以说明定向对含各种浓度木屑的聚乙烯复合物的挠曲模量的影响。目标模量为10GPa。
参考图1,用于本发明熔融相挤塑的设备包括变速挤塑机10,其在经加料斗12供给熔融物储存器14的聚合物混合物进入流线型聚流模头16之前加热并使之塑化。离开模头16之后,固体挤塑物在进入拉伸机22之前还要经一系列校准仪18和水喷射器20骤冷。此方法的每个阶段均由计算机24(Barber Colman MACO 8000)程控。牵引张力可用载荷传感器(未示出)控制以避免挤塑物断裂。
特殊情况下,也可用熔料齿轮泵为模头提供恒定的高压,从而避免压力波动。挤塑机10的螺杆由有驱动控制28的变速驱动装置30驱动。模头16的温度由热交换器或电加热控制30监测和控制。拉伸机22由牵引速度控制器26支配。这些工艺的控制特点为本领域所公知。
参考图2,挤塑机100接受、熔融、混合、塑化和强制地挤塑半固态或熔融物质使之通过被加热的聚流模头102。挤塑机100是带有适用于颗粒混合的螺杆104的常规单或双螺杆挤塑机。可选择的缓冲板106有助于使压力波动和熔料进入储存器108之前盘旋最小。储存器可以是任何长度或直径的,用于提供在模头区成形和定向之前均匀地调节过的物质。储存器108也可包含静止的混合器以促使温度均匀并使由挤塑机螺杆104产生的盘旋最小。
液体或气体润滑剂通过一个或多个定位的入口110引入储存器108,用于使润滑剂在物质向前流动进入模头102时自然且均匀地分布在熔融物质和储存器表面之前。为进一步使摩擦力最小,所有内表面均经抛光并用耐腐蚀金属制造。可选择地,可通过嵌入的多孔金属环(未示出)使润滑剂均匀地分布在界面。也可在树脂混合物进入挤塑机之前将润滑剂引入树脂混合物中。这种有效的润滑剂可能损害挤塑机100的泵送效率,除非挤塑机筒开有槽。该槽可以是平行或螺旋形的,用于防止熔融物质因不胜任粘滞阻力而滑动。
熔料储存器起下列作用(a)使流动不稳性如由于螺杆施加的扭矩而引起熔料的盘旋最小;(b)使由于存在缓冲板而引起的条纹最小,在挤塑温度较低时这一点尤为重要;(c)在熔料进入模头入口之前允许扩大的区域直径(增加的横截面积),在挤塑机较小的情况下有时希望这样以允许挤塑拉伸比较大而相应地增加挤塑物的定向;(d)允许从环状横截面逐步过渡成更复杂的模头断面,即流线型化,此逐步过渡有利于整个料道的伸长流动;(e)促进润滑剂在熔料进入模头之前在其表面均匀分布,润滑剂可在单入口注入或通过一多孔环形衬垫沿圆周分布,希望在储存器内的停留时间短以在聚合物进入模头之前均匀地润滑聚合物并补偿界面;和(f)在进入聚流模头之前,控制熔料的温度和均匀性。
模头102包含一心轴112以允许挤塑中空形状或泡沫的型材。通过适当选择条件,心轴模头112可用于制造整体结构的泡沫型材,其中当冷却表面保持固态时让熔融的芯发泡。在所示的实施方案中,发泡作用是由所用颗粒纤维素填料中自然吸收的水分提供的,但也可采用其它发泡剂用于同样的用途。
根据所要型材的形状,图2中的模头102有相适应的结构。但,在模头的设计方面与常规的挤塑模头有重要的不同。为“流线型流动”画模头形状的计算机软件是常能得到的,如在金属的挤塑中(Collier etal,Society of Plastics Engineers Conference,P.203 and 497,1987)。
通过适合地润滑聚合物流的外皮使表面摩擦最小可便于聚流模头内侧的伸长流动。这已经达到,模头区内速度分布或应变率由模头的特殊几何形状决定,并对变形程度和总挤塑速率有重要影响。模头内侧聚合物熔料的变形可用伸长应变率ε或伸长(拉伸)速率λ0描述,伸长应变率ε定义为ε = (10)/1其中l代表dl/dt,其中l为挤塑方向的长度或距离,t为时间,通常以秒计(SI名称);伸长(拉伸)速率λ0定义为λ0=l0/l0其中l0为聚合物成分进入模头之前的起始长度,和“l”为聚合物成分进入模头区之后任何时刻“t”时的长度。
一般地,伸长应变率沿开始于模头入口的坐标轴的流动线可以随应变率(a)不变、(b)增加、或(c)降低。多数情况下优选(c)型。(c)型模头设计的一个特殊情况是与沿轴应力分布等值的线,其给出恒定的拉伸速率,由于应变凝固补偿了减少的应变率,所以该值接近常数。在此情况下,对于个别的拉伸速率模头可能比恒定应变率的模头短得多。因此,对于伸长流动定向优选恒定拉伸速率的模头外形。最好地,所有模头截面均优选地流线化以使流速最大并避免流动不连续。这些研究将适用于所有热塑性物质及其组合物。
一般地,混合物的流变学、模头区内的界面摩擦和操作条件将决定对于优选定向度的最佳模头结构。模头拉伸比定义为模头入口的有效面积与模头出口的有效面积之比,设计模头的拉伸比以赋予永久的弹性变形和优选的取向于纤维复合物。为促使木纤维最大定向同时使聚合物基质在流动方向取向,在简单的棒型材的实例中,使挤塑物通过有流线角形状的聚流模头是理想的,以致在从较大入口区到较小出口区流动中的拉伸比或面积减小比使粘弹性熔料产生永久变形。模头的外形可依据聚流区的伸长应变率或伸长应力数学地与熔料的粘弹性变形有关联。经验表明恒定的或减小的伸长应变率最有效。
对于生产更复杂形状挤塑物的复杂模头,用计算机软件决定模头料道每个截面的优选形状和结构是理想的。
示于图2的模头102中,带有辐射形支承部件114的心轴112嵌八模头区内以生产中空截面,如管。环绕心轴112的聚流料道116促进伸长(柱塞)流动,只要热塑性混合物的内外表面均充分地抛光和润滑以减小摩擦。因此,润滑剂在加压下计量通过入口118并在心轴112的前端(上流)120退出。这样促使熔融物质的内表面被适当地润滑而减小心轴112上的粘滞阻力。模头组件102的每个截面的温度通过外部加热或冷却仔细地控制以促进模头区的伸长(拉伸)流动,然后使热的挤塑物迅速骤冷以保持被赋予的纤维取向和分子取向。后面所示的实施例中,一个系列中模头拉伸比为1∶3,1∶5和1∶14。
弹性熔料挤塑进入有水入口124和出口126的水冷却校准仪122,从而生产整体结构泡沫棒128。
模头内的拉伸比必须不超过熔料在施于挤塑物的温度、速度流动梯度、和张力的条件下的自然拉伸比。最好使用熔料强度大的树脂以致施加的拉伸张力能有助于在调整下平稳挤塑又不使模头压力过高。由于熔料强度和应变凝固随着温度降低而大幅度增加,所以在接近复合物软化点的温度下挤塑熔融的复合物是理想的,此时粘度很大而可逆弹性变形的松驰时间长。显然,由于温度较低时,挤塑物可变得太粘无法挤塑且模头压力将过高-可能使模头破裂,所以挤塑温度有一低限。接近软化点时大幅度增加的粘度也意味着松驰时间较长,以致弹性变形保持的时间较长,典型地,至少数分钟。挤塑物将有足够的时间固化和冻结,从而由聚流模头所赋予的聚合物定向将永久地保持。通常工业实际的熔融挤塑中,挤塑物的松驰时间常以秒计量,以致任何流动取向在挤塑物能固化之前很快地损失。这可利用偏振光直接观察到,因为只要分子定向存在,则挤塑物将表现出双折射。使用高分子量树脂,有利于出现长松驰时间和纯的弹性变形(与粘性变形相反)。但是,分子量的选择将受聚合物与木纤维或其它颗粒填料的混合能力限制,以致必须在混合容易和挤塑物中定向的保持时间之间权衡。因此,一般优选符合混合容易的最高分子量。根据本发明的方法可生产有各种外形和尺寸的挤塑产品。包括棒、管、中空截面、结构泡沫、复合挤压、工字梁、槽、门和框、板、等等。外径可从小于1毫米至很大截面如铁路枕木和电话机柱(30cm)变化。较大的截面可相应地采用由大或小挤塑机提供的较大直径的储存器。在更复杂形状的情况下,聚流模头的形状和入出口尺寸通过使用工业软件(采用流线型流动)用计算机很容易确定,以使流速最大和给出均匀的拉伸比。拉伸和挤塑的流线型模头的理论和设计包含在各种参考文献中,其中典型的是O.Richmond的论文[O.Richmond,Theory of Streamlined Dies for Drawing and Extrusion,MECHANICS OF THE SO LID STATE,ed.F.P.J.Rimrott and J.schwaighofer,University of Toronto Press,Toronto,1968]。热塑性复合物的粘弹性反应可能影响使挤塑速率和保持的定向最佳的模头形状。
参考图3,挤塑机筒310容纳一挤塑机螺杆312,以使挤塑物通过金属缓冲板316的孔进入用于调节挤塑物的熔料储存器314。润滑剂连接件318允许适合的润滑剂进入心轴324的表面,而连接件320使润滑剂进入以润滑熔料的外表面和熔料储存器322和聚流模头328的内表面。心轴324通过辐射形支架326保持在组件中。有固化外皮的泡沫复合物棒332从校准仪330排出,该校准仪也进一步冷却挤塑物。
图4表示有包含中心润滑料道414的心轴412的结构泡沫模头410的横截面,该润滑料道414将润滑剂送至心轴412的前端(上游)。心轴412通过三个等距离的支架418刚性地固定在圆筒形模头410内,支架418被流线型化以使湍流最小。聚流环形料道416有预定的拉伸比以赋予要求的定向于图5中所示挤塑物的外皮。这些内表面均经抛光和润滑以使摩擦力降至最低。可控制径向温度分布以允许最接近心轴的熔融区发泡。如果不包括发泡剂或使内部在达到心轴端之前固化(参见图2),则可完全抑制发泡。在此后一种情况下,制得中空截面。因此,如果将心轴和支架从模头中撤出,则得到实心型材。因此,所说明的模头可以设计成生产实心、中空、或整体泡沫型材。
由图4所示聚流模头生产的圆柱形泡沫型材以横截面示于图5中。棒500有泡沫芯510,由相同复合物的固体外皮520包围,泡沫向内延伸至棒500的中央。模头的尺寸和挤塑条件决定得到的外皮厚度和芯的密度。由木纤维释放的水分有助于降低芯的温度,从而减少外冷却需求。此自发的吸热过程在较厚挤塑型材中是重要的。
图6示出根据实施例1(PP/RH)和实施例2(PS/WF)生产的两种整体结构泡沫与含有木屑(由锯末衍生的精细分裂的填料)的高密度聚乙烯(HDPE)的实心定向型材比较的曲线。这三条曲线是对相同的混合物通过固有拉伸比分别为3∶1、5∶1和14∶1的三个不同聚流模头挤塑得到的。由于得到的结构泡沫有固体的定向外皮,所以整体泡沫在强度和模量方面都可与相应的实心型材相比。
为供参考,含有25%热机浆(TMP)的HDPE的注塑成型试样在图6的左下方以PE/TMP(注塑)表示。一般地,TMP大于40wt.%的组合物更难于注塑,而挤塑定向的实际限制是80wt.%纤维素类填料。这是由于挤塑方法加工高粘度组合物的能力比常规的注塑法大。
润滑为得到可与木材相比的刚度和密度值,在一般工业实践中的熔融相条件下挤塑树脂组合物是不够的。在通常用于工业中的条件下,挤塑物中所保持的纤维定向或分子定向不足以达到接近一般木材的典型机械性能,即挠曲模量10GPa和挠曲强度100MPa。通过降低熔料的温度以使其粘性和弹性增高,可使挤塑物在聚流模头中定向,从而显著地增加机械性能。不润滑,则模头中的压力可能变得过高而引起心轴或模头破裂。应注意用于塑料加工中的常规“润滑剂”的常规解释可能不适用于本文。本文中润滑严格地意指如就金属挤塑而论的塑性熔料和模头之间摩擦力的减少。整个模头的应变率必须保持低于临界值以防止聚合物熔料断裂。因此,模头的聚流是逐渐的,优选小于约20°度,更优选小于小于15°度(半角),在其最大斜度处。所有内表面必须经高度抛光以使摩擦力最小。由于某些含水的树脂添加剂在这些条件下可能是腐蚀或磨蚀性的,所以模头合金的选择要适当地考虑。在相对低的温度下用润滑的流动熔融相挤塑的能力提供了几个重要的优点,包括(a)由于需要的冷却时间短,特别对厚型材,增加了生产速度;(b)精确控制挤塑物尺寸;
(c)减少能量消耗;(d)极大地增加挤塑物的机械性能;(e)易于挤塑一般不能加工的高粘性物质;(f)能够在大填料浓度下挤塑;和(g)减少热敏性物质的加热过程。
发泡剂在许多用途中优选实心挤塑物,因为挤塑物密度高可能不是不合意的。然而实际上,有很多其它用途中,低密度对经济性及重量功效很重要。为保持实心挤塑物的理想的机械性能同时减少密度,生产中空型材或结构泡沫是方便的,以致弯曲力矩最大。这在图2中得到说明,其中挤塑物通过有入口124和出口126的水冷校准仪122。所示的方法中,热的挤塑物在外表面被冷却并固化,而使较热的芯发泡而向前填充低气压下的空穴。通过适当地选择吸热或发热型的对这种热塑性物质推荐的工业发泡剂促进发泡作用。在这些实例中,纤维素填料的天然水含量一般足够导致泡沫膨胀而不加化学发泡剂。对于再生的产物,纤维素类化合物的水含量应仔细控制。
其它发泡剂的选择-吸热的、放热的、物理的或化学的,将取决于几个因素,包括挤塑温度、树脂类型和成本。木纤维中残留的水分通常足够产生要求的膨胀度以致不需使用发泡剂。木纤维是吸水的,如不适当地保护它将吸收空气中的水分。一般环境下,木纤维与空气相平衡可包含3-7%水分,精确量取决于湿度。混合过程中此吸收的水分将蒸发一部分,但足够的比例可被保留以使木纤维复合物在挤塑过程中发泡膨胀。吸收水蒸汽的释放在熔融挤塑物进入大气压之后立即发生,以致熔融挤塑物可膨胀至其压缩体积的几倍,从而由于吸收水分的吸热蒸发而降低温度。如果将中空挤塑物导入水冷真空定径器(或定径模头),则可导致熔融的内部发泡而冷却的表面保持实心而不膨胀。这种泡沫型材的连续挤塑方法为塑料工业所公知,但没有如此固相挤塑方法中所述的定向外皮。此被赋予的定向给予所需的模拟木材性能的额外强度和刚度。
使用真空定径器或定径模头允许根据设计控制挤塑型材的最终尺寸和泡沫密度。固体(未膨胀的)外皮有效地密封外表面而制得坚韧耐用的终产品。但外皮不能太厚而使钉子和螺栓不能象木材那样插入。在理想条件下,纤维定向和分子链定向的组合可生产优于木材的挠曲性质的结构泡沫。
然后通过一系列校准仪或喷水降温器使半固态挤塑速率并降低模头压力。挤聚机可以是很多不同类型之一,一般分为单螺杆或双螺杆。仔细地调节挤塑机中的温度分布以使树脂组合物在螺杆区适当地软化和混合而不遇到过大的转矩。模头温度一般高于树脂化合物的软化点几度,如1-10℃,优选2-5℃。每段的最佳温度将取决于几个因素,包括树脂混合物的导热性、挤塑速率、挤塑物的尺寸和复杂程度、变形的热量和摩擦约束。校准仪设计成尽可能迅速地使挤塑物冷却以保存所赋予的定向并防止模头膨胀。固化后,挤塑物通过拉伸机并切成要求的长度。
校准仪校准仪的作用是冷却挤塑物的表面和精确地保持挤塑物的终尺寸直至表面完全固化。在某些应用中,校准仪将控制泡沫挤塑物的外侧尺寸和维持挤塑物中预定厚度的固体外皮。外皮的厚度由模头设计、操作条件和成分的选择决定。这种泡沫挤塑物通常称为整体结构泡沫。在其它类型泡沫挤塑物中,外皮可包括通过共同挤聚施加的不同聚合物。
分散剂和偶联剂为促使木纤维完全和均匀的分散,应用优先润湿木纤维表面的表面活性剂是理想的,从而增加木纤维在熔融聚合物基质中的分散速率。这些表面活性剂如合适地选择也可在木纤维表面和基质聚合物之间提供增大的粘性(偶联)。已发现适于应用羧化的聚烯烃在聚烯烃混合物中作分散剂和/或偶联剂。如US4,442,243中的实施例-R.T.Woodhams,1984年4月10日公开。例如,马来化聚乙烯对聚乙烯复合物是有效的分散剂。而马来化聚丙烯对聚丙烯复合物更有效。聚烯烃蜡的极性酸官能团优先润湿纤维素纤维或与之反应以增加它们与树脂基质的相容性。所要求分散剂的量一般取决于木纤维组分的总表面积和涂覆表面的百分率,通常为木纤维组分重量的1-5份。最佳值很容易通过实验确定。
树脂三类最重要的树脂是聚烯烃类(聚乙烯和聚丙烯)、乙烯基类(氯乙烯均聚物和共聚物)、和苯乙烯类(苯乙烯的均聚物和共聚物包括ABS)。所有这些聚合物均可转化成泡沫产品。该方法同样适用于软化温度低于约220℃(即低于纤维素的分解温度)的其它热塑性物质,例如丙烯酸树脂(丙烯酸单体的均聚物和共聚物)。该方法同样适用于回收或废的树脂,特殊情况下也适用于Comingled树脂。产品的质量可取决于组合物和各Comingled树脂的相容性。
纤维素组分使用高密度热动力混合是本发明的一个重要方面,因为此强混合作用不仅使各木纤维分散,而且还进一步使之分裂成微小的碎片。因此,木纤维组分的质量没有特别的临界,因为甚至非常短的纤维也可适合地应用,而在其它方面这些短纤维将被认为对造纸没有工业价值,例如来自纸回收的废纸浆和来自纸浆研磨的细末。大多数纤维素占主要比例的多数形式的木材(硬木和软木)、胶合板、锯末、锯树废料、农业废物等均可适合地用于本方法中。所有形式的纸、卡片、杂志、书、报纸、电话薄、包装纸等等均可转化成细切碎的形式。少量的粘合剂、塑性塑料、无机填料、淀粉浆糊等等对挤塑复合物的最终性能没有明显的影响。
本方法也可使用层压的纸板如Tetra Pak饮料容器,其含有铝箔、纸板和塑料的层压物。蜡处理的纸板、塑料涂覆的纸板、牛奶容器、光泽的杂志纸、和其它形式的不特别适合于再转变成纸或纸板产品的废纸可适合地用于本方法。因此,由于本方法能容纳各种各样在其它方面不能利用的废物的能力,所以本发明理想地适合于废塑料和废纸的利用。由于经济的原因,优选从塑料瓶或膜回收的成粒(切片)的树脂(在造粒之前),因为造粒实质上可增加树脂的成本。
木纤维组分的机械性能挠曲性能用ASTM D-790方法测量。对于圆形的挤塑棒,支持机架在ASTM D-4476中那样改进以容纳试样的曲率。按照ASTM D-25方法测量Izod断裂韧度。
挤塑的聚乙烯木纤维复合物(WFC)、聚丙烯WFC和聚苯乙烯WFC的机械性能分别列于表1、2、3和4中。木纤维含量为50%时,这三种聚合物复合物的挠曲模量值在3和5GPa之间。
下面的实施例将说明生产方法。
实施例1此实施例说明含有纤维素填料的圆形聚丙烯整体泡沫型材的制造。
将聚丙烯(50份Himont Profax 6631,MI=1.0)和马来化聚丙烯蜡(4份Eastman Chemicals Epolene E-43,MW=4500道尔顿)在高强度热动力混合器(Gelimat)中与磨过的稻壳(50份)一起预混合,然后在挤塑前使之粒化。将混合物中的水含量降至每百份混合物含3份水以达到要求的发泡度。将混合物放入装有如图3所示的棒状模头组件的2.5in单螺杆挤塑机(L/D为24∶1)的加料斗中。标定拉伸比为7的角状模具锥形至出口直径2.54cm。两个校准仪(长为10in)均装有单独控制温度的空气冷却。圆形心轴(直径0 70in)置于储存器(内径2.0in)的中间,且心轴延伸至聚流模头内。润滑剂(Dow Corning 200硅酮油)通过两个入口以15ml/h的速率注入储存器中。
计算机控制台(Barber Colman MACO 8000)控制整个试验的温度和工艺条件。首先升高模头区中的温度设定以开始该工艺,再逐步降至最终的稳定状态条件。达到稳态之后,挤塑机筒中四个区的温度设置为(上游至下游)∶165、170、175、178℃。接受管、储存器区、和聚流模头保持在(依次)∶178、173和170℃。此对校准仪保持在110和90℃。挤塑机速率设置为30rpm,给出的挤聚速率为40in/min。此实施例中没使用水浴或拉伸机,尽管这些在工业实践中经常使用。
外径1.0in的圆形整体泡沫型材有硬的光泽外皮和多孔状的泡沫芯。该型材的平均密度为0.59g/cm3。此棒状型材的挠曲模量为5.05GPa。
实施例2用木屑填充的聚苯乙烯代替聚丙烯,重复前面的实施例。使结晶聚苯乙烯(50份Huntsman Chemical PS201,MI=5.0)与木屑(50份)和聚苯乙烯-CO-马来酸酐共聚物(4份Atochem 3000A)混合。将水含量调至每100份混合物含3份水以作为发泡剂。使用前面实施例3中所述的模头组件。达到稳定状态之后,挤塑机筒中四个区的温度设置为(上游至下游)∶178、181、183、15℃。接受管、储存器区、和聚流模头保持在(依次)∶185、185和185℃。该对校准仪设在157和110℃。挤塑机速率设置为40rpm,给出的挤塑速率为50in/min。此实施例中没应用水浴或拉伸机,尽管这些在工业实践中常用。该聚苯乙烯整体泡沫型材有光滑的外径,带有多孔状泡沫芯。该型材的挠曲模量为6.46GPa,平均密度为0.62g/cm3。
实施例3用云母填料代替木屑重复实施例2。将聚苯乙烯(50份Huntsman Chemical晶状PS201,MI=5.0)和聚苯乙烯-CO-马来酸酐共聚物(4份Atochem 3000A)和化学发泡剂(0.5份Uniroyal Celogen AZ-130)用高强度热动力混合器(Gelimat)与云母(70份L.V.Lomas Mica White 200)混合。如前面实施例2,挤塑机装有棒状模头。达到稳定状态之后,挤塑机筒中四个区的温度设置为(上游至下游)∶180、184、188、190℃。接受管、储存器区、和聚流模头保持在(依次)∶190、188和185℃。该对校准仪设定在157和110℃。挤塑机转速设定为35rpm,给出的挤塑速率为40in/min。此实施例中没使用水浴或拉伸机。该整体结构泡沫型材有实心的光泽外皮和多孔状泡沫芯。型材的平均密度为0.71g/cm3。
实施例4-9以下未限定的实施例4至9说明使用其中心轴已去掉的图1设备制造实心型材制品的方法。
用按ASTM D-4476改进的ASTM D-79方法测量圆形挤塑棒的挠曲性能。按ASTM D-256 Izod试验方法进行断裂测量。
在与木纤维棒复合物相同的试验条件下测量Spruce和White Pine,用于直接可靠地比较挠曲模量。商购得到的云杉Spruce(密度0.42g/cm3)的挠曲模量为7.12GPa,White Pine(密度0.44g/cm3)的挠曲模量为9.46GPa。这些是有用的参考值。含各种填料类型的被挤塑的聚乙烯树脂类型的机械性能比较在表1和2中。示于表中的缩写概括如下。
聚合物类型PE1高密度聚乙烯(MI=0.4g/10min)PE2高密度聚乙烯(MI=5.0g/10min)MB回收的HDPE牛奶罐MC回收的HDPE碎片(混合色)PP聚丙烯(MI=0.8)HIPS高耐冲击聚苯乙烯(MI=13.5)MIPS中等耐冲击聚苯乙烯(MI=19)R回收的聚苯乙烯SMA聚(苯乙烯-CO-马来酸酐)共聚物PVC聚(氯乙烯)树脂(K-值58)纤维素填料TMP热机浆GMP研磨过的木浆DIN脱墨的报纸GN废报纸WF木屑
GC废纸板CS谷物茎WS麦秕R稻壳实施例4将四种级别的高密度聚乙烯(HDPE),吹塑级(HDPE,MI=0.4g/10min)、注塑级(HDPE,MI=5)、回收的牛奶罐(MB)和混色的碎片(MC)与各种纤维素填料混合,这些填料包括热机浆(TMP)、磨过的木浆(GWP)、木屑(WF)、废纸板(GC)、脱墨的报纸(DIN)、废报纸(GN)、磨过的谷物茎(CS)、磨过的麦秕(WS)和磨过的稻壳(RH)。马来化聚乙烯蜡分散剂(du Pont Fusabond MB 226D)以纤维素填料质量的4%的量包含在以下所有实施例中。所得挤塑棒的密度近似为1.1g/cm3。在那些含有50wt.%纤维素填料的试样中,24小时的水吸收值为0.1%(在25℃)和1.0%(在65℃),没有可观察到的膨胀或挠曲。
实施例4A将高密度聚乙烯(MI=0.4)在Gelimet中与四种浓度的热机浆(TMP)∶30、40、50和60wt.%混合。将成粒的混合物在以下温度分布(T1至T6)∶135、165、150、145、140和120℃的固相条件下挤塑。对此系列选择两种不同的模头(标定拉伸比3和5)。螺杆转速设在20rpm。对于3∶1的模头,在模头压力为1500psig时,挤塑速率为1ft/min。对于5∶1的模头,在模头压力为300psig时,挤塑速率为2ft/min。棒直径分别为0.34和0.40。挤塑棒的机械性能概括在表1中。这些棒的挠曲模量值作为纤维素填料浓度的函数标绘于图6中。
实施例4B用熔融粘度比6a中实施例低的高密度聚乙烯(HDPE,MI=5)进行一组平行实验。试验结果示于表1的下面。
实施例4此实施例说明用回收的(用过的)HDPE薄片(未造粒的)代替新树脂。结果概括于表1中。此系列中由HDPE牛奶罐薄片衍生的挤塑棒产生的机械性能稍高于HDPE碎片(上面)。
实施例4D注塑级HDPE(MI=5.0g/10min)产生可与吹塑级HDPE比较的结果(表1)。这些实施例表明此固相挤塑方法对所用HDPE树脂的级别相对地不敏感而得到可比较的结果。
实施例4E这些实施例说明使用农业副产物如麦秕(WS)、谷物茎(CS)和稻壳(RH)作为替换的纤维素填料(代替木材和纸)。在与树脂混合之前,在锤磨机中将原料磨成细粉(20-200目)。试验结果概括在表2中,证明由农业源衍生的纤维素填料可与由木材和纸衍生的填料同样有效地给予高强度和模量。
实施例5此系列描述聚丙烯-木纤维复合物的固相挤塑。如前所述将挤塑级聚丙烯(MI=1g/10min)与50wt.%热机浆(TMP)、和另一组中的脱墨报纸(DIN)混合。挤塑机和模头组件的温度分布(T1至T6)为165、190、180、180、165和130℃。机械性能概括于表3中。密度近似为1.05g/cm3。
实施例6此系列描述相应的聚苯乙烯-木纤维复合物的固相挤塑。将MI值分别为19和13.5g/10min的中等耐冲击聚苯乙烯(MIPS)和高耐冲击聚苯乙烯(HIPS)与浓度从20至70wt.%变化的热机浆(TMP)混合。反应的聚苯乙烯(聚苯乙烯-CO-马来酸酐共聚物)用于辅助分散(木纤维质量的3%)。挤塑机和模头组件的稳态温度分布为(T1至T6)100、160、145、125、115、和100℃。定向挤塑棒的机械性能概括于表4中。
实施例7
此实施例描述PVC-木屑(WF)复合物的固相挤塑。将推荐的稳定剂和润滑剂加入硬质PVC(K值58)中以辅助加工。木屑浓度为30wt.%。挤塑机筒的温度分布(T1至T6)为145、195、185、175、150和105℃。挤塑棒的挠曲强度和模量分别为59MPa和3.6GPa。ASTM Izod耐冲击韧度为3.7KJ/m2(对晶粒横向的),它是固相挤聚所赋予的增加的韧度的典型。
实施例8此实施例描述用L/D比为24的工业尺寸的25inch单螺杆挤塑的实验。第一组实验使用标定挤塑比为5、外径为0.896in的棒状模头。为此实验,将混有50份木屑和4份马来化聚乙烯(du Pont“Fusabond”/MB 226D,MI=2)的高密度聚乙烯(du Pont“Sclair 58A”,MI=0.4)预混合。挤塑机筒和模头组件的温度分布为(T1至T6)135、160、150、135、135和100℃。挤塑机螺杆设在10rpm,给出的挤塑速率为1ft/min。挤塑产品的挠曲强度和模量分别为90MPa和4.9GPa。
实施例9此实施例描述类似于实施例6中的固相挤塑方法,但用云母填料代替纤维素填料。选择平均颗粒尺寸为35μm和形状比近似为5的云母(L.V.Lomas Mica-White 200)用于评价。选择高密度聚乙烯(MI=0.4g/10min)作为塑性树脂组份,含有少量极性加工助剂(云母填料量的2%的du Pont Surlyn 9970)。如实施例6中所述将复合物通过标定拉伸比为5的棒状模头挤塑。结果概括于表5中。这些试样的挠曲强度类似于含纤维素纤维的,但它们的挠曲模量值稍大些。由于云母的密度比纤维素大(2.8对1.4g/cm3),所以云母复合物的密度也比相应的纤维素复合物大。木纤维复合物的较大的重量效率在运输应用中是重要的。




权利要求
1.一种包括定向塑性物质和定向颗粒物质的复合物的高模量制品的连续生产方法,所述方法包括步骤a.使接近或在其软化温度的、混有可定向颗粒物质的可定向塑性物质连续地通过横截面积沿塑性物质流动的前进方向递减的聚流料道,从而生产挤聚物;b.当挤聚物保持在或接近其熔融温度时,使挤聚物变形以生产定向、变形的挤聚物;和c.使该变形的挤聚物冷却以保持定向而提供所述的复合物。
2.如权利要求1的方法,其中所述可定向的颗粒物质是一种纤维素物质。
3.如权利要求1的方法,进一步包括润滑所述混合物相邻的所述料道以得到所述混合物通过所述料道的基本上柱塞流。
4.如权利要求1的方法,其中所述混合物进一步包括一种润滑剂。
5.如权利要求1的方法,其中所述混合物进一步包括一种发泡剂以提供包括整体结构泡沫的所述制品。
6.如权利要求5的方法,其中所述发泡剂是水。
7.如权利要求1的方法,其中塑性物质是平均分子量在20,000-500,000道尔顿之间的聚乙烯。
8.如权利要求1的方法,其中聚流料道以有聚流区的模头的形式提供,该料道有使聚流区内弹性熔料的应变率沿流动方向减少的几何形状。
9.如权利要求8的方法,其中模头中的聚流料道有使聚流区内弹性熔料的伸长速率沿流动方向不变的几何形状。
10.如权利要求1的方法,其中使挤聚物在模头中变形,同时在其伸长方向拉伸之。
11.一种高强度和高模量的纤维素-热塑性物质复合物的制备方法,其包括使切碎的纤维素纤维或纤维素颗粒与软化点低于约220℃的热塑性聚合物均匀地混合;通过在接近热塑性物质软化点的温度下熔融相挤聚,使混合物以聚流流动通过模头挤聚,以使纤维素颗粒和热塑性聚合物分子均在挤聚方向纵向定向;和定向后使挤聚物迅速冷却以使挤聚物固化和保存其中所赋予的定向。
12.一种定向塑性物质和定向颗粒物质的整体结构泡沫复合物的生产方法,所述方法包括步骤使适合的可定向颗粒物质与软化点低于约220℃的热塑性物质均匀地混合;通过在接近热塑性物质软化点的温度下熔融相挤聚,使混合物通过聚流模头挤聚,以使整个熔融挤聚物的颗粒物质和热塑性聚合物链均占优势地纵向定向该挤聚是在允许挤聚物的芯中产生泡沫同时在挤聚物表面保持高定向的、本质上实心的外皮的条件下进行的,同时给挤塑物施加张力以使挤聚速率最大和降低模头压力;和使挤聚物在离开聚流模头后迅速冷却以保存被赋予的定向和防止模头膨胀而得到整体结构泡沫复合物产品。
13.一种由权利要求1-12中任一项所述的方法生产的高模量制品。
全文摘要
一种包括定向塑性物质和定向颗粒物质的复合物的高模量制品的连续生产方法,所述方法包括步骤a.使接近或在其软化温度的、混有可定向颗粒物质的可定向塑性物质连续地通过横截面积沿塑性物质流动的前进方向递减的聚流料道,从而生产挤聚物;b.当挤聚物保持在或接近其熔融温度时,使挤聚物变形以生产定向、变形的挤聚物;和c.使该变形的挤聚物冷却以保持定向而提供所述的复合物。该发泡的和未发泡的复合物制品具有与典型的硬木或软木可比的强度、模量和密度值。
文档编号B29K23/00GK1098980SQ93121720
公开日1995年2月22日 申请日期1993年11月13日 优先权日1992年11月13日
发明者雷蒙德·T·伍德哈姆斯 申请人:多伦多大学董事会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1