用于控制容器中的液位的系统和方法

文档序号:4492417阅读:210来源:国知局
专利名称:用于控制容器中的液位的系统和方法
技术领域
本文公开的系统和方法大体涉及控制容器中的液位,且尤其涉及动力装置中的鼓 筒型锅炉(drum type boiler)中的水位的预测控制。
背景技术
鼓筒型锅炉是发电装置中使用最普遍的锅炉。在发电工业中,由于瞬间操作期间 的效率低的鼓筒液位控制响应引起的鼓筒液位脱扣(trip)是发电中断的主要原因,且会 对动力装置可利用性和收益造成巨大损失。 由于两相流的复杂动态特性、波动的存在、未知的热和压力扰动,以及负载需求, 所以鼓筒水位的控制是有挑战性的问题。将水位保持在限度内是关键的,因为超过限度会 造成脱扣或损害装备。水位下降会在鼓筒中引起热疲劳。水位上升会显著地增加水滴进入 过热器/蒸汽轮机且由此损害过热器/蒸汽轮机的可能性。 控制水位的传统方法通常包括给水控制阀的促动,给水控制阀响应于观察到的水 位和蒸汽流率中的变化,将水供应给鼓筒。但是,由于这种系统表现出来的反向响应,用以 控制水位的这种方法对鼓筒型锅炉来说是有挑战性的,特别是在瞬间操作状况期间。
在传统方法中,水位控制成保持在固定的水位设定点。另外,控制器是反应型控制 器,即控制器不会预计所需控制动作。控制器也不会将鼓筒状态/条件(水位、压力、温度 等)的变化和预测的扰动(热负载和压力变化)考虑在内。传统方法不提供装置的自动脱 扣操作,或者不会在需要时为操作者提供进行干预的足够的时间。 需要用于控制容器中的液位的更加有效的技术,例如,鼓筒型锅炉中的液位的预 测控制,特别是在瞬间操作状况期间。

发明内容
根据本发明的示例性实施例,公开了一种用于控制包含两相流体的容器中的液位 的液位控制系统。系统包括构造成测量与容器有关的参数的多个传感器。参数包括表明 容器的状态的容器中的液位、来自容器的蒸汽流率、容器中的压力、容器的温度、以及进入 容器中的给液流率。预测控制器构造成接收来自多个传感器的输出信号,且基于来自多个 传感器的输出信号和容器中的压力、热负载或它们的组合的变化来预测容器中的液体的体 积。控制器构造成基于经过预定时间段的在容器中的液体的预测的体积,进一步产生容器 的液位设定点;以及通过操纵联接到容器上的一个或多个控制元件,基于所产生的液位设 定点控制容器中的液位。 根据本发明的另一个示例性实施例,公开了一种用于控制包含两相流体的容器中 的液位的液位控制系统。系统包括构造成测量与容器有关的参数的多个传感器。参数包括 表明容器的状态的容器中的液位、来自容器的蒸汽流率、容器中的压力、容器的温度、以及 进入容器中的给液流率。预测控制器构造成接收来自多个传感器的输出信号,且基于来自 多个传感器的输出信号,控制容器中的液位。控制器包括体积预测单元,该体积预测单元构造成基于来自多个传感器的输出信号和容器中的压力、热负载或它们的组合的变化,预测 容器中的液体的体积。设定点产生单元构造成基于经过预定时间段的在容器中的液体的预 测体积,产生容器的液位设定点。液位控制单元构造成通过操纵联接到容器上的一个或多 个控制元件,基于所产生的液位设定点控制容器中的液位。 根据本发明的另一个示例性实施例,公开了一种用于控制包含两相流体的锅炉鼓
筒中的水位的液位控制系统。系统包括构造成测量与锅炉鼓筒有关的参数的多个传感器。
参数包括表明锅炉鼓筒的状态的锅炉鼓筒中的水位、来自锅炉鼓筒的蒸汽流率、锅炉鼓筒
中的压力、锅炉鼓筒的温度、以及进入锅炉鼓筒的给水流率。预测控制器构造成接收来自多
个传感器的输出信号,且基于来自多个传感器的输出信号和锅炉鼓筒中的压力、热负载或
它们的组合的变化,预测锅炉鼓筒中的水的体积。控制器构造成基于经过预定时间段的在
容器中的水的预测的体积,产生锅炉鼓筒的水位设定点;以及通过操纵联接到锅炉鼓筒上
的一个或多个控制元件,基于所产生的水位设定点控制锅炉鼓筒中的水位。 根据本发明的又一个示例性实施例,公开了一种用于控制包含两相流体的容器中
的液位的方法。


当参照附图阅读以下详细描述时,本发明的这些和其它优点、方面和优点将变得 更好理解,相同字符在附图中始终代表相同部件,其中 图1是联合循环动力装置的一部分的概略图,该图示出了具有根据本发明的示例 性实施例的预测液位控制系统的锅炉鼓筒; 图2是根据图1方面的预测水位控制系统的概略图;以及 图3是示出了涉及根据本发明的示例性实施例的控制容器中的液位的方法的示 例性步骤的流程图。部件列表10联合循环动力装置12热回收蒸汽发生器14节约器 16蒸发器18过热器20锅炉鼓筒22给水控制阀24排放阀26预测液位控制系统 28鼓筒液位传感器30蒸汽流量传感器32压力传感器34温度传感器36给水流量 传感器38预测控制器40信号处理单元42液位控制单元44输出信号46输出信号 48输出信号50输出信号52输出信号54状态估计器56体积预测单元58设定点 产生单元60输出信号62输出信号64输出信号66压力控制阀68用以测量与容器 有关的参数的步骤69 用于预测压力、热负载的步骤70 用以预测容器的状态的步骤72 用以预测液体的体积的步骤74用以产生设定点的步骤76用以制定控制策略的步骤78 用于控制动作的步骤
具体实施例方式
如下面详细论述,本发明的实施例提供用于控制包含两相流体(例如水的液相和 气相两者)的容器中的液位的液位控制系统。系统包括构造成测量与容器有关的参数的多 个传感器。参数包括容器中的液位、离开容器的蒸汽流率、容器中的压力、容器的温度,以及 进入容器中的给液流率。预测控制器构造成接收来自多个传感器的输出信号,且基于来自 多个传感器的输出信号和容器中的压力、热负载或它们的组合的变化,预测容器中的液体 体积。控制器构造成基于预测的容器中的液体的体积,产生容器的液位设定点;以及通过操
5纵联接到容器上的一个或多个控制元件,基于所产生的液位设定点进一步控制容器中的液 位。 根据本发明的另一个示例性实施例,公开了一种用于控制包含两相流体(即水和 蒸汽)的锅炉鼓筒中的水位的液位控制系统。根据本发明的又一个示例性实施例,公开了 一种用于控制包含两相流体的容器中的液位的方法。这里应当注意的是,示例性控制器是 "预测"控制器,"预测"控制器基于容器的当前状态和预期的扰动以适于安全液位操作的方 式调节液体体积总量。在联合循环发电系统中,用于操作系统的协议是标准的,从而导致可 预测的扰动。预测控制器甚至在扰动不利地影响容器中的液位之前采取纠正措施。虽然下 面描述的实施例是参照控制锅炉鼓筒中的水位的,但是示例性系统和方法同样可应用于包 括包含至少两相流体的容器的其它系统的安全操作,而另一个实例是对超导腔体中的液氦 的液位的控制。 参看图l,示出了示例性联合循环动力装置10。联合循环动力装置IO包括通过热 回收蒸汽发生器(HRSG) 12互连的至少一个燃气轮机发电机和至少一个蒸汽轮机发电机。 来自燃气轮机的热排气输入HRSG 12中,以为蒸汽轮机产生蒸汽。HRSG 12可分成多个部 分,例如节约器14、蒸发器16和过热器18。另外,作为蒸汽产生循环的一部分,锅炉鼓筒20 联接到HRSG 12上。锅炉进给泵构造成通过给水控制阀22将给水供应给锅炉鼓筒20。锅 炉鼓筒20还联接到排放阀24上,排放阀24构造成从锅炉鼓筒20移除多余的水。循环操 作的描述目前对本领域技术人员是已知的,且不需要进行进一步描述来获得对联合循环动 力装置10的理解。 在图1所示的实施例中,提供预测液位控制系统26,以控制锅炉鼓筒20中的水位。 如上所述,由于两相流的复杂动态特性、波动的存在、未知的热和压力扰动以及负载需求, 鼓筒水位的控制是有挑战性的问题。将水位保持在限度内对避免脱扣和对装备的损害来说 是必要的。在配备有鼓筒锅炉的发电系统的情况下,对鼓筒水位的主要扰动是瞬间压力扰 动和热通量扰动。所示液位控制系统26构造成在这种扰动期间有效地控制鼓筒水位。下 面参照后面的附图来更加详细地阐述液位控制系统26的细节。 参看图2,根据图1的方面示出液位控制系统26。如上所述,液位控制系统26构 造成用于控制具有两相流体的锅炉鼓筒(图1所示的20)中的水位。液位控制系统26包 括构造成测量与锅炉鼓筒有关的参数的多个传感器。在所示实施例中,多个传感器包括构 造成检测锅炉鼓筒中的水位的鼓筒液位传感器28、构造成测量离开鼓筒的蒸汽流率的蒸汽 流量传感器30、构造成测量锅炉鼓筒中的压力的压力传感器32、构造成测量鼓筒的温度的 温度传感器34,以及构造成测量进入鼓筒的给水流率的给水流量传感器36。系统26还包 括具有信号处理单元40和液位控制单元42的预测控制器38。控制器38构造成接收分别 来自传感器28、30、32、34和36的输出信号44、46、48、50和52,且基于输出信号44、46、48、 50和52控制锅炉鼓筒中的水位。控制器38和本文所述的单元可表现为一个或多个物理计 算单元。 在所示实施例中,信号处理单元40包括状态估计器54、体积预测单元56和设定点 产生单元58。状态估计器54构造成基于分别来自传感器28、30、32、34和36的输出信号 44、46、48、50和52以及液位控制单元42的输出来估计锅炉鼓筒的"状态"。锅炉鼓筒的状 态可包括参数,该参数包括与鼓筒有关的水位、压力、温度、给水流率、蒸汽流率,或者它们
6的组合。在预定时间窗/时间段内,体积预测单元56构造成基于鼓筒的状态(表明传感器 测量值的输出信号44、46、48、50和52)、液位控制单元42的当前输出、以及当前扰动和/或 预期的扰动(与鼓筒有关的压力、热负载或它们的组合的变化)来预测锅炉鼓筒中的水的 体积。此处应当注意的是,在当前上下文中,水的"体积"也可称为包括锅炉鼓筒中的水泡 的水的"液位"。设定点产生单元58构造成基于锅炉鼓筒中的水的预测体积来产生锅炉鼓 筒的水位设定点。在一个实施例中,可基于系统的计算机模型和预期的扰动,离线地产生水 位设定点。在这种实施例中,对于锅炉鼓筒的各种初始状态和不同的扰动情况,水位设定点 由预测控制器38预先计算。然后在操作期间使用计算出的液位设定点。在操作期间要遵 从的液位设定点的选择是基于传感器测量值、扰动等的。此处应当注意的是,对于各个控制 循环,水的预测体积是不断更新的,且水位设定点是基于水的更新的预测体积更新的,而水 的预测体积基于鼓筒的状态,以及估计或预期的扰动或者两者。 液位控制单元42构造成基于所产生的水位设定点通过操纵联接到锅炉鼓筒上的 一个或多个控制元件来控制锅炉鼓筒中的水位。在所示实施例中,液位控制单元42构造成 输出信号60、62、64,以便通过操纵联接到锅炉鼓筒上的给水控制阀22、排放阀24和压力控 制阀66、可变频率泵(未示出)或者它们的组合来将锅炉鼓筒中的水位控制到水位设定点。 在一个实施例中,液位控制单元42自动操纵联接到锅炉鼓筒上的一个或多个控制元件。在 另一个实施例中,对联接到锅炉鼓筒上的一个或多个元件的操纵是人工的。在又一个实施 例中,对联接到锅炉鼓筒上的一个或多个元件的操纵可包括人工和自动控制步骤两者。
在传统的水位控制方法中,控制器是反应型控制器,即控制器仅在鼓筒受扰动的 时候才作出反应。根据本发明的示例性实施例,控制器38是"预测"控制器,"预测"控制器 基于鼓筒状态和预期的扰动以适于安全水位操作的方式调节"水体积总量"。示例性控制器 38甚至在扰动不利地影响鼓筒水位之前采取纠正措施。如上所述,控制器38基于估计或测 量的鼓筒状态,或者两者(例如当前的水位、鼓筒压力、鼓筒温度、给水流率、蒸汽流率),以 及预测的扰动(例如预期的负载和压力瞬变),计算所需的水体积总量。所需的水体积总量 定义为在对于鼓筒的持续安全操作的预定范围内的最佳值,且可被持续更新。控制器38基 于估计的水体积总量产生合适的动作。与当前鼓筒状态和预测的鼓筒状态以及测量的和/ 或预期的扰动有关的信息的持续监视有利于对鼓筒水体积总量的精确预测,且确保用于适 当的控制动作的增加的时间间隔。这会降低与鼓筒有关的装置脱扣,且会导致锅炉鼓筒的 安全操作状况。 此处应当注意的是,水位设定点不是保持固定的。基于鼓筒的状态和已知扰动的 持续监视,更新所需的水体积总量。控制器38计算适于锅炉鼓筒的具体操作条件和已知扰 动的水体积总量。因此,锅炉鼓筒中的水位被保持在安全限度内。 参看图3,示出了涉及根据本发明的示例性实施例的、控制容器中的液位的方法的 示例性步骤的流程图。方法包括通过多个传感器测量与容器有关的参数,如由步骤68所 示。在所示实施例中,参数包括容器中的液位、容器中的压力、容器的温度、离开容器的蒸汽 流率,以及进入容器的给液流率。 方法还包括预测容器中的压力、热负载或者它们的组合,如步骤69所示。方法进 一步包括基于来自传感器的输出信号、容器中的预测的压力、热负载或者它们的组合,以及 液位控制单元的输出,估计/预测容器的"状态",如步骤70所示。容器的状态可包括参数,该参数包括与鼓筒有关的液位、压力、温度、给液流率、蒸汽流率或者它们的组合。液位控制 单元的输出可包括当前输出和之前的输出。如步骤72所示,在预定时间窗/时间段内,体 积预测单元基于容器的状态、液位控制单元的当前输出,以及当前和/或预期的扰动(与容 器有关的压力、热负载或它们的组合的变化)来预测容器中的液体的体积。方法进一步包 括针对具体操作条件和预测或预期的扰动,基于预测的容器中的液体的体积,产生容器的 液位设定点,如步骤74所示。在一个实施例中,可基于系统的计算机模型和预期的扰动,离 线地产生液位设定点。 方法还包括基于所产生的液位设定点产生控制策略,如步骤76所示。液位控制单 元基于控制策略,通过操纵联接到容器上的一个或多个控制元件来控制容器中的液位,如 步骤78所示。在一个示例性实施例中,液位控制单元产生输出信号,以便通过操纵联接到 锅炉鼓筒上的给水控制阀、排放阀和压力控制阀、可变频率泵或它们的组合来将锅炉鼓筒 中的水位控制到水位设定点。在一个实施例中,液位控制单元自动地控制联接到锅炉鼓筒 上的一个或多个元件。在另一个实施例中,对联接到锅炉鼓筒上的一个或多个元件的操纵 是人工的。在又一个实施例中,对联接到锅炉鼓筒上的一个或多个元件的操纵可包括人工 和自动控制步骤两者。 控制器基于估计水体积总量产生合适的动作。与当前和预测的鼓筒状态,以及测 量的和/或预期的扰动有关的信息的持续监视有利于对鼓筒水体积总量的精确预测,且确 保用于适当的控制动作的增加的时间间隔。基于对鼓筒的状态和已知扰动的持续监视,更 新所需的水体积总量。因此,将锅炉鼓筒中的水位保持在安全限度内。 虽然本文已经示出和描述了本发明的仅仅某些特征,但本领域技术人员将会想到 许多修改和变化。因此,将理解的是,权利要求书意图覆盖落在本发明的真实精神内的所有 这种修改和变化。
权利要求
一种用于控制包含两相流体的容器(20)中的液位的液位控制系统(26),所述系统包括构造成测量与所述容器(20)有关的参数的多个传感器(28,30,32,34,36),其中,所述参数包括表明所述容器(20)的状态的所述容器(20)中的液位、离开所述容器(20)的蒸汽流率、所述容器(20)中的压力、所述容器(20)的温度、以及进入所述容器(20)的给液流率;预测控制器(38),所述预测控制器(38)构造成接收来自所述多个传感器(28,30,32,34,36)的输出信号(44,46,48,50,52),且基于来自所述多个传感器(28,30,32,34,36)的输出信号(44,46,48,50,52)和所述容器(20)中的压力、热负载或它们的组合的变化来预测所述容器(20)中的液体的体积;其中,所述控制器(38)构造成基于经过预定时间段的所述容器(20)中的液体的预测的体积来产生所述容器(20)的液位设定点,且通过操纵联接到所述容器(20)上的一个或多个控制元件,基于所产生的液位设定点控制所述容器(20)中的液位。
2. 根据权利要求l所述的系统(26),其特征在于,所述控制器(38)构造成基于所述液 位设定点预测所述容器(20)中的液体的体积,且通过操纵联接到所述容器(20)上的一个 或多个控制元件来控制所述容器(20)中的液位。
3. 根据权利要求l所述的系统(26),其特征在于,所述容器(20)中的压力、热负载或 它们的组合的变化包括所述容器(20)中的压力、热负载或它们的组合的测得的变化、预期 的变化或者它们的组合。
4. 根据权利要求l所述的系统(26),其特征在于,所述控制器(38)构造成基于所述容 器(20)中的液体的所述预测的体积,离线地产生所述容器(20)的液位设定点。
5. 根据权利要求l所述的系统,其特征在于,操纵联接到所述容器(20)上的一个或多 个控制元件是以人工的方式、自动的方式或者它们的组合的方式执行的。
6. —种用于控制包含两相流体的容器(20)中的液位的液位控制系统(26),所述系统 (26)包括:构造成测量与所述容器(20)有关的参数的多个传感器(28,30,32,34,36),其中,所述参数包括表明所述容器(20)的状态的所述容器(20)中的液位、离开所述容器(20)的蒸汽流率、所述容器(20)中的压力、所述容器(20)的温度、以及进入所述容器(20)的给液流 率;预测控制器(38),所述预测控制器(38)构造成接收来自所述多个传感器(28, 30, 32, 34,36)的输出信号(44,46,48,50,52),且基于来自所述多个传感器(28, 30, 32, 34, 36)的 所述输出信号(44, 46, 48, 50, 52)来控制所述容器(20)中的液位;其中,所述控制器(38) 包括体积预测单元(56),所述体积预测单元(56)构造成基于来自所述多个传感器(28,30, 32, 34, 36)的输出信号(44, 46, 48, 50, 52)和所述容器(20)中的压力、热负载或它们的组合 的变化来预测所述容器(20)中的液体的体积;设定点产生单元(58),所述设定点产生单元(58)构造成基于经过预定时间段在所述 容器(20)中的液体的预测的体积,产生所述容器(20)的液位设定点;以及液位控制单元(42),所述液位控制单元(42)构造成通过操纵联接到所述容器(20)上的一个或多个元件,基于所述产生的液位设定点控制所述容器(20)中的液位。
7. 根据权利要求6所述的系统(26),其特征在于,所述控制器(38)构造成基于所述液 位设定点来预测所述容器(20)中的液体的体积,且通过操纵联接到所述容器(20)上的一 个或多个元件来控制所述容器(20)中的液位。
8. 根据权利要求6所述的系统(26),其特征在于,所述体积预测单元(56)构造成针对 所述系统(26)的各个控制循环,基于来自所述多个传感器(28, 30, 32, 34, 36)的输出信号 (44,46,48, 50, 52)以及所述容器(20)中的压力、热负载或它们的组合的变化来预测所述 容器(20)中的液体的更新的体积。
9. 一种用于控制包含两相流体的锅炉鼓筒(20)中的水位的液位控制系统(26),所述 系统(26)包括:构造成测量与所述锅炉鼓筒(20)有关的参数的传感器(28,30,32,34,36),其中,所述 参数包括表明所述锅炉鼓筒(20)的状态的所述锅炉鼓筒(20)中的水位、离开所述锅炉鼓 筒(20)的蒸汽流率、所述锅炉鼓筒(20)中的压力、所述锅炉鼓筒(20)的温度、以及进入所 述锅炉鼓筒(20)的给水流率;预测控制器(38),所述预测控制器(38)构造成接收来自所述多个传感器(28, 30, 32, 34,36)的输出信号(44,46,48,50,52),且基于来自所述多个传感器(28, 30, 32, 34, 36)的 输出信号(44, 46, 48, 50, 52)以及所述锅炉鼓筒(20)中的压力、热负载或它们的组合的变 化来预测所述锅炉鼓筒(20)中的水的体积;其中,所述控制器(38)构造成基于经过预定时 间段的在所述容器(20)中的水的预测的体积来产生所述锅炉鼓筒(20)的水位设定点,以 及通过操纵联接到所述锅炉鼓筒(20)上的一个或多个控制元件,基于所述产生的水位设 定点控制所述锅炉鼓筒(20)中的水位。
10. —种用于控制包含两相流体的容器(20)中的液位的方法,所述方法包括 通过多个传感器(28, 30, 32, 34, 36)检测与所述容器(20)有关的参数;其中,检测参数包括检测表明所述容器(20)的状态的所述容器(20)中的液位、离开所述容器(20)的蒸汽流率、所述容器(20)中的压力、所述容器(20)的温度、以及进入所述容器(20)的给液流 率;基于来自所述多个传感器(28, 30, 32, 34, 36)的输出信号(44, 46, 48, 50, 52)和所述容 器(20)中的压力、热负载或它们的组合的变化来预测所述容器(20)中的液体的体积;基于经过预定时间段的在所述容器(20)中的液体的预测的体积,产生所述容器(20) 的液位设定点;以及通过操纵联接到所述容器(20)上的一个或多个控制元件,基于所述产生的液位设定 点控制所述容器(20)中的液位。
全文摘要
本发明涉及一种用于控制包含两相流体的容器中的液位的液位控制系统,其包括构造成测量与容器有关的参数的多个传感器。参数包括表明容器的状态的容器中的液位、离开容器的蒸汽流率、容器中的压力、容器的温度、以及进入容器的给液流率。预测控制器构造成接收来自多个传感器的输出信号,且基于来自多个传感器的输出信号以及容器中的压力、热负载或它们的组合的变化来预测经过预定时间段的容器中的液体的体积。控制器构造成基于容器中的液体的预测体积,产生容器的液位设定点;以及基于所产生的液位设定点,通过操纵联接到容器上的一个或多个控制元件来控制容器中的液位。
文档编号F22D5/30GK101776258SQ20091026057
公开日2010年7月14日 申请日期2009年12月8日 优先权日2008年12月8日
发明者C·S·梅亨达尔, E·卡拉卡, K·D·明托, R·库马 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1