智能控制的热交换器的制作方法

文档序号:4535842阅读:113来源:国知局
专利名称:智能控制的热交换器的制作方法
技术领域
本发明属于以传热为主要过程或目的热交换器技术领域。涉及到的是应用智能控制技术与高效的热交换器技术相结合的方法,并构成智能控制的热交换器装置。
背景技术
当前在国内外以传热为主要过程或目的热交换器的技术水平和在使用运行维护的方式分别为1)在热交换器使用运行一段时间后,由于会在冷、热两侧流体流动的壁面上不断的增长污垢,使得垢阻的增加和对流换热系数变小,从而使得传热系数的减小,最终引起传热量的降低。
2)在热交换器使用运行一段时间后,由于会在冷、热两侧流体流动的壁面上结垢而造成压力降的变大,并使得冷、热两侧流体流量的减少,从而引起热交换器不经济的运行。
3)当热交换器在冷、热两侧流体流动的壁面上污垢增加到一定程度时,使得传热系数变小和流体流动压力降变大,在结垢严重影响到换热效果时必须进行定期清洗除垢。
因此,由于存在以上的原因而引起热交换器的换热性能的下降和不经济的运行。同时还必须要对使用运行过程中的热交换器进行计划维修和事故发生后再进行维修,由此而造成了很大的浪费。

发明内容
本发明的目的是提供了一种智能控制技术与高效的热交换器技术相结合的方法,并构成了智能控制的高效热交换器的装置。通过智能控制技术来监视和控制热交换器的使用运行,以此达到高效节能的经济性的目的。改进以前的仅从单一科学技术观点来评价热交换器,并将为热交换器做出全面的热经济性的评价。
本发明的技术方案(1)本发明的技术方法由于热交换器在投入使用运行一段时间后,在它的冷、热两侧流体流动的壁面上会不断地增长污垢,从而引起热交换器换热性能的下降和不经济的运行。
通过分别安装在热交换器的冷、热两侧流体进、出口处的温度、压力、流量传感器1,可以实时采集到运行参数的变化值。把这些参数经过处理后与设定值通过比较器2进行比较,并求出偏差与偏差变化率。再根据计算机自适应智能模糊推理控制单元3,遗传优化算法4,专家知识5和在线学习算法6的处理。
进行的实时运行分析和优化计算及控制的主要过程为①通过威尔逊图解法得到的传热过程的总热阻为各项分热阻的叠加,就能够分别确定两侧对流换热系数α及污垢热阻rS的大小,并找出问题的所在。
②在湍流状态下,管内的对流换热系数与流速的关系为α1∝ω0.8,管外的对流换热系数与流速的关系为α0∝ω0.65。因此流速的增减将与换热系数随之俱增减,而阻力降P的大小与流体流速(ω)有如下的关系P∝ω1.8。
③增加流速可改变流体流动的状态,并提高湍流脉动程度,增强对流换热效果。但是从输送流体的能量消耗观点来看恰恰相反,增加流速必然会受到污垢的阻碍,使得冷、热两侧泵功率的消耗增大。根据测试和计算可求得阻力降P,并可确定实时所需要的泵或风机的功率。
④把对优化计算所涉及到的有关技术参数,进行实时测量和输入到优化计算的程序中。这些有关的主要参数包括决定该热交换器的投资费用和此时所要求运行的热负荷以及在此运行期间输送两侧流体的能耗费用。而且影响能耗费用的关键因素是在冷、热两侧流体的流速ω1和ω2`,更要重点调整的是对流换热系数小的那一项。对给定使用年限N来确定折旧率η%,即可求得流速ω与折旧费ηB的关系。根据不同流速ω和相应阻力降P,并求得对应的功率消耗N。如果每年运行时间为τ(h),此时运行期间的电费为S[RMB¥/kW·h],因此,可得每年能耗运行费用与流速ω的关系。将以上参数进行全局优化计算,并得出相应的经济指标值,即设备的投资费用与运行费用之和的最低点即被调控的最佳合理流速的被控制量。
⑤最后通过神经网络PID控制器7,向安装在冷、热两侧流体的进、出口处的用于输送流体的动力,即变频电机10,11,12,13和自控阀门14发出控制指令。以此来实时调控冷、热两侧流体流速,以此达到该热交换器9的冷、热两侧流体流动的最佳合理的流速或称为最经济流速。以保证热交换器能够实时经济和安全的运行,并且将实际的运行的参数显示在显示器8的上面。
⑥在通过智能控制技术监控热交换器的使用运行过程中,它所进行的优化计算和实时监控下的经济性运行,都是在通过已经设定好的在冷、热两侧壁面结垢的垢层厚度和两侧流体流动的温度、压力、流量及热交换器本体的振动参数限定值之内进行的,当通过智能控制技术实时监测到在冷、热两侧流体温度、压力、流量、振动和垢层厚度超出了这些限定值的允许范围时,智能控制系统可执行自动除垢和报警的功能。因为每单位面积上的结垢沉积量为m,垢阻为rS,垢的密度ρS,垢的导热系数λS及沉积厚度δS之间有以下的关系m=ρSδS=ρSλS,所以必须进行自动清洗除垢,否则将会严重影响换热性能和不经济的运行。
通过以上的智能分析和优化计算及控制,可以达到恢复或接近该热交换器在设计时或初次投入运行时的换热性能及其技术指标,并可实时通过显示和报警告知该热交换器在其运行时的温度、压力、流量和振动的超限定值,并为热交换器的状态维修和预知维修提供技术依据。以保证热交换器能够经济和安全的运行,以此达到高效节能和综合经济性目的。
(2)本发明的装置及构造智能控制的高效热交换器主要有两个部分组成第一部分是智能控制系统的硬件与软件部分,简称为ICU单元。
智能控制单元的硬件与软件部分如附图所示,它主要部件和功能为在热交换器的冷、热两侧流体的进、出口处分别安装了用于测量温度、压力、流量传感器1,它的主要作用是用来实时采集在实际运行时的冷、热两侧流体的进、出口处的参数。经过比较器2把实时采集到的运行参数与给定的值进行比较,并求出偏差与偏差变化率。再根据计算机自适应智能模糊推理控制单元3,经过遗传优化算法4,专家知识5及在线学习算法6进行分析计算和处理,最后通过神经网络PID控制器7,向用于驱动泵用的变频电机和自控阀门发出控制指令。再通过在冷、热两侧流体的进、出口处的10,11,12,13变频电机来改变冷、热两侧流体流速的方法。根据热交换器实际的运行状况进行最终的调控,并且将实际的运行的参数显示在显示器8的上面,并可通过键盘输入一些热交换器的设定值。
第二部分是高效热交换器,简称HHE装置。
高效热交换器部分如附图所示,它的主要部件和功能为9高效热交换器,它是以传热为主要过程或目的的被控制换热设备。在热侧进、出口处安装有10和11的变频电机驱动泵,用于输送和控制热流体。在冷侧进、出口处安装有13和12变频电机驱动泵,用于输送和控制冷流体。在高效热交换器上安装用于控制冷、热两侧流体的自控阀门14和用于热交换器的故障诊断用的测振传感器15。
本发明的效果和益处①实现了智能控制技术对热交换器运行过程的实时监视和控制。当热交换器在使用一段时间后,不会因为在冷、热两侧流体流动的壁面上有不断增加的污垢而引起传热量明显的降低。相反能够在智能技术的监控下使得热交换器在最佳合理的流速或称为最经济的流速下运行,以保证它能够长期经济状态下运行。
②当热交换器垢阻厚度增长到一定程度时,使得冷、热两侧流体流动压力降和传热性能变化到严重影响换热性能时,智能控制系统能够自动进行清洗除垢,以恢复或接近换热器的在设计时或初始投入运行时的性能指标,利用智能控制技术能够使热交换器在经济和安全下使用运行。
③通过显示和报警器及网络为操纵管理人员提供信息,为该设备的状态维修和预知维修提供可靠的技术依据。避免了以前对使用运行过程中的热交换器进行计划维修和事故发生后进行维修,而由此造成了很大的浪费。以保证它能够经济和安全的运行,以此达到高效节能和综合经济性目的。
④通过智能控制技术监控使用运行过程中的热交换器,以改进以前的仅从单一科学技术观点来评价热交换器,将为热交换器做出全面的热经济性评价。并为节省投资、节约能源、提高生产力提供了一条重要的途径。


附图是智能控制的高效热交换器结构示意图。主要有两部分组成第一部分是智能控制系统的硬件与软件部分,简称ICU单元。
附图中1温度、压力、流量传感器,2比较器,3计算机自适应智能模糊推理控制单元,4遗传优化算法,5专家知识,6在线学习算法,7神经网络PID控制器,8显示器和键盘。
第二部分是高效热交换器,简称HHE装置。
附图中9高效热交换器,10热侧进口变频电机泵,11热侧出口变频电机泵,12冷侧出口变频电机泵,13冷侧进口变频电机泵,14自控阀门,15故障诊断用的测振传感器。
具体实施例方式
以一台智能控制的高效热交换器在设计和使用过程中所进行的优化计算和控制问题为例,叙述本发明的具体实施例。
1)主要技术参数为①热交换器的投资费用设为A[RMB¥/台],它的使用年限为n年,即折旧率为l/n×100%=η′%;②输送热交换器两侧流体所需能耗费用设为B[RMB¥/a];③热交换器的状态维修和预知维修费用设为C[RMB¥/年];④非智能控制的热交换器进行计划维修和事后维修费用设为D[RMB¥/年]。
考虑了以上因素热交换器的经济性指标可表示为ψ=A+B/n+C,[RMB¥/a]。现在要求在设计和使用过程中的智能控制的高效热交换器为最经济,然而就必须把对冷、热两侧流体流速ω1和ω2视为决定设备投资费用A与能耗费用B的关键性参数。
2)对优化计算所涉及到的有关技术参数,进行实时测量并同时把有关的技术参数输入到优化计算的程序中。这些有关的主要参数包括决定该热交换器的投资费用A和此时所要求运行的热负荷Q以及在此运行期间输送两侧流体的能耗费用B。而且能够影响能耗费用的关键因素是在冷、热两侧流体的流速ω1和ω2`,更要重点调整的是对流换热系数小的那一项。对给定的使用年限n来确定折旧率η′%,即可求得流速ω与折旧费η′B的关系。根据不同流速ω和相应阻力降P,并求得对应的功率消耗N。如果每年运行时间为τ(h),此时运行期间的电费为S[RMB¥/kW·h],因此,可得每年能耗运行费用B与流速ω的关系。将以上参数进行全局优化计算并得出相应的经济指标值,即设备的投资费用与实时运行费用之和的最低点即最佳合理流速的被控制量。
通过分别安装在热交换器的冷、热两侧流体进、出口处的温度、压力、流量传感器,可以实时采集到运行参数的变化值。把这些参数经过处理后与设定值通过比较器进行比较,并求出偏差与偏差变化率。再根据计算机自适应智能模糊推理控制单元,遗传优化算法,专家知识和在线学习算法的处理,最后通过神经网络PID控制器,向安装在冷、热两侧流体的进、出口处的用于输送流体的动力变频电机和自控阀门发出控制指令。以此来实时调控冷、热两侧流体流速,从而达到该热交换器在冷、热两侧流体流动的最佳合理的流速或称为最经济流速。因此,在热交换器的经济性指标的表示式ψ=A+B/n+C,[RMB¥/a]中的B/n项中,该项目向着合理化和恢复或接近换热器在设计时或初始投入运行时的性能指标的方向逼近。
在通过智能控制技术监控热交换器的使用运行过程中,它所进行的优化计算和实时监控下的经济性运行,都是在通过已经设定好的在冷、热两侧壁面结垢的垢层厚度和两侧流体流动的温度、压力、流量及热交换器本体的振动参数限定值之内进行的。当结垢的垢层厚度超出此限定值时,经过识别和计算是由于结垢造成的原因时,智能控制系统可执行自动除垢的功能,并可实时通过显示和报警告知该热交换器在运行时的温度、压力、流量和振动参数的超限定值,同时通过网络为操纵管理人员提供信息,为该设备的状态维修和预知维修提供可靠的技术依据。以保证热交换器能够长期经济和安全的运行。
3)通过智能控制技术监控使用运行过程中的热交换器,它必将会使得ψ=A+B/n+C向着更加合理化和综合经济性的方向发展。而且该热交换器的状态维修和预知维修费用C要远小于非智能控制的热交换器要进行的计划维修或事后进行维修费用D。因此,把智能控制技术与高效的热交换器技术相结合,完全能够使得热交换器在长期经济和安全状态下运行,以此达到高效节能和综合经济性目的。并为节省投资、节约能源、提高生产力提供了一条重要的途径。
权利要求
1.一种智能控制的热交换器,其特征在于1)通过安装在热交换器的冷、热两侧流体进、出口处的温度、压力、流量传感器实时测量的参数变化和经过计算的结果;2)再把该热交换器的投资费用和此时所要求运行的热负荷以及在此运行期间输送两侧流体所需能耗费用的数据输入到优化程序中;3)经过优化计算后得出此时的在该热交换器冷、热两侧流体经济流速的被控制量;4)通过智能控制技术来实时调控输送两侧流体的动力,即变频电机来达到在冷、热两侧流体流动的流速的被控制量;5)在进行的优化计算和实时监控下的经济性的运行过程中,它们都是在通过已经设定好的在冷、热两侧壁面结垢的厚度和两侧流体的温度、压力、流量及热交换器本体的振动参数限定值之内进行的,当在运行过程中超出这些限定值时,智能控制系统可执行自动除垢和报警的功能。
全文摘要
本项发明属于以传热为主要过程或目的热交换器技术领域。其特征是应用智能控制技术与高效的热交换器技术相结合的方法,并构成了智能控制的高效热交换器装置。解决了在随着热交换器投入使用运行时间的增加时会在冷、热两侧流体流动的壁面上不断的增长污垢,而引起了传热系数的减小和压力降的变大,从而使得传热性能的降低和不经济运行的问题。根据实时测量到的运行参数和输入有关的技术数据,再经过优化计算后得出在该热交换器的冷、热两侧流体流动的最佳合理流速的被控制量。并通过智能控制技术实时调控冷、热两侧流体流速的方法,来获得一个最佳合理的流速或称为最经济流速,以此达到热交换器的高效节能和安全运行目的。
文档编号F28F19/00GK1687686SQ20051004600
公开日2005年10月26日 申请日期2005年3月8日 优先权日2005年3月8日
发明者邹积斌 申请人:大连理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1