除湿空调装置的制作方法

文档序号:16766332发布日期:2019-01-29 18:00阅读:319来源:国知局
除湿空调装置的制作方法

本发明涉及一种适合锂离子电池的制造工厂的除湿空调装置。



背景技术:

锂离子电池的制造工厂中,若不进行除湿则锂离子电池的质量会出现问题。即,锂与水分强烈反应,锂离子电池的制造工厂中需要将露点设定为零下30摄氏度以下(以下,将温度全部设为“摄氏”)。

并且,阐明了锂离子电池的镍系正极材料由于吸附水和二氧化碳而形成从正極材内部溶出的锂离子和锂化合物,而电极变差或电池的循环特性变差。

为了如此在低露点下制作二氧化碳浓度低的环境,有使液氮气化并用氮取代工厂内的空气的方法,但该方法中,存在人有可能无法进入工厂内的问题。

因此,制作低露点环境时可通过利用使用了吸湿剂的吸附式除湿空调装置的方法来实现,且在较多的工厂中使用该方法,但存在无法降低二氧化碳浓度的问题。

因此,作为制作二氧化碳浓度低的低露点环境的技术有专利文献1。专利文献1中所公开的技术为高精度地进行室内的露点控制,且能够降低二氧化碳浓度的技术,但使用氢氧化钠等二氧化碳吸附剂,在经过时间而二氧化碳吸附能力降低时,需要更换新的二氧化碳吸附剂。

并且,作为解决专利文献1的二氧化碳吸附剂更换的问题的技术有专利文献2。专利文献2中所公开的技术为利用湿气及二氧化碳吸附转子控制该转子的转速,由此控制室内的露点和二氧化碳浓度。

专利文献1:日本特开2014-97437号公报

专利文献2:日本特开2016-2519号公报

如上述,专利文献1及专利文献2中所公开的技术为制作降低了室内的二氧化碳浓度的低露点环境的技术,但均为室内的容量为1~3m3左右的相对小的手套箱用装置,且安装有橡胶制等手套以免人的湿气进入室内。从而,如锂离子电池的制造工厂,存在无法适用于如人进入室内进行作业的干燥室的低湿度作业室的问题。



技术实现要素:

本发明为了解决所述课题而成,其目的在于提供一种室内的容量相对大,且能够降低人能够进入室内进行作业的低湿度作业室内的二氧化碳的浓度的除湿空调装置。

本发明的最主要的特征在于具有冷却外部空气的预冷器,使利用预冷器已进行冷却除湿的空气通过二氧化碳吸附转子的吸附区域,并使由此二氧化碳浓度变低了的空气通过吸湿转子的吸附区域,以使将二氧化碳浓度低的干燥空气供给至室内。

本发明的除湿空调装置能够使用二氧化碳吸附转子和吸湿转子,降低干燥室等干燥室内的露点温度,并且还降低二氧化碳浓度。

并且,能够提供一种通过改变二氧化碳吸附转子的种类,具有从干燥室向除湿空调装置回流空气的情况和无法回流的一次性通过的装置。

附图说明

图1为表示本发明的除湿机的实施例1的流程图。

图2为表示本发明的除湿机的实施例2的流程图。

其中,附图标记说明如下:

1-二氧化碳吸附转子,2-吸附区域,3-再生区域,4-吸湿转子,5-吸附区域,6-再生区域,7-净化区域,8-预冷器,9-中冷器,10-风扇,11-后冷却器,12-低湿度作业室,13-再生加热器,14-再生加热器,15-再生加热器,16-风扇,17-压缩机,18-散热用冷凝器,19-膨胀阀,20-调压阀,21-阀门,22-阀门,23-净化区域,24-阀门,25-风扇,26-阀门,27-风扇,28-阀门,29-再生加热器,30-阀门。

具体实施方式

本发明实现了如下目的,即,使通过二氧化碳吸附转子的吸附区域而成为低二氧化碳浓度的空气通过吸湿转子的吸附区域以使供给至室内,降低供给空气的二氧化碳浓度而设为低露点的除湿空调装置。

[实施例1]

以下,沿表示本发明的实施例1的图1进行说明。外部空气oa通过空气过滤器(未图示)去除尘埃。该外部空气进行基于利用预冷器8进行冷却而结露的除湿。从预冷器8排出的空气被阀门22调整风量,并利用风扇10与来自低湿度作业室12的回流空气ra混合而使其通过二氧化碳吸附转子1的吸附区域2。

二氧化碳吸附转子1使用如下材料而制作,以免对二氧化碳的吸附性能带来湿度的影响。对玻璃纤维纸、pet(聚对苯二甲酸乙二酯)或pp(聚丙烯)等树脂制纤维纸、铝等金属箔、树脂片等不燃性片进行波状(波纹)加工并卷绕加工成转子状而成的转子,因此使用无机系粘合剂、或者乙酸乙烯酯系或丙烯酸酯系等有机系粘合剂,对能够在60度以下的低温下再生的担载胺的固体吸收剂进行担载。为蜂窝转子中担载有吸附二氧化碳的二氧化硅、沸石、离子交换树脂等的公知转子。而且,二氧化碳吸附转子1被划分为吸附区域2、再生区域3。二氧化碳吸附转子1被齿轮传动马达(未图示)等旋转驱动。

通过吸附区域2而二氧化碳浓度变低的空气通过风扇10而被输送至中冷器9。已通过中冷器9的空气以输送至露点零下10摄氏度(以下,称为“-10℃d.p.”)以下的低露点区域吸附湿气的同时还吸附二氧化碳的吸湿转子4的吸附区域5和净化区域7的方式被分支为2路。通过吸附区域5而二氧化碳浓度低且成为低露点的空气通过后冷却器11被降低至规定的温度且被供给至低湿度作业室12。

并且,已通过净化区域7的空气通过再生加热器13和再生加热器14被加热至在-10℃d.p.以下的低露点区域吸附湿气的同时还吸附二氧化碳的吸湿转子4的再生中所需要的温度而被输送至再生区域6。此次,由于将蒸汽等工厂排热用于再生加热器13的再生空气的加热的热源而使用了2台再生加热器,但并不限定于此,可以用1台再生加热器进行吸湿转子4的再生。

从再生区域6排出的空气在与用阀门30调整了风量的外部空气oa2混合并通过风扇16之后,用再生加热器15进行加热并输送至二氧化碳吸附转子1的再生区域3。在此,将从再生区域6排出的空气与外部空气oa2进行混合是为了通过增加再生风量而增加在再生区域3解吸的二氧化碳的量,而且提高二氧化碳吸附转子1的再生空气的绝对湿度,由此提高担载有二氧化碳吸附转子1的担载胺的固体吸收剂的二氧化碳解吸能力。并且,与未吸入外部空气oa2的情况相比,从再生区域3带入到吸附区域2的湿气的量增加,因此促进具有担载胺的固体吸收剂的胺基和二氧化碳的键合反应,从而吸附区域2中的二氧化碳吸附能力也得以提高。已通过二氧化碳吸附转子1的再生区域3的空气通过阀门21调整风量而作为排气ea释放于外部。另外,再生加热器15的热源使用预冷器8的热泵排热,因此还实现了系统的节能性提高。

在图1中用虚线示出预冷器8的热泵回路。热泵回路由压缩机17、使用于预冷器8的蒸发器、使用于再生加热器15和散热用冷凝器18的2个冷凝器、膨胀阀19构成。从压缩机17排出的已气化的制冷剂被输送至再生加热器15的冷凝器。另外,用温度调节器(未图示)等测量被输送至再生区域3的空气的温度,分支为输送至再生加热器15的气体和不通过再生加热器15而通过调压阀20分流的气体,并控制气体的流量,由此调整为规定的再生温度。已通过再生加热器15的气体被输送至散热用冷凝器18。然后,已液化的制冷剂被膨胀阀19减压膨胀,并被供给至使用于预冷器8的蒸发器而对处理空气进行冷却,且返回压缩机17而形成循环系统。

在此,当低湿度作业室12的体积为1188m3而室内人数为8名时,将外部空气作为夏季条件,设为温度35度且露点温度30.1度,且设为外部空气处理风量(oa)2,619m3/h、向低湿度作业室12的供给空气风量(sa)7,916m3/h、回流空气风量(ra)6,728m3/h,则向低湿度作业室12的供给空气的温度成为15.5度,露点温度成为-63度,二氧化碳浓度成为50ppm。另外,此时的二氧化碳吸附转子1的再生加热器15的出口温度成为55度,吸湿转子4的再生加热器14的出口温度成为220度。

[实施例2]

接着,沿表示本发明的实施例2的图2进行说明。实施例1中,使用了来自低湿度作业室12的回流空气ra,但在低湿度作业室内产生易燃性强的有机溶剂气体,或者产生对人体有害的气体,或者产生如使二氧化碳吸附转子1或吸湿转子4变差的气体,从而为无法使用来自低湿度作业室12的回流空气ra的情况等的实施例。外部空气oa通过空气过滤器(未图示)去除尘埃。该外部空气进行基于通过预冷器8进行冷却而结露的除湿。从预冷器8排出的空气通过阀门22调整风量,并通过风扇10被分支为2路,从而通过二氧化碳吸附转子1的吸附区域2和净化区域23。

不易受到湿度的影响的二氧化碳吸附转子1为对玻璃纤维纸或陶瓷纤维纸等不燃性片进行波状(波纹)加工而卷绕加工成转子状的转子,因此使用无机系粘合剂等,对由即使存在湿度也能够吸附二氧化碳的碳酸钾、碳酸钠、离子液体或ce的氧化物构成的二氧化碳捕捉材料等进行担载。而且,二氧化碳吸附转子1被划分为吸附区域2、再生区域3、净化区域23。二氧化碳吸附转子1被齿轮传动马达(未图示)等旋转驱动。

通过风扇10并通过吸附区域2而二氧化碳浓度变低的空气被输送至中冷器9。已通过中冷器9的空气以输送至担载有在-10℃d.p.以下的低露点区域吸附湿气的同时还吸附二氧化碳的13x沸石、或5a沸石、或lsx沸石的转子4的吸附区域5和净化区域7的方式被分支为2路。通过吸附区域5而二氧化碳浓度进一步低且成为-50℃d.p.以下的超低露点的空气通过后冷却器11被降低至规定的温度而被供给至低湿度作业室12。

并且,已通过净化区域7的空气通过再生加热器13和再生加热器14被加热至吸湿转子4的再生中所需要的温度而被输送至再生区域6。此次,由于将蒸汽等工厂排热用于再生加热器13的再生空气的加热的热源而使用了2台再生加热器,但并不限定于此,可以用1台再生加热器进行吸湿转子4的再生。

从再生区域6排出的空气通过风扇27,与利用阀门30调整了风量的外部空气oa2及已通过二氧化碳吸附转子1的净化区域23的空气进行混合之后,利用再生加热器15和再生加热器29进行加热而被输送至二氧化碳吸附转子1的再生区域3。已通过再生区域3的空气被阀门21调整风量而作为排气ea释放于外部。另外,与吸湿转子4的再生相同地使用了2台再生加热器,但并不限定于此,可以用1台再生加热器进行二氧化碳吸附转子1的再生。

在此,当低湿度作业室12的体积为440m3而室内人数为0名时,若将外部空气作为夏季条件,设为温度35度且露点温度27度,且设为外部空气处理风量(oa)10,570m3/h、向低湿度作业室12的供给空气风量(sa)6,786m3/h,则供给空气的温度成为25度,露点温度成为-50度,二氧化碳浓度成为30ppm。另外,此时的二氧化碳吸附转子1的再生加热器29的出口温度成为220度,-10℃d.p.以下的低露点区域中吸附湿气的同时还吸附二氧化碳的转子4的再生加热器14的出口温度成为220度。

本发明能够提供一种如上述通过使用二氧化碳吸附转子和在-10℃d.p.以下的低露点区域吸附湿气的同时还吸附二氧化碳的转子,能够将低湿度作业室内的二氧化碳浓度控制为100ppm以下的除湿空调装置。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1