用于富集气体流中的一种成分的方法和设备的制作方法

文档序号:4763724阅读:198来源:国知局
专利名称:用于富集气体流中的一种成分的方法和设备的制作方法
技术领域
本发明涉及一种用于富集气体流中的一种成分的方法和设备。特别地,本发明涉及一种富集空气中的氧的方法。
背景技术
富集空气中的氧在钢铁行业已经变得很必要。
减少或消除高炉中的热焦炭-通常对喷吹煤粉(CPI)有益-需要这种必要的转变。
从EP-A-0 531 182得知用于经济地实现此富集的装置包括低温蒸馏一部分空气流以提供给高炉。从而,获得富氮流和富氧流,然后,将富氧流再混合到空气分离单元下游的空气流中。
由于氧流的压力与供给空气分离单元(ASU)的空气流的压力接近,所以涉及混合塔的方法将证实是尤其合适和经济的。
图1示出EP-A-0 531 182中描述的用于富集空气中的氧的分离单元。它由压力为P的构成高炉炉料的空气系统来供给。空气蒸馏单元用于在略高于压力P的预定压力-例如有利地比压力P高1×104Pa abs至1×105Pa的压力-下生产低纯度例如纯度为80-97%优选为85-95%的氧。
该单元实质上包括热交换管路1A、双蒸馏塔2A以及混合塔6A,该双蒸馏塔2A包括中压塔3A、低压塔4A和主冷凝器-再沸器5A。塔3A和4A通常分别在约5.45×105Pa和约1.5×105Pa的压力下工作。
如文献US-A-4 022 030中详细说明的,混合塔是具有与蒸馏塔相同结构的、但是用于以接近可逆的方式将在塔的底部引入的较易挥发的气体与在塔的顶部引入的较不易挥发的液体相混合的塔。
这种混合产生制冷能量,因此容许减少与蒸馏相关的能耗。在本示例中,如下面将要说明的,这种混合还有利地用于待在压力P下直接生产的不纯的氧。
就图1而论,通过压缩机14A将气流压至混合塔的压力、在热交换管路1A中冷却、在过冷器21A中过冷、并且送到混合塔6A的底部。
从塔3A的底部抽取的“富液”(富氧空气)在经膨胀阀10A膨胀之后被引入塔4A。从塔3A的中间位置11A抽取的“贫液”(不纯的氮)在经膨胀阀12A膨胀之后被引入塔4A的顶部,从而形成该设备的废气,该废气和可能产生于塔3A的顶部的中压纯气态氮在热交换管路1A中升温,然后从该设备排出。这些气体分别由图1中的NI和NG指示。
将根据双塔2A的设置而生产的纯度较高或较低的液态氧从塔4A的底部抽出、通过泵13A提高到比前面提到的压力P略高的压力P1以便将压降(P1-P小于2×105Pa)考虑进去、然后将该液态氧引入塔6A的顶部。
从混合塔6A抽取三种流体流从它的基部抽取与富液类似的液体并将该液体通过设置有膨胀阀15A’的管路15A与该富液混合;从中间位置抽取主要由氧和氮构成的混合流体,并将该混合流体通过设置有膨胀阀17A的管路16A送到低压塔4A的中间位置;以及,从该混合塔的顶部抽取不纯的氧,该氧在热交换管路中升温后基本以压力P经管路18A作为成品气体OI从该设备排出。
附图还示出用于从在该装置内循环的流体中回收可利用的冷量的辅助热交换器19A、20A、21A。
图2示意性地示出现有技术的用于富集高炉用的空气流的集成设备。
在鼓风机S中压缩空气流,以形成压缩的气流1。将该气流分成两个分支2和3。将第一分支2通过冷却器R例如水冷却器冷却、在增压机C中压缩、然后送到空气分离单元(ASU)。该空气分离单元例如通过低温蒸馏来工作,并包括在分离塔上游的净化/纯化装置以及热交换管路。它生产氧含量为80-95mol%的氧流10以及可能为废流的氮流11。至少一部分富氧流10与第二空气分支3混合。将富氧的混合流15在考贝式热风炉W中加热,然后送到高炉HF。
为抵消包括该空气分离单元的回路(从高炉进风口到该分离单元和氧气流的再注入)中的压降,安装一压缩机C。这样就能提高送入空气分离单元的总气流(根据图2)或者(作为图1的变型)用于供应混合塔的气流(即由该分离单元处理的空气流的约30%)的压力。

发明内容
本发明的一个目的是以更经济和更可靠的方式将空气分离单元集成到该炼钢方法中,而该空气分离单元中未使用任何气体流压缩机,除那些为保持该分离单元的制冷而连接到涡轮膨胀机的轴上的压缩机以外。
本发明的一个主题是一种富集加压气体流中的一种成分A的方法,该方法包括步骤i)将该气体流分成至少第一分支和第二分支;ii)将第一分支的至少一部分送入分离单元;iii)通过该分离单元提供至少第一流和第二流,该第一流的成分A的含量大于该第一分支中的成分A的含量;iv)将该第一流的至少一部分与该第二分支的至少一部分混合以形成加压的混合气体,其特征在于,使第二分支在与该第一流的至少一部分混合之前膨胀。
根据其它可选方面-该加压气体流与该第一分支的压力基本相同,特别地,只有压降是引起这两种流体之间的压力差异的原因;-该第一流和膨胀的第二分支的压力基本相同,特别地,只有压降是引起这两种流体之间的压力差异的原因;-该分离单元在能量需求方面是独立的,所需求的能量用于压缩由该单元生产的或者供给该单元的气体流;-该加压气体流是空气,并且任选地,所述成分A是氧;-该加压气体流是供给高炉的空气;
-该分离单元是低温蒸馏分离单元;-该分离单元包括中压塔、与该中压塔热连接的低压塔、以及混合塔;并且-在气流被划分之后,不压缩该第一分支的供给蒸馏塔的部分或者不压缩该第一分支的供给混合塔或者中压塔的部分。
根据一种具体的操作方法i)在第一种操作中,压缩第一分支的至少一部分,第二分支在与第一流的至少一部分混合之前不膨胀;以及ii)在第二种操作中,(例如,当压缩机C不工作时)不压缩第一分支的至少一部分(不压缩第一分支),使第二分支在与第一流的至少一部分混合之前膨胀。
本发明的另一个主题是用于富集加压气体流中的一种成分A的设备,该设备包括i)用于将加压气体流分成至少第一分支和第二分支的装置;ii)分离单元;iii)用于将第一分支的至少一部分送到该分离单元的装置;以及iv)用于使由该分离单元生产的并与第一分支相比富含A的第一流的至少一部分与该第二分支混合以形成与加压气体流相比富含A的气流的装置,其特征在于,该设备包括用于在所述使第二分支与第一流的至少一部分混合的装置上游以及在所述划分气体流的装置的下游使该第二分支膨胀的装置。
根据其它可选方面-该分离单元是包括中压塔、热连接到该中压塔的低压塔以及混合塔的空气分离单元;-该设备不包括任何用于压缩供给中压塔或供给混合塔的空气的装置;以及-该设备包括用于压缩第二分支的装置,和用于运送第二分支以使其在不流经膨胀装置的情况下与第一流的至少一部分混合的装置。
有利地,该分离方法使用在等于或高于中压塔压力的压力下工作的混合塔,而不需要另外的空气压缩装置。
从而,本发明提出将混合塔单元集成到高炉鼓风机中而不需要另外的空气压缩机,因此提高将氧分子以及富氧空气运送到高炉的可靠性,同时使此结构所需的投资最小化。
本发明的另一主题是一种使用一设备来分离空气的方法,该设备包括至少一个中压塔、热连接到中低压塔的低压塔以及在比中压塔的压力高的压力下工作的混合塔,其中i)将经压缩和纯化的空气送到中压塔;ii)将富氮流和富氧流从中压塔送到低压塔;iii)将富氧液体从低压塔送到混合塔的顶部;以及iv)从该混合塔的顶部抽取富氧气体,其特征在于,从中压塔抽取富氮液体流、对该富氮液体流加压并使之至少部分地汽化、在该混合塔的底部供应至少一部分汽化的液体。
优选地,富氮液体通过与所供应的空气的一部分进行热交换而被汽化。因此,可将液化的空气送到中压塔和低压塔中的至少一个。
通过泵和/或静液压对富氮液体加压。
本发明的另一主题是一种空气分离设备,其包括a)中压塔;b)热连接到中低压塔的低压塔;c)在比该中压塔的压力高的压力下工作的混合塔;d)用于将压缩的纯化空气送到该中压塔的装置;e)用于将富氮流和富氧流从该中压塔送到该低压塔的装置;f)用于将富氧液体从该低压塔送到该混合塔的顶部的装置;以及g)用于从该混合塔的顶部抽取富氧气体的装置,其特征在于,该设备包括用于从中压塔抽取富氧液体流的装置、用于对该液体加压的装置、用于至少部分地汽化该液体的装置以及用于在该混合塔的底部供应至少一部分汽化液体的装置。


下面将参照图3、4和5更详细地说明本发明。在附图中图1示出现有技术的用于富集空气中的氧的分离单元;图2示意性地示出现有技术的用于富集高炉用的空气流的集成设备;图3示出根据本发明的用于富集气体流的单元;图4示出尤其适合于实施本发明的分离单元;图5示出根据本发明的用于富集气体流的单元。
具体实施例方式
图3示出用于富集供给到现有技术的高炉中的空气流的集成单元。
在鼓风机S中压缩空气流以形成压缩的气流1。将该气流分成两个分支2和3。将第一分支2通过冷却器R例如水冷却器冷却,并在未在该冷却器和空气分离单元的进口之间压缩的情况下将该第一分支送入空气分离单元(ASU)。该空气分离单元通过例如低温蒸馏来工作,并包括位于分离塔上游的纯化单元和热交换管路。该空气分离单元生产可能为废流的氮流11和含有80-95mol%的氧的氧流10。使第二空气分支3通过膨胀装置V膨胀,该膨胀装置可能为例如阀、孔口、直径减小的管或者涡轮机。使富氧流10的至少一部分在膨胀装置V的下游与膨胀的第二空气分支3混合。将富氧的混合流15在考贝式热风炉(Cowpers)W中加热,并送到高炉HF。
此解决方案无需使用用于在空气分离单元的上游提高压力的空气增压机。因此整个系统的能量消耗减少。
图4采用图1的具有相同标号的元件,所述元件不再详细说明。
来自高炉进风口用的主空气压缩机或者来自涡轮膨胀机的5.45bar a的中压纯化空气7A在进入中压塔2A之前分成至少两个单独的流。
第一流100以气态形式直接供给到中压塔2A的底部。
第二流200在热交换器101A中至少部分地冷凝。将液化部分引入到蒸馏塔中的一个内(中压塔2A或者低压塔4A)。在图4中,将流202送到中压塔的底部,而将流204在热交换器19A中过冷后送到低压塔。
将与空气相比富含氮的液体流300从中压塔3A抽出、通过泵400或者简单的静液力高度来压缩、在热交换器101A中抵抗中压空气的冷凝而汽化以形成气态氮流500、然后将该气态氮流供应到混合塔6A的底部。因而,得益于空气和富氮流之间成分的差别,在比供给到中压塔3A的空气100的压力高的压力下实现了对混合塔6A的供给,这样就不需要额外的压缩机。
还可考虑在将气态氮500引入混合塔之前使该气态氮在主热交换管路中升温。
为生产5.9bar a的气态氮流500,热交换器101A具有0.6℃的AT。
将来自混合塔6A的底部的比图1中的流更富含氮的流15A送到低压塔4A顶部的紧下方。
(本实施例)省略了过冷器21A,并且不再抽取中压气态氮NG。
任选地,将第三空气流送入增压机8A、使该第三空气流在热交换管路1A中冷却、并且在鼓风涡轮机9A中膨胀,但也可以设想其它制冷装置,包括使供给中压塔的空气膨胀的装置。
如果存在该增压机,本发明的优点则是不需要对供给混合塔或中压塔的空气进行空气压缩的步骤。
就图4而论,抽取效率降低,而该系统的分离能量保持优于基础实例。
但是,将图4的空气分离单元集成到在图3所示变型中公开的装置中确实能够很大程度地减少阀中的压降。
图5示出用于富集供给到现有技术的高炉中的空气流的集成单元。
在鼓风机S中压缩空气流以形成压缩的气流1。将该气流分成两个分支2和3。将第一分支2通过冷却器R例如水冷却器冷却、在增压机C中压缩该第一分支、并将该第一分支送入空气分离单元(ASU)。该空气分离单元例如通过低温蒸馏来工作,并包括位于分离塔上游的纯化单元和热交换管路。该空气分离单元生产可能为废流的氮流11和含有80-95mol%的氧的氧流10。使第二空气分支3通过膨胀装置V膨胀,该膨胀装置可为例如阀、孔口、直径减小的管或者涡轮机。使富氧流10的至少一部分在膨胀装置V的下游与膨胀的第二分支3混合。将富氧的混合流15在考贝式热风炉W中加热、并送到高炉HF。该增压机C和阀V具有短路装置。在该单元的第一操作中,压缩第一分支2并且不使第二分支膨胀。在第二操作中,压缩该第一分支的至少一部分,并且使第二分支与在第一流的至少一部分混合之前膨胀。
变型的评估现有技术

带膨胀阀的变型1(图3)

具有膨胀阀(图3)和图4的空气分离方法的变型2


权利要求
1.一种富集加压气体流中的一种成分A的方法,包括以下步骤i)将该气体流(1)分成至少第一分支(2)和第二分支(3);ii)将第一分支(2)的至少一部分送入分离单元(ASU);iii)通过该分离单元提供至少第一流和第二流,该第一流(10)的成分A的含量大于该第一分支中的成分A的含量;iv)将该第一流的至少一部分与该第二分支的至少一部分混合以形成加压的混合气体(15),其特征在于,使第二分支在与第一流的至少一部分混合之前膨胀。
2.如权利要求1所述的方法,其特征在于,该加压气体流(1)和所述第一分支(2)基本处于相同的压力,具体地,只有压降是引起这两种流体之间的压力差异的原因。
3.如权利要求1或2所述的方法,其特征在于,所述第一流和膨胀的第二分支基本处于相同的压力,具体地,只有压降是引起这两种流体之间的压力差异的原因。
4.如前述权利要求中任一项所述的方法,其特征在于,所述分离单元(ASU)在用于压缩由该单元生产或者供给该单元的气体流的能量需求方面是独立的。
5.如前述权利要求中任一项所述的方法,其特征在于,所述加压气体流为空气,任选地,所述成分A是氧。
6.如权利要求5所述的方法,其特征在于,所述加压气体流是供给高炉(HF)的空气。
7.如前述权利要求中任一项所述的方法,其特征在于,所述分离单元是低温蒸馏分离单元(ASU)。
8.如权利要求7所述的方法,其特征在于,所述分离单元(ASU)包括中压塔(2A)、热连接到该中压塔的低压塔(4A)、以及混合塔(6A)。
9.如权利要求8所述的方法,其特征在于,在步骤i)中将气体流划分之后,不压缩第一分支的供给蒸馏塔的部分或者不压缩第一分支的供给混合塔或中压塔的部分。
10.如前述权利要求中的一项所述的方法,其中i)在第一种操作中,压缩第一分支的至少一部分,第二分支在与第一流的至少一部分混合之前不膨胀;以及ii)在第二种操作中,不压缩第一分支的至少一部分—不压缩第一分支,使第二分支在与第一流的至少一部分混合之前膨胀。
11.用于富集加压气体流中的一种成分A的设备,该设备包括i)用于将该加压气体流(1)分成至少第一分支(2)和第二分支(3)的装置;ii)分离单元(ASU);iii)用于将第一分支(2)的至少一部分送到该分离单元的装置;iv)用于将由该分离单元生产的并与第一分支相比富含成分A的第一流(10)的至少一部分与该第二分支混合以形成与该加压气体流相比富含成分A的流(15)的装置,其特征在于,该设备包括用于在所述使第一流的至少一部分与第二分支混合的装置的上游并在所述划分气体流的装置的下游使该第二分支膨胀的装置(V)。
12.如权利要求11所述的设备,其特征在于,该设备的分离单元是包括中压塔(3A)、热连接到该中压塔的低压塔(4A)以及混合塔(6A)的空气分离单元(ASU)。
13.如权利要求12所述的设备,其特征在于,该设备不包括任何用于在所述划分气体流的装置的下游压缩供给该中压塔或者混合塔的空气的装置。
14.如权利要求11或12所述的设备,其特征在于,该设备包括用于压缩第二分支的装置,以及用于运送第二分支以使其在不流经膨胀装置的情况下与第一流的至少一部分混合的装置。
全文摘要
本发明涉及一种富集加压气体流(1)中的一种成分(A)的方法。本发明的方法包括下列步骤将气体流分成至少第一和第二分支(2、3);将第一分支(2)的至少一部分送到分离单元(ASU);通过该分离单元提供至少两个排出流,包括具有比供给该分离单元的分支(2)中的成分A的含量高的第一排出流(10);使该第一排出流(10)的至少一部分与该第二分支(3)的至少一部分混合以形成加压的混合气体(15);使第二分支(3)膨胀,随后与第一排出流(10)的至少一部分混合。
文档编号F25J3/04GK1878999SQ200480033075
公开日2006年12月13日 申请日期2004年11月5日 优先权日2003年11月10日
发明者P·勒博, X·庞顿 申请人:液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1