热水供给装置的制作方法

文档序号:4765831阅读:160来源:国知局
专利名称:热水供给装置的制作方法
技术领域
本发明涉及一种利用了热泵的热水供给装置。
背景技术
一直以来,已知有将利用热泵得到的热水向利用侧供给的热水供给装置。
例如,专利文献1公开的热水供给装置用一个热泵单元生成90℃左右的高温水,将蓄存在热水储箱内的高温水向利用侧供给。该热水供给装置通过与高温水进行热交换而生成中温水,将得到的中温水向地面取暖用放热器等温热利用设备供给。
另外,在专利文献2公开的热水供给装置中,用一个热泵单元分别生成90℃左右的高温水和60℃~80℃左右的中温水。该热水供给装置将得到的高温水向利用侧供给,并将得到的中温水向地面取暖用放热器等温热利用设备供给。
专利文献1日本专利特开2003-056905号公报专利文献2日本专利特开2002-364912号公报发明公开发明所要解决的技术问题在上述专利文献1公开的那种热水供给装置、即从高温水生成中温水的热水供给装置中,例如即使是仅需要供给中温水的运转状况,为了生成中温水也必须生成高温水。因此,这种热水供给装置有可能会导致电力等能量的消耗量过大。
另外,在上述专利文献2公开的那种热水供给装置、即用一个热泵单元分别生成高温水和中温水的热水供给装置中,需要与在单一的制冷剂回路内循环的制冷剂进行热交换来生成温度不同的两种热水。因此,若将制冷剂回路内的制冷循环条件例如设定在适合生成高温水的条件,则得到的中温水的温度受到制约,有可能不能根据利用侧的要求来设定中温水的温度等,从而热水供给装置很难进行适当的运转控制。
鉴于上述问题,本发明的目的在于提供一种电力等能量的消耗量少、且热水供给温度等的设定自由度高从而运转控制容易的热水供给装置。
用于解决技术问题的技术方案第一发明的热水供给装置,可进行将热水向利用侧供给的动作,且可进行将比该热水的温度低的中等温度的载热体作为加热用的流体向温热利用设备45供给的动作。并且,该热水供给装置包括用于在与所述温热利用设备45之间使载热体循环的载热体通路40;使第一制冷剂循环来进行制冷循环、使所述载热体通路40的载热体与第一制冷剂进行热交换从而加热到中等温度的第一制冷剂回路20;以及使第二制冷剂循环来进行制冷循环、用该第二制冷剂对水进行加热从而生成供给用的热水的第二制冷剂回路60,而且,所述第二制冷剂回路60具有使第二制冷剂与所述载热体通路40的载热体进行热交换的蒸发器,构成以该载热体通路40的载热体为热源的热泵。
第二发明的热水供给装置,在上述第一发明的基础上,载热体通路40可进行将通过温热利用设备45后的载热体向第二制冷剂回路60的蒸发器50供给的动作。
第三发明的热水供给装置,在上述第一发明的基础上,载热体通路40可进行将加热到中等温度的载热体向温热利用设备45和第二制冷剂回路60的蒸发器50分配的动作。
第四发明的热水供给装置,在上述第二或第三发明的基础上,载热体通路40可进行将加热到中等温度的载热体仅向第二制冷剂回路60的蒸发器50供给的动作。
第五发明的热水供给装置,在上述第一至第四发明中任一发明的基础上,第一制冷剂回路20具有使第一制冷剂与室内空气进行热交换的空调用热交换器24。
第六发明的热水供给装置,在上述第五发明的基础上,第一制冷剂回路20可切换为空调用热交换器24用作蒸发器的动作、以及该空调用热交换器24用作冷凝器的动作。
第七发明的热水供给装置,在上述第一发明的基础上,第一制冷剂回路20和第二制冷剂回路60中的一方或双方设置有多个,而载热体通路40仅设置有一个,各第一制冷剂回路20的第一制冷剂和各第二制冷剂回路60的第二制冷剂与在一个载热体通路40内循环的载热体进行热交换。
-作用-在上述第一发明中,热水供给装置10不仅可进行将热水向利用侧供给的动作,且可进行将中等温度的载热体向温热利用设备45供给的动作。在第一制冷剂回路20中,通过使第一制冷剂循环来进行制冷循环。此时,第一制冷剂向载热体通路40的载热体放热而冷凝。流经载热体通路40的载热体因第一制冷剂的加热而成为中等温度,然后向温热利用设备45和第二制冷剂回路60的蒸发器50输送。在温热利用设备45中,利用所供给的载热体对室内空气等对象物进行加热。在第二制冷剂回路60中,通过使第二制冷剂循环来进行制冷运转。此时,第二制冷剂从载热体通路40的载热体吸热而蒸发。即,第二制冷剂回路60构成以载热体为热源的热泵。在该热水供给装置10中,利用第二制冷剂回路60中的第二制冷剂来对水进行加热,从而生成供给用的热水。
在上述第二发明中,载热体通路40可进行将通过温热利用设备45后的载热体向第二制冷剂回路60的蒸发器50供给的动作。在该动作中,第二制冷剂回路60的蒸发器50位于载热体通路40中的载热体循环方向的温热利用设备45的下游,在温热利用设备45中放热而温度稍稍降低的载热体在第二制冷剂回路60的蒸发器50中与第二制冷剂进行热交换。另外,在该动作中,第一制冷剂回路20的第一制冷剂与因向第二制冷剂放热而温度更低的载热体进行热交换。
在上述第三发明中,载热体通路40可进行将因与第一制冷剂进行热交换而被加热的载热体向温热利用设备45和第二制冷剂回路60的蒸发器50分配的动作。在该动作中,载热体通路40中的中等温度的载热体不仅向温热利用设备45供给,还向第二制冷剂回路60的蒸发器50供给,在第二制冷剂回路60的蒸发器50中第二制冷剂从中等温度的载热体吸热。
在上述第四发明中,载热体通路40可进行将加热到中等温度的载热体仅向第二制冷剂回路60的蒸发器50供给的动作。该动作在不需通过温热利用设备45对对象物进行加热时进行。
在上述第五发明中,第一制冷剂回路20中设置有空调用热交换器24。在第一制冷剂回路20内循环的第一制冷剂也向空调用热交换器24输送。空调用热交换器24使室内空气与第一制冷剂进行热交换从而对室内空气进行冷却或加热。
在上述第六发明中,在空调用热交换器24用作蒸发器的动作中,在该空调用热交换器24中室内空气被冷却。另一方面,在空调用热交换器24用作冷凝器的动作中,在该空调用热交换器24中室内空气被加热。本发明的热水供给装置10可切换为室内空气在空调用热交换器24中被冷却的制冷运转、以及室内空气在空调用热交换器24中被加热的取暖运转。
在上述第七发明中,第一制冷剂回路20和第二制冷剂回路60中的一方或双方设置有多个,这些第一制冷剂回路20及第二制冷剂回路60与一个载热体通路40连接。例如在设置有多个第一制冷剂回路20的状态下,所有的第一制冷剂回路20的第一制冷剂都可与载热体通路40内的载热体进行热交换。另外,在设置有多个第二制冷剂回路60的状态下,所有的第二制冷剂回路60的第二制冷剂都可与载热体通路40内的载热体进行热交换。
发明效果在本发明中,通过第一制冷剂回路20进行制冷循环来对载热体通路40内的载热体进行加热,通过以该载热体为热源使第二制冷剂回路60进行制冷循环来生成供给用的热水。因此,例如在不需要供给热水而需要向温热利用设备45供给载热体的状态下,可仅使第一制冷剂回路20进行运转,不需使第二制冷剂回路60进行运转来生成供给用的热水。因此,采用本发明,无需像现有技术那样仅为了得到中等温度的载热体而生成高温的热水,可抑制电力等能量的白白消耗。
另外,在本发明的热水供给装置10中,在中等温度的载热体的需求和载热体温度的要求值发生变化时,可通过变更第一制冷剂回路20的运转状态来调节对载热体进行加热的加热量,在热水供给需求和热水供给温度的要求值发生变化时,可通过变更第二制冷剂回路60的运转状态来调节对水进行加热的加热量。因此,采用本发明,通过分别对第一制冷剂回路20和第二制冷剂回路60进行运转控制,可适当地对应中等温度的载热体的需求等和热水供给需求等,可实现容易对应负荷变动进行运转控制的热水供给装置10。
在上述第二发明中,可进行将通过温热利用设备45后的载热水向第二制冷剂回路60的蒸发器50供给的动作,在该动作中,因向第二制冷剂放热而温度更低的载热体与第一制冷剂回路20的第一制冷剂进行热交换。因此,可使与载热体进行热交换的第一制冷剂的焓值降低,由此可增大第一制冷剂从外部气体等热源吸收的热量,可提高第一制冷剂回路20中的制冷循环的COP(性能系数)。
在上述第三发明中,可进行将与第一制冷剂进行热交换而被加热的载热体向温热利用设备45和第二制冷剂回路60的蒸发器50分配的动作,该动作中,第二制冷剂回路60的第二制冷剂从中等温度的载热体中吸热。即,在本发明中,使第二制冷剂回路60中的第二制冷剂尽可能地与温度高的载热体进行热交换。因此,采用本发明,可将第二制冷剂回路60中的制冷循环的低压设定得较高,可通过减少压缩第二制冷剂所需的动力来减少制冷循环的COP。
采用上述第四发明,可截断向不需要运转的温热利用设备45供给的载热体。因此,可避免不需要运转的温热利用设备45中的载热体的放热浪费。
采用上述第五发明及第六发明,可使用热水供给装置10的第一制冷剂回路20进行室内的空气调节。因此,与热水供给装置10和空调装置分开设置的情况相比,可减少设备的设置空间。尤其是若采用第六发明,则可进行制冷运转和取暖运转的切换,可提高热水供给装置10的空气调节功能。
在上述第七发明中,热水供给装置10中设置有多个第一制冷剂回路20和第二制冷剂回路60中的一方或双方,这些第一制冷剂回路20及第二制冷剂回路60与一个载热体通路40连接。因此,例如在设置有多个第一制冷剂回路20时,若仅一个第一制冷剂回路20进行运转时出现对载热体加热的加热量不足的状态,则可使其他第一制冷剂回路20也进行运转。因此,采用本发明,可实现能自如应对负荷变动且使用方便的热水供给装置10。


图1是表示实施例的热水供给装置的概略构成和制冷运转时的动作的配管系统图。
图2是表示实施例的热水供给装置的概略构成和取暖运转时的动作的配管系统图。
图3是表示实施例的变形例1的热水供给装置的概略构成的配管系统图。
图4是表示实施例的变形例2的热水供给装置的概略构成的配管系统图。
(符号说明)10热水供给装置20第一制冷剂回路24空调用热交换器40中温水回路(载热体通路)45地面取暖用放热器(温热利用设备)50第二热交换器(第二制冷剂回路的蒸发器)60第二制冷剂回路具体实施方式
下面参照附图对本发明的实施例进行详细说明。
实施例1如图1所示,本实施例的热水供给装置10由热源单元11、空调用室内单元12、高温水供给单元13、热水储存单元14构成。该热水供给装置10具有第一制冷剂回路20、中温水回路40、第二制冷剂回路60、高温水回路80。
第一制冷剂回路20形成在热源单元11和室内单元12内。在该第一制冷剂回路20中设置有第一压缩机21、四通切换阀22、室外热交换器23、室内热交换器24、第一热交换器30、两个电动膨胀阀25、26。其中,收纳在室内单元12中的只有室内热交换器24,剩下的都收纳在热源单元11中。另外,在第一制冷剂回路20中填充有第一制冷剂。作为该第一制冷剂除R407C和R410A等所谓的氟利昂制冷剂外,还可使用甲烷和丙烷等碳化氢制冷剂(HC制冷剂)。
室外热交换器23和室内热交换器24均由交叉翅片式的翅片管型热交换器构成。室外热交换器23用于使第一制冷剂与室外空气进行热交换。室内热交换器24用于使第一制冷剂与室内空气进行热交换。该室内热交换器24构成空调用热交换器。第一热交换器30由所谓的板式热交换器构成,具有多个互相分隔的第一流路31和第二流路32。
四通切换阀22可在以下两个状态之间自由切换第一孔口与第三孔口互相连通且第二孔口与第四孔口互相连通的第一状态(图1所示的状态)、以及第一孔口与第四孔口互相连通且第二孔口与第三孔口互相连通的第二状态(图2所示的状态)。
在第一制冷剂回路20中,第一压缩机21的排出侧与四通切换阀22的第一孔口连接,吸入侧与四通切换阀22的第二孔口连接。室外热交换器23的一端与四通切换阀的第三孔口连接。室外热交换器23的另一端与第一电动膨胀阀25的一端和第二电动膨胀阀26的一端双方连接。第一电动膨胀阀25的另一端与室内热交换器24的一端连接。室内热交换器24的另一端与四通切换阀22的第四孔口连接。另一方面,第二电动膨胀阀26的另一端与第一热交换器30中的第一流路31的一端连接。第一热交换器30中的第一流路31的另一端连接在第一压缩机21的排出侧与四通切换阀22之间。
中温水回路40形成在热源单元11和高温水供给单元13内。该中温水回路40中设置有第一热交换器30、泵41、三通调节阀42、第二热交换器50。其中,收纳在高温水供给单元13中的只有第二热交换器50,剩下的都收纳在热源单元11中。另外,中温水回路40与作为温热利用设备的地面取暖用放热器45连接。该中温水回路40构成使作为载热体填充的水(载热水)在其与地面取暖用放热器45之间循环的载热体通路。
另外,填充在中温水回路40中的载热体并不限定为水,例如也可将乙二醇水溶液等盐水作为载热体使用。另外,作为温热利用设备连接在中温水回路40中的并不限定为地面取暖用放热器45。例如,也可将利用载热水来加热空气的热水取暖机、浴室干燥机等作为温热利用设备连接在中温水回路40中。
三通调节阀42可进行将流入第一孔口的流体向第二孔口和第三孔口中的任一方输送的动作、以及将流入第一孔口的流体向第二孔口和第三孔口双方输送的动作。另外,在三通调节阀42中,流入第一孔口的流体中的流向第二孔口与流向第三孔口的流量比例可变。第二热交换器50由所谓的板式热交换器构成,具有多个互相分隔的第一流路51和第二流路52。
在中温水回路40中,泵41的排出侧与三通调节阀42的第一孔口连接。第二热交换器50的第一流路51的一端与三通调节阀42的第二孔口连接,另一端与第一热交换器30的第二流路32的一端连接。第一热交换器30的第二流路32的另一端与泵41的吸入侧连接。三通调节阀42的第三孔口与地面取暖用放热器45的一端连接。地面取暖用放热器45的另一端与连接第二热交换器50的第一流路51与第一热交换器30的第二流路32的配管连接。
第二制冷剂回路60收纳在高温水供给单元13中。在该第二制冷剂回路60中设置有第二压缩机61、第三热交换器70、电动膨胀阀62、第二热交换器50。另外,在第二制冷剂回路60中填充有第二制冷剂。作为该第二制冷剂使用二氧化碳(CO2)。
第三热交换器70由所谓的板式热交换器构成,具有多个互相分隔的第一流路71和第二流路72。
在第二制冷剂回路60中,第二压缩机61的排出侧与第三热交换器70的第一流路71的一端连接。第三热交换器70的第一流路71的另一端通过电动膨胀阀62与第二热交换器50的第二流路52的一端连接。第二热交换器50的第二流路52的另一端与第二压缩机61的吸入侧连接。
高温水回路80形成在高温水供给单元13和热水储存单元14内。在该高温水回路80中设置有热水储箱81、泵82、第三热交换器70、混合阀83。
混合阀83构成为使流入第一孔口的流体与流入第二孔口的流体混合后从第三孔口送出。另外,混合阀83可改变流入第一孔口的流体与流入第二孔口的流体的流量比例。热水储箱81形成为纵长的圆筒形密闭容器状。
在高温水回路80中,泵82的排出侧与第三热交换器70的第二流路72的一端连接。第三热交换器70的第二流路72的另一端与混合阀83的第一孔口连接。混合阀83的第二孔口与泵82的吸入侧连接。在混合阀83的第三孔口上连接有向厨房、洗脸台、浴池等利用侧延伸的热水供给管85。热水储箱81的底部与连接混合阀83与泵82的配管连接,顶部与连接第三热交换器70的第二流路72与混合阀83的配管连接。从外部向该高温水回路80内供给的水向泵82的吸入侧附近导入。
-运转动作-下面对上述热水供给装置10的运转动作进行说明。该热水供给装置10可切换为室内单元12对室内进行制冷的制冷运转、以及室内单元12对室内进行取暖的取暖运转。
首先对第一制冷剂回路20的动作进行说明。
如图1所示,在制冷运转中的第一制冷剂回路20中,四通切换阀22设定为第一状态。另外,在第一制冷剂回路20中,适当调节第一电动膨胀阀25的开度,第二电动膨胀阀26的开度设定为基本全开。在该状态下使第一压缩机21运转时,第一制冷剂在第一制冷剂回路20内循环,进行制冷循环。此时,在第一制冷剂回路20中,室外热交换器23和第一热交换器30成为冷凝器,室内热交换器24成为蒸发器。在该制冷运转中,第一制冷剂回路20构成以室内空气为热源的热泵。
具体而言,从第一压缩机21排出的第一制冷剂的一部分通过四通切换阀22流入室外热交换器23,剩下的部分流入第一热交换器30的第一流路31。流入室外热交换器23的第一制冷剂向室外空气放热而冷凝。流入第一热交换器30的第一流路31的第一制冷剂向中温水回路40的载热水放热而冷凝,然后通过第二电动膨胀阀26与在室外热交换器23冷凝的第一制冷剂汇合。接着,第一制冷剂在通过第一电动膨胀阀25时被减压,然后流入室内热交换器24。在室内热交换器24中,流入的第一制冷剂从室内空气中吸热而蒸发,从而室内空气被冷却。在室内热交换器24中蒸发的第一制冷剂通过四通切换阀22后被吸入第一压缩机21中而被压缩。
如图2所示,在取暖运转中的第一制冷剂回路20中,四通切换阀22设定为第二状态。另外,在第一制冷剂回路20中,适当调节第一电动膨胀阀25及第二电动膨胀阀26的开度。在该状态下使第一压缩机21运转时,第一制冷剂在第一制冷剂回路20内循环,进行制冷循环。此时,在第一制冷剂回路20中,室内热交换器24和第一热交换器30成为冷凝器,室外热交换器23成为蒸发器。在该取暖运转中,第一制冷剂回路20构成以室外空气为热源的热泵。
具体而言,从第一压缩机21排出的第一制冷剂的一部分通过四通切换阀22流入室内热交换器24,剩下的部分流入第一热交换器30的第一流路31。在室内热交换器24中,流入的制冷剂向室内空气放热而冷凝,从而室内空气被加热。流入第一热交换器30的第一流路31的第一制冷剂向中温水回路40的载热水放热而冷凝。在室内热交换器24中冷凝的第一制冷剂在通过第一电动膨胀阀25时被减压,在第一热交换器30的第一流路31中冷凝的第一制冷剂在通过第二电动膨胀阀26时被减压,然后分别流入室外热交换器23。在室外热交换器23中,流入的第一制冷剂从室外空气中吸热而蒸发。在室外热交换器23中蒸发的第一制冷剂通过四通切换阀22后被吸入第一压缩机21中而被压缩。
下面对中温水回路40、第二制冷剂回路60及高温水回路80的动作进行说明。这些动作不论是在制冷运转中还是在取暖运转中都是相同的。
当使中温水回路40的泵41运转时,载热水在中温水回路40内循环。流入第一热交换器30的第二流路32的载热水被在第一流路31内流动的第一制冷剂加热。在通过该第二流路32的期间被加热而成为30℃~60℃左右的中等温度的载热水流入三通调节阀42。假设三通调节阀42设定为第一孔口与第二及第三孔口连通的状态,则中等温度的载热水的一部分流入地面取暖用放热器45,剩下的部分流入第二热交换器50的第一流路51。在地面取暖用放热器45中向室内空气等放热的载热水与在第二热交换器50中向第二流路52的第二制冷剂放热后的载热水一起流入第一热交换器30的第二流路32中而被加热。
另外,若操作三通调节阀42,则可改变流向地面取暖用放热器45的载热水的流量与流向第二热交换器50的载热水的流量的比率。另外,若将三通调节阀42设定为第一孔口仅与第二孔口连通的状态,则在第一热交换器30中被加热后的载热水仅向第二热交换器50供给。另外,若将三通调节阀42设定为第一孔口仅与第三孔口连通的状态,则在第一热交换器30中被加热后的载热水仅向地面取暖用放热器45供给。
当使第二制冷剂回路60的第二压缩机61运转时,第二制冷剂在第二制冷剂回路60内循环,进行制冷循环。此时,在第二制冷剂回路60中,第三热交换器70成为冷凝器,第二热交换器50成为蒸发器。另外,在第二制冷剂回路60中,制冷循环的高压设定为比第二制冷剂的临界压力高。即,在第二制冷剂回路60中,进行所谓的超临界循环。该第二制冷剂回路60构成以中温水回路40的载热水为热源的热泵。
具体而言,从第二压缩机61排出的第二制冷剂流入第三热交换器70的第一流路71,向流经第二流路72的供给用水放热而冷凝。在第三热交换器70中冷凝的第二制冷剂在通过电动膨胀阀62时被减压,然后流入第二热交换器50的第二流路52。流入第二热交换器50的第二流路52的第二制冷剂从流经第一流路51的载热体吸热而蒸发。在第二热交换器50中蒸发的制冷剂被吸入第二压缩机61中而被压缩。
当使高温水回路80的泵41运转时,供给用热水在高温水回路80内流通。从泵82排出的供给用热水流入第三热交换器70的第二流路72,并被流经第一流路71的第二制冷剂加热。在第三热交换器70中被加热而成为60℃~90℃左右的高温的供给用水通过热水供给管85向利用侧供给、或者蓄存在热水储箱81内。另外,若操作混合阀83,则流入第一孔口的高温供给用水与流入第二孔口的常温水的流量比例发生变化,其结果是,可调节从第三孔口向热水供给管85流入的热水的温度。
-实施例的效果-在本实施例的热水供给装置10中,通过第一制冷剂回路20进行制冷循环来对中温水回路40内的载热水进行加热,通过以该载热水为热源使第二制冷剂回路60进行制冷循环来将供给用热水加热到60℃~90℃左右的高温。因此,例如在不需要供给热水而需要向地面取暖用放热器45供给载热水的状态下,可仅使第一制冷剂回路20进行制冷循环,不需使第二制冷剂回路60进行制冷循环而将供给用热水加热到高温。因此,采用上述热水供给装置10,无需像现有技术那样仅为了得到中等温度的载热体而生成高温水,可抑制电力的白白消耗。
在本实施例的热水供给装置10中,若改变第一压缩机21的运转负载量,则对第一热交换器30中的载热水进行加热的加热量发生变化。因此,在中等温度的载热水的需求和载热水温度的要求值发生变化时,通过第一压缩机21的运转控制可实现对应这些变化的运转状态。另外,在该热水供给装置10中,若改变第二压缩机61的运转负载量,则对第三热交换器70中的供给用热水进行加热的加热量发生变化。因此,在热水供给需求和热水供给温度的要求值发生变化时,通过第二压缩机61的运转控制可实现对应这些变化的运转状态。
这样,采用本实施例,可分别对第一压缩机21和第二压缩机61进行运转控制,从而可适当地对应中等温度的载热水的需求等和热水供给需求等。因此,采用本实施例,可实现容易对应负荷变动进行运转控制的热水供给装置10。
另外,在本实施例的热水供给装置10中,可进行将与第一制冷剂进行热交换而被加热的载热水向地面取暖用放热器45和第二热交换器50分配的动作,该动作中,第二制冷剂回路60的第二制冷剂从第一热交换器30中流出的中等温度的载热水中吸热。即,在该热水供给装置10中,使第二制冷剂回路60中的第二制冷剂尽可能地与温度高的载热水进行热交换。因此,采用本实施例,可将第二制冷剂回路60中的制冷循环的低压设定得较高,可通过减少第二压缩机61的消耗电力来减少制冷循环的COP。
另外,采用本实施例的热水供给装置10,可截断向不需要运转的地面取暖用放热器45供给的载热水。因此,可避免不需要运转的地面取暖用放热器45中的载热水的放热浪费。
另外,采用本实施例的热水供给装置10,可使用第一制冷剂回路20进行室内的取暖和制冷。因此,与将热水供给装置10和空调机分开设置的情况相比,可减少设备的设置空间。
在此,一般地,若热交换能力相同,则使制冷剂与水进行热交换的热交换器的外形比使制冷剂与空气进行热交换的热交换器的外形小。另一方面,在本实施例的热水供给装置10中,用于对高温水回路80内的供给用热水进行加热的第二制冷剂回路60构成以中温水回路40内的载热水为热源的热泵,第二制冷剂回路60中的成为蒸发器的第二热交换器50由使第二制冷剂与载热水进行热交换的板式热交换器构成。因此,采用本实施例,与用于对中温水回路40内的载热水进行加热的第一制冷剂回路20、以及用于对高温水回路80内的供给用热水进行加热的第二制冷剂回路60双方都是以空气为热源的热泵的情况相比,可大幅减小热水供给装置10的外形。
-实施例的变形例1-在本实施例的热水供给装置10中,也可变更中温水回路40的构成。
具体而言,如图3所示,在中温水回路40中,也可将地面取暖用放热器45的另一端与连接三通调节阀42与第二热交换器50的配管连接。在该变形例的中温水回路40中,在地面取暖用放热器45中放热的载热水通过第二热交换器50的第一流路51后流入第一热交换器30的第二流路32。
这样,在本变形例的热水供给装置10中,可进行将通过地面取暖用放热器45后的载热水向第二热交换器50供给的动作。在该动作中,在地面取暖用放热器45放热后的载热水在第二热交换器50中继续向第二制冷剂放热,然后在第一热交换器30中与第一制冷剂进行热交换。因此,可使第一热交换器30的第一流路31出口处的第一制冷剂的焓值降低,由此可增大第一制冷剂从外部气体等热源吸收的热量。因此,采用本变形例,可提高第一制冷剂回路20中的制冷循环的COP(性能系数)。
-实施例的变形例2-在本实施例的热水供给装置10中,也可变更第一制冷剂回路20的构成。
具体而言,如图4所示,也可从第一制冷剂回路20中省去室内热交换器24和四通切换阀22。在该变形例的第一制冷剂回路20中,第一压缩机21的排出侧与第一热交换器30的第一流路31连接,吸入侧与室外热交换器23连接。
-实施例的变形例3-在本实施例的热水供给装置10中,也可设置多个第一制冷剂回路20。此时,在中温水回路40中串联或并联连接多个第一热交换器30,在各第一热交换器30的第一流路31上各连接一个第一制冷剂回路20。并且,若仅一个第一制冷剂回路20进行运转时出现对载热水加热的加热量不足的状态,则可通过使其他第一制冷剂回路20运转来补充加热量的不足部分。因此,采用本变形例,可实现能自如应对负荷变动且使用方便的热水供给装置10。
同样地,在本实施例的热水供给装置10中,也可设置多个第二制冷剂回路60。此时,在中温水回路40中串联或并联连接多个第二热交换器50,在各第二热交换器50的第二流路52上各连接一个第二制冷剂回路60。
-实施例的变形例4-在本实施例的热水供给装置10中,也可将高温水供给单元13和热水储存单元14形成为一体。即,可以将第二制冷剂回路60和高温水回路80收纳在一个壳体内。这样,若将高温水供给单元13和热水储存单元14形成为一体,则可减少热水供给装置10的设置面积。
工业上的可利用性如上所述,本发明对热水供给装置来说有用。
权利要求
1.一种热水供给装置,可进行将热水向利用侧供给的动作,且可进行将比该热水的温度低的中等温度的载热体作为加热用的流体向温热利用设备(45)供给的动作,其特征在于,包括用于在与所述温热利用设备(45)之间使载热体循环的载热体通路(40);使第一制冷剂循环来进行制冷循环、使所述载热体通路(40)的载热体与第一制冷剂进行热交换从而加热到中等温度的第一制冷剂回路(20);以及使第二制冷剂循环来进行制冷循环、用该第二制冷剂对水进行加热从而生成供给用的热水的第二制冷剂回路(60),所述第二制冷剂回路(60)具有使第二制冷剂与所述载热体通路(40)的载热体进行热交换的蒸发器,构成以该载热体通路(40)的载热体为热源的热泵。
2.如权利要求1所述的热水供给装置,其特征在于,载热体通路(40)可进行将通过温热利用设备(45)后的载热体向第二制冷剂回路(60)的蒸发器(50)供给的动作。
3.如权利要求1所述的热水供给装置,其特征在于,载热体通路(40)可进行将加热到中等温度的载热体向温热利用设备(45)和第二制冷剂回路(60)的蒸发器(50)分配的动作。
4.如权利要求2或3所述的热水供给装置,其特征在于,载热体通路(40)可进行将加热到中等温度的载热体仅向第二制冷剂回路(60)的蒸发器(50)供给的动作。
5.如权利要求1所述的热水供给装置,其特征在于,第一制冷剂回路(20)具有使第一制冷剂与室内空气进行热交换的空调用热交换器(24)。
6.如权利要求5所述的热水供给装置,其特征在于,第一制冷剂回路(20)可切换为空调用热交换器(24)用作蒸发器的动作、以及该空调用热交换器(24)用作冷凝器的动作。
7.如权利要求1所述的热水供给装置,其特征在于,第一制冷剂回路(20)和第二制冷剂回路(60)中的一方或双方设置有多个,而载热体通路(40)仅设置有一个,各第一制冷剂回路(20)的第一制冷剂和各第二制冷剂回路(60)的第二制冷剂与在一个载热体通路(40)内循环的载热体进行热交换。
全文摘要
热水供给装置(10)设置有第一制冷剂回路(20)、中温水回路(40)、第二制冷剂回路(60)及高温水回路(80)。第一制冷剂回路(20)构成以室外空气为热源的热泵,对中温水回路(40)内的载热水进行加热。在中温水回路(40)中,载热水在地面取暖用放热器(45)和第二热交换器(50)与第一热交换器(30)之间进行循环。第二制冷剂回路(60)构成以中温水回路(40)的载热水为热源的热泵,对高温水回路(80)内的供给用水进行加热。
文档编号F25B30/02GK1969154SQ20058001918
公开日2007年5月23日 申请日期2005年7月1日 优先权日2004年7月1日
发明者西村忠史, 山口贵弘 申请人:大金工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1