获得液氧和液氮的空气分离系统的制作方法

文档序号:4799298阅读:950来源:国知局
专利名称:获得液氧和液氮的空气分离系统的制作方法
技术领域
本发明涉及一种回收液化天然气冷量以获得液氧和液氮的空气分离系统,适用于液氧、液氮和氩馏分的大量生产,可以大幅度地降低空气分离过程的能耗。
背景技术
空气的主要成分是氮气和氧气,是工业制备氮气和氧气取之不尽的源泉。氧气主要用于冶金、助燃气、医疗、废水处理和化学工业中的氧化剂等。氮气主要用于合成氨、金属热处理的保护气氛、化工生产中的惰性保护气(开停车时吹扫管线、易氧化物质的氮封、压料)、粮食贮存、水果保鲜和电子工业等。工业上分离空气的传统方法是采用深冷分离法,即将空气冷却到其在一定压力下的液化点,再用低温分馏的方法实现分离。该方法可同时得到氧气和氮气,或者液氧、液氮。但是,空气分离过程通常在低温条件下进行,低温环境(80~100K)都是由电力驱动的机械制冷获得,产生这些冷量需要消耗大量的电力,尤其在生产大量液氧、液氮时,能耗将显著增加。因此,如何廉价地分离空气制取氧气和氮气,这是近十几年来急需研究解决的问题。
液化天然气(Liquefied Natural Gas,LNG)是天然气(主成分为甲烷、乙烷等)经过脱酸,脱水处理,低温液化得到的液体混合物,其最低温度为-162℃。液化天然气一般要通过汽化器汽化后才能使用,并在汽化过程中释放出大量的冷量。而这些冷量都是通过液化过程中的机械能消耗得到的,如果将液化天然气的冷量回收并替代机械制冷,可以减少液氧、液氮生产过程中的电力消耗,不仅能够避免能源的浪费,还能够获得极大的经济效益。在8MPa压力下,液化天然气从-162℃汽化到环境温度27℃时释放的冷量为830kJ/kg。传统的空气分离装置生产1kg液氧的电消耗为1.0~1.2kwh,而将液化天然气冷量回收用于空气分离装置,每1kg液氧的电消耗可以减少到0.5kwh以下,大幅降低了生产成本。因此,回收液化天然气冷量是空气分离领域节能降耗的一个重要发展方向。
中国实用新型专利CN2,499,774Y描述了一种空气分离装置。这种空气分离装置包含多级循环氮气压缩机、液化天然气热交换器、循环氮气热交换器,并组成氮气内循环和氮气外循环的制冷循环系统,利用液化天然气冷却低温压缩的循环氮气和常温压缩的空气。与之类似,美国专利US5,137,558A描述了一种空气分离装置。这种空气分离装置利用液化天然气预冷原料空气和高压循环氮气,高压氮气节流后分离获得液氮,液氮进入分馏塔内作为回流液体,提供空气分离的冷量。美国专利US5,220,798A描述了一种空气分离装置,当液化天然气提供的冷量不足时可以由空气分离装置中过去生产的部分液氮来补充,共同向压缩后的循环氮气提供冷量,可以保证液氧、液氮的正常产量。
上面描述了回收液化天然气冷量的空气分离装置,大幅度降低了获得液氧和液氮的能耗。应当指出,空气分离装置内部是一个氧气富集区,液化天然气富含甲烷等碳氢化合物,属于易燃易炸的物质,回收液化天然气冷量的空气分离装置对安全性要求十分高。液化天然气在属于可燃物质,回收过程中应避免液化天然气直接与空气分离装置中的空气、氧气、液氧进行热交换,这些物质可能与泄漏的液化天然气形成爆炸性气体。因此,回收液化天然气冷量的过程须保证空气分离装置的安全性。

发明内容
本发明的目的在于克服上述存在的不足,而提供一种利用回收液化天然气冷量、以节约能量、提供效率的获得液氧和液氮的空气分离系统。
本发明的目的是通过如下技术方案来完成的,它至少包括一主要由分馏塔组成的空气分离装置及至少包括一主要由液化天然气换热器组成的液化天然气冷量回收装置,所述的空气分离装置中还配置有主换热器、液氧换热器和液氮液空过冷器;氧气从分馏塔的分馏上塔下部引出氧气,并在液氧换热器中冷却液化,作为液氧产品;从分馏塔的分馏上塔顶部引出的氮气经过液氮液空过冷器、主换热器的复热后,至少有部分经过至少一级压缩增压后进入液化天然气换热器进行预冷换热成高压氮气,经节流膨胀后,再经气液分离器,氮气及部分液氮参与氮气循环,其余液氮作为液氮产品。
所述的液化天然气冷量回收装置中还包括有汽液分离器和液氮过冷器,并至少配置有低压氮气压缩机、中压氮气压缩机和高压氮气压缩机三级压缩增压,且液化天然气换热器、汽液分离器和液氮过冷器被置于一独立的冷箱II内;而主换热器、液氧换热器、液氮液空过冷器和由分馏下塔,分馏上塔和主冷凝蒸发器连接组成的分馏塔被置于一独立的冷箱I内。
所述的由分馏上塔顶部引出的氮气,经液氮液空过冷器复热后,进入主换热器的氮气换热通道(M1-M2)复热,部分并被引入冷箱II,与其它氮气一并送入低压氮透平压缩机压缩。
所述的由分馏上塔上部引出污氮气,经液氮液空过冷器复热后,进入主换热器的污氮气换热通道(B1-B2)继续复热,之后引出冷箱I;出冷箱I的污氮气可以被电热器或蒸汽加热后,送到分子筛纯化器中作为再生气体,脱附分子筛吸附的水、二氧化碳,然后排放大气环境。
所述的由分馏上塔的中下部引出含氩量较高的氩馏分,去制氩装置作为获得液氩或其它形式氩产品的原料。
所述的从分馏上塔顶部引出的氮气经液氮液空过冷器,主换热器复热后,与来自汽液分离器并经复热的氮气合并,作为氮气液化的原料氮气,随后进入低压氮透平压缩机中压缩至0.4~0.6MPa,与来自汽液分离器并经液化天然气换热器复热后的循环氮气汇合,进入中压氮透平压缩机中压缩至2.0~4.0MPa,随后进入液化天然气换热器预冷;离开液化天然气换热器的氮气进入高压氮透平压缩机中压缩至5.0~7.0MPa并节流膨胀,产生含有液氮的湿蒸气,去汽液分离器,完成氮气制冷循环;液化天然气在液化天然气换热器中被复热后引出冷箱II用于其它用途;所述的由汽液分离器分离出的氮气返回液化天然气换热器复热,与原料氮气合并去中压氮透平压缩机。由汽液分离器分离出的液氮经液氮过冷器过冷后,一部分节流膨胀,依次返回液氮过冷器、液化天然气换热器复热,与冷箱I引出的氮气汇合去低压氮透平压缩机;一部分引出冷箱II,作为液氮产品送往液氮贮槽;其余氮气节流膨胀后返回冷箱I,依次在液氧换热器、主换热器中复热,去低压氮透平压缩机,完成氮气循环。
所述的中压氮透平压缩机(16)与高压氮透平压缩机(17)为低温透平压缩机,并位于冷箱II(2)的外部;中压氮透平压缩机,高压氮透平压缩机,液化天然气换热器的换热通道(E1-E2)、(F1-F2)、(G1-G2),节流阀构成氮气制冷循环回路。
空气分离出来的氮气作为冷量传递的冷媒,与液化天然气换热后不再进入分馏上塔,或者分馏下塔,保证空气分离装置的安全运行。
所述的液化天然气的压力可以在4.0~9.5MPa范围内,进入液化天然气换热器的换热通道(H1-H2),复热后引出冷箱II。
本发明充分利用了液化天然气高品位的冷能,获得液氧和液氮,空气分离装置的能耗显著降低,生产1kg液氧的电消耗为0.39kwh,而同等规模传统的空气分离装置生产1kg液氧的电消耗为1.0~1.25kwh,是本发明所提出的空气分离装置单位耗电量的2.4~3倍;因此本发明专利如能推广应用,必将获得极大的经济效益著。


附图1是本发明的整个系统连接结构示意图。
具体实施例方式
图1中序号名称是1-冷箱I,2-冷箱II,3-主换热器,4-分馏下塔,5-主冷凝蒸发器,6-分馏上塔,7-液空液氮过冷器,8-液氮节流阀,9-液空节流阀,10-液氧换热器,11-液氮过冷器,12-气液分离器,13-节流阀,14-液化天然气换热器,15-低压氮透平压缩机,16-中压氮透平压缩机,17-高压氮透平压缩机,18-液氧贮槽,19-液氮贮槽相关物流编号101-高压氮透平压缩机压缩,引入液化天然气换热器换热的循环氮气,102-中压氮透平压缩机压缩,引入液化天然气换热器换热的循环氮气,103-出气液分离器的循环氮气,104-出液氮过冷器的液氮产品,105-出液氮过冷器引入冷箱I的液氮,106-出气液分离器,引入液氮过冷器复热的液氮,107-出液氮过冷器的循环氮气,108-出分馏上塔,经主换热器复热后的原料氮气,109-出分馏上塔,经主换热器复热后的污氮气,110-出液氧换热器,经主换热器复热后的循环氮气,111-进天然气换热器的液化天然气,112-出天然气换热器的液化天然气,113-进入主换热器的原料空气,114-从分馏上塔引出的氩馏分,115-从分馏上塔引出的氧馏分。
具体实施方式
下面将结合附图及具体实施例对本发明作详细的介绍主换热器(3)、分馏塔和液氧换热器(10)位于独立的冷箱I(1)内部,及分馏塔由分馏下塔(4),分馏上塔(6)和主冷凝蒸发器(5)连接组成。
去除二氧化碳、水、乙炔和其它碳氢化合物杂质的原料空气(113)被送入冷箱I(1)内的主换热器(3)的换热通道(A1-A2),与其它换热通道的返流气体换热,冷却降温到合适分馏的温度后,送入分馏下塔(4)的底部,与从分馏下塔(4)顶部流下的回流液体在多层塔板上发生传热与传质过程。氧组分较高的富氧液体空气(简称液空)汇集于分馏下塔(4)的底部,氮气汇集于分馏下塔(4)的顶部,并被分馏下塔(4)与分馏上塔(6)之间的主冷凝蒸发器(5)的液氧所冷凝。
从分馏下塔(4)顶部引出的液氮分成两股,一股返回分馏下塔(4)作为回流液体,另一股在液氮液空过冷器(7)中过冷,经液氮节流阀(8)降压至分馏上塔(6)顶部的压力,并被送入分馏上塔(6)顶部,作为分馏上塔(6)的回流液体。
从分馏下塔(4)底部引出富氧液空,在液氮液空过冷器(7)中过冷,经液空节流阀(9)降压至分馏上塔(6)中部的压力,并被送入分馏上塔(6)的中部,也作为分馏上塔的回流液体。
上述两股回流液体成为分馏上塔(6)的回流液体,与从塔内上升气流在多层塔板上发生传热与传质过程,在分馏上塔(6)的底部获得液氧,顶部获得氮气。液氧在主冷凝蒸发器(5)中被分馏下塔(4)顶部的氮气加热成氧气,氧气成为分馏上塔(6)的主要上升气流,部分氧气被引出分馏上塔(6)进行下一步的液化,或者作为产品引出冷箱I(1)。
由分馏上塔顶部(6)引出氮气,经液氮液空过冷器(7)复热后,进入主换热器(3)的氮气换热通道(M1-M2)复热,并被引入冷箱II(2),与其它氮气一并送入低压氮透平压缩机(16)压缩。
由分馏上塔(6)上部引出污氮气,经液氮液空过冷器(7)复热后,进入主换热器(3)的污氮气换热通道(B1-B2)继续复热,之后引出冷箱I(1)。出冷箱I(1)的污氮气可以被电热器或蒸汽加热后,送到分子筛纯化器中作为再生气体,脱附分子筛吸附的水、二氧化碳,然后排放大气环境。
由分馏上塔(6)的中下部引出含氩量较高的氩馏分(114),去制氩装置作为获得液氩或其它形式氩产品的原料。
从分馏上塔(6)顶部引出的氮气(110)经液氮液空过冷器(7),主换热器(3)复热后,与来自汽液分离器(12)并经复热的氮气(107)、氮气(108)合并,作为氮气液化的原料氮气;随后进入低压氮透平压缩机(15)中压缩,与来自汽液分离器(12)的循环氮气(103)汇合,进入中压氮透平压缩机(16)中压缩;随后进入液化天然气换热器(14)被预冷,再次进入高压氮透平压缩机(17)中压缩,并进入液化天然气换热器(14)被预冷离开液化天然气换热器(14)。
离开液化天然气换热器(14)的高压氮气由节流阀(13)节流膨胀,产生含有液氮的湿蒸气,去汽液分离器(12)。
由汽液分离器(12)分离出的氮气(103)返回液化天然气换热器(14)复热,与低压氮透平压缩机(15)压缩后的氮气合并去中压氮透平压缩机。
由汽液分离器(12)分离出的液氮经液氮过冷器(11)过冷后,一部分节流膨胀后依次返回液氮过冷器(11)、液化天然气换热器(14)复热,与冷箱I(1)引出的氮气汇合去低压氮透平压缩机(15),完成氮气循环;一部分引出冷箱II(2),作为液氮产品(104),并送往液氮贮槽(18);其余液氮(105)节流膨胀后返回冷箱I(1),依次在液氧换热器(10)、主换热器(3)中复热后去低压氮透平压缩机(15),完成氮气循环。
氧气在液氧换热器(10)中被冷却液化,引出冷箱I(1),作为液氧产品(103),并送往液氧贮槽(19)。
中压氮透平压缩机(16)与高压氮透平压缩机(17)为低温透平压缩机,并位于冷箱II(2)的外部。
低压氮透平压缩机(16)的工作压力可以在0.3~1.0MPa范围内;中压氮透平压缩机(16)的工作压力可以在1.5~3.5MPa范围内;高压氮透平压缩机(17)的工作压力可以在4.0~8.0MPa范围内。
液化天然气换热器(14)、汽液分离器(12)、液氮过冷器(11)位于独立的冷箱II(2)内部。
低压氮透平压缩机(15),中压氮透平压缩机(16),高压氮透平压缩机(17),节流阀(13),液化天然气换热器(14)的换热通道(D1-D2)、(E1-E2)、(F1-F2)、(G1-G2),以及主换热器(3)的换热通道(C1-C2)、(M1-M2)构成氮气制冷循环回路。
液化天然气(111)的压力可以在4.0~9.5MPa范围内,进入液化天然气换热器(14)的换热通道(I1-I2),复热后以气态形式引出冷箱II(2)用于其它用途。
上述实施例仅是本发明的优选实施方式。对于本利用液化天然气的空气分离装置而言,可以作出各种变型或优化,这些也是本发明的保护范围。
权利要求
1.一种获得液氧和液氮的空气分离系统,它至少包括一主要由分馏塔组成的空气分离装置及至少包括一主要由液化天然气换热器组成的液化天然气冷量回收装置,其特征在于所述的空气分离装置中还配置有主换热器(3)、液氧换热器(10)和液氮液空过冷器(7);氧气从分馏塔的分馏上塔(6)下部引出氧气,并在液氧换热器(10)中冷却液化,作为液氧产品;从分馏塔的分馏上塔(6)顶部引出的氮气经过液氮液空过冷器(7)、主换热器(3)的复热后,至少有部分经过至少一级压缩增压后进入液化天然气换热器进行预冷换热成高压氮气,经节流膨胀后,再经气液分离器(12),氮气及部分液氮参与氮气循环,其余液氮作为液氮产品。
2.根据权利要求1所述的获得液氧和液氮的空气分离系统,其特征在于所述的液化天然气冷量回收装置中还包括有汽液分离器(12)和液氮过冷器(11),并至少配置有低压氮气压缩机(15)、中压氮气压缩机(16)和高压氮气压缩机(17)三级压缩增压,且液化天然气换热器、汽液分离器(12)和液氮过冷器(11)被置于一独立的冷箱II(2)内;而主换热器(3)、液氧换热器(10)、液氮液空过冷器(7)和由分馏下塔(4),分馏上塔(6)和主冷凝蒸发器(5)连接组成的分馏塔被置于一独立的冷箱I(1)内。
3.根据权利要求1或2所述的获得液氧和液氮的空气分离系统,其特征在于所述的由分馏上塔(6)顶部引出的氮气,经液氮液空过冷器(7)复热后,进入主换热器(3)的氮气换热通道(M1-M2)复热,部分并被引入冷箱II(2),与其它氮气一并送入低压氮透平压缩机(15)压缩。
4.根据权利要求3所述的获得液氧和液氮的空气分离系统,其特征在于所述的由分馏上塔(6)上部引出污氮气,经液氮液空过冷器(7)复热后,进入主换热器(3)的污氮气换热通道(B1-B2)继续复热,之后引出冷箱I(1);出冷箱I(1)的污氮气可以被电热器或蒸汽加热后,送到分子筛纯化器中作为再生气体,脱附分子筛吸附的水、二氧化碳,然后排放大气环境。
5.根据权利要求3所述的获得液氧和液氮的空气分离系统,其特征在于所述的由分馏上塔(6)的中下部引出含氩量较高的氩馏分,去制氩装置作为获得液氩或其它形式氩产品的原料。
6.根据权利要求4所述的获得液氧和液氮的空气分离系统,其特征在于所述的从分馏上塔(6)顶部引出的氮气经液氮液空过冷器(7),主换热器(3)复热后,与来自汽液分离器(12)并经复热的氮气合并,作为氮气液化的原料氮气,随后进入低压氮透平压缩机(15)中压缩至0.4~0.6MPa,与来自汽液分离器(12)并经液化天然气换热器复热后的循环氮气汇合,进入中压氮透平压缩机(16)中压缩至2.0~4.0MPa,随后进入液化天然气换热器预冷;离开液化天然气换热器的氮气进入高压氮透平压缩机(17)中压缩至5.0~7.0MPa并节流膨胀,产生含有液氮的湿蒸气,去汽液分离器(12),完成氮气制冷循环;液化天然气在液化天然气换热器中被复热后引出冷箱II(2)用于其它用途。
7.根据权利要求6所述的获得液氧和液氮的空气分离系统,其特征在于所述的由汽液分离器(12)分离出的氮气返回液化天然气换热器复热,与原料氮气合并去中压氮透平压缩机(16);由汽液分离器(12)分离出的液氮经液氮过冷器(11)过冷后,一部分节流膨胀,依次返回液氮过冷器(11)、液化天然气换热器复热,与冷箱I(1)引出的氮气汇合去低压氮透平压缩机(15);一部分引出冷箱II(2),作为液氮产品送往液氮贮槽(18);其余氮气节流膨胀后返回冷箱I(1),依次在液氧换热器(10)、主换热器(3)中复热,去低压氮透平压缩机(15),完成氮气循环。
8.根据权利要求7所述的获得液氧和液氮的空气分离系统,其特征在于所述的中压氮透平压缩机(16)与高压氮透平压缩机(17)为低温透平压缩机,并位于冷箱II(2)的外部;中压氮透平压缩机(16),高压氮透平压缩机(17),液化天然气换热器的换热通道(E1-E2)、(F1-F2)、(G1-G2),节流阀构成氮气制冷循环回路。
9.根据权利要求7所述的获得液氧和液氮的空气分离系统,其特征在于空气分离出来的氮气作为冷量传递的冷媒,与液化天然气换热后不再进入分馏上塔(6),或者分馏下塔(4),保证空气分离装置的安全运行。
10.根据权利要求7或8所述的获得液氧和液氮的空气分离系统,其特征在于所述的液化天然气换热器内流经的液化天然气压力可以在4.0~9.5MPa范围内,进入液化天然气换热器的换热通道(H1-H2),复热后引出冷箱II(2)。
全文摘要
一种获得液氧和液氮的空气分离系统,它至少包括一主要由分馏塔组成的空气分离装置及至少包括一主要由液化天然气换热器组成的液化天然气冷量回收装置,所述的空气分离装置中还配置有主换热器、液氧换热器和液氮液空过冷器;氧气从分馏塔的分馏上塔下部引出氧气,并在液氧换热器中冷却液化,作为液氧产品;从分馏塔的分馏上塔顶部引出的氮气经过液氮液空过冷器、主换热器的复热后,至少有部分经过至少一级压缩增压后进入液化天然气换热器进行预冷换热成高压氮气,经节流膨胀后,再经气液分离器,氮气及部分液氮参与氮气循环,其余液氮作为液氮产品;实际使用后,能耗显著降低,生产1kg液氧的电消耗为0.39kwh,而同等规模传统的空气分离装置生产1kg液氧的电消耗为1.0~1.25kwh,是本发明所提出的空气分离装置单位耗电量的2.4~3倍,便于推广应用。
文档编号F25J3/04GK101033909SQ20071006798
公开日2007年9月12日 申请日期2007年4月11日 优先权日2007年4月11日
发明者卢杰, 毛绍融, 朱朔元, 何晖 申请人:杭州杭氧股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1