用于在超临界压力下液化气体或冷却原料气的方法和设备的制作方法

文档序号:4801276阅读:198来源:国知局
用于在超临界压力下液化气体或冷却原料气的方法和设备的制作方法
【专利摘要】本发明涉及用于在超临界压力下使原料气液化或冷却原料气的方法,其中与循环气体混合的原料气被冷凝或冷却以形成第一压力下的超临界的气体或液体,处于第一压力下的液体在第一换热器(E1)中被冷却,被冷却的液体被从第一换热器中移出并膨胀至比第一压力低的第二压力以形成膨胀流,膨胀流的至少一部分在第二换热器中被冷却,膨胀流被从第二换热器(E2)中移出,所述流被分成包括第一部分和第二部分的至少两部分,膨胀流的第一部分构成液化产品,第二部分和优选地第三部分在第二换热器中汽化,因此形成的至少一种循环气体然后与原料气混合并在与原料气混合之前或之后在压缩机中被压缩。
【专利说明】用于在超临界压力下液化气体或冷却原料气的方法和设备
[0001] 本发明涉及用于在超临界压力下液化原料气或冷却原料气(例如包括至少60mol% 二氧化碳或甚至至少80mol%二氧化碳的富二氧化碳气体)的方法和设备。
[0002] 根据这种方法,使气体(例如C02)在超临界压力下逆着可用的冷源冷凝或冷却。所 述冷源可以是在70巴和100巴之间的压力下的空气流或水流。然后,必需在分隔以形成若 干液流(这些液流随后会在不同的压力级下汽化)之前过冷却已经在换热器中冷凝或被冷 却的气体。通过使至少一股所述液流膨胀来达到这些不同的压力级。液体在换热器中汽化 以供冷同时余下的液体产物被送至储存设施。
[0003] 这种基本模式的缺点是必须在一个级中将液体或气体过冷却到-50°C,这意味着 要在整个换热管路上施加可能大于80巴的高起始压力。这种高压对换热器的限制在于,使 其必须减小通道截面及减少使流体能够输入或输出的集管的数量。
[0004] 本发明的目的在于在利用两股流体且具有用于最大压力的尺寸的简单换热器中 来过冷却该液体或冷却气体。被过冷却的液体然后在足够高的压力下膨胀以便不汽化。下 面的换热器(一般更复杂)因此能以小得多的压力限制确定尺寸。
[0005] 必须确保被过冷却的液体或冷却气体不会在两个换热器之间过度膨胀以避免形 成气相,所述气相会在一循环内流动传播并使得必须使用气体/液体分离罐。
[0006] 优选地,膨胀的液体或膨胀的气体在第一换热器的下游被分成两股流。它们中的 一股流被单独地过冷却以便能够在大约18-26巴的压力(该压力在有4个压缩轮的压力 高达冷凝压力时相当于第三压缩轮的吸入压力)下膨胀而不产生气体(这避免了投入分离 罐)。这两股流实际上在较高压力("HP"和"HHP")下供给两个汽化装置。这使得不必将这 些液体过冷却到大约-50°C (由于热差值这会导致相当大的功率损失)。在这样的情况下, 将不可能在中间位置移除流体,因为那会增加换热器上的集管的数量。
[0007] 本发明目的在于降低液化器的交换管路的成本和复杂性。
[0008] 按照本发明的一个目的,提供一种用于在超临界压力下使原料气液化或冷却原料 气(例如富二氧化碳气体)的方法,其中,与循环气体混合的原料气被冷凝以形成第一压力 下的液体,或者如果第一压力是超临界的,则与循环气体混合的原料气被冷却以形成第一 压力下的冷却气体,该液体或冷却气体在第一换热器中于第一压力下被冷却,被冷却的该 液体或冷却气体被从第一换热器中移出并膨胀到比第一压力低的第二压力以形成膨胀流, 膨胀流的至少一部分在第二换热器中被冷却,膨胀流被从第二换热器中移出,该膨胀流被 分成包括第一部分和第二部分的至少两个部分,膨胀流的第一部分形成液化产品,第二部 分和优选地第三部分在第二换热器中汽化且由此形成的至少一种循环气体因此与原料气 混合并在与原料气混合之后或之前在压缩机中被压缩。
[0009] 根据其它可选特征:
[0010] -膨胀流的一部分在第二换热器中被冷却至该第二换热器的中间温度并且这个部 分的至少一份膨胀、在第二换热器中被加热并可能在已经被压缩之后被送到压缩机或压缩 机中的一个;
[0011]-膨胀流的一部分再次膨胀、在第一换热器中被加热并被送到压缩机;
[0012] -膨胀流的一部分在再次膨胀之前在第二换热器中被冷却至该第二换热器的中间 温度;
[0013] -仅第一压力下的液体和另一流体在第一换热器中交换热量;
[0014] -没有任何被送到第二换热器的液流具有大于60巴的压力;
[0015] -被送到第一换热器的液流具有大于40巴的压力;
[0016]-液体或冷却气体在第一压力下在第一换热器中仅通过与单股其它流体交换热量 被冷却;
[0017] -膨胀液流的至少一部分在第二换热器中通过与多股其它流体交换热量被冷却。
[0018] 按照本发明的另一目的,提供一种用于使原料气液化或冷却原料气的设备,该设 备包括压缩机、第一换热器、与第一换热器不同的第二换热器、连接到压缩机上的冷凝或冷 却装置、用于将与循环气体混合的原料气引至冷凝或冷却装置的管道、用于将通过冷凝或 冷却装置被冷凝的液体或被冷却的气体的至少一部分引至第一换热器以便形成第一压力 下的冷却液体或冷却气体的管道、阀、用于将冷却液体或冷却气体送到阀以使其膨胀到低 于第一压力的第二压力用以形成膨胀流的管道、用于将膨胀流的至少一部分送到第二换热 器的管道、用于将膨胀流从第二换热器中移出的管道、用于输送形成液化产品的膨胀流的 第一部分的管道、用于导引膨胀流的第二部分和优选地第三部分以在第二换热器中汽化以 形成循环气体的管道、至少一个用于将循环气体引至压缩机的管道、用于在压缩机的上游 或下游使循环气体和原料气混合的装置,以及可能地,至少一个在压缩机的上游用于压缩 循环气体的压缩装置。
[0019] 所述设备可以包括:
[0020]-用于将膨胀流的一部分送到膨胀装置的管道、用于将这部分从膨胀装置送到第 一换热器的管道,以及可能地,位于膨胀装置的上游用于运送膨胀流的这部分以在第二换 热器中被冷却的管道;
[0021] -用于将膨胀流的在第二换热器中被冷却到该第二热交换器的中间温度的一部分 送至膨胀装置的管道,以及用于将该部分从膨胀装置送到第二换热器的管道。
[0022] 第一换热器可以仅包括容许仅两股流体之间的热交换的装置,例如仅两组交换通 道。
[0023] 第二换热器可以包括用于容许至少三股流体之间、优选地至少六股流体之间的热 交换的装置。
[0024] 第二换热器可以连接到用于导引膨胀流的第二部分和第三部分以在该第二换热 器中汽化的管道上。
[0025] 第一换热器可以是由钎焊铝制成的板翅式换热器。
[0026] 第一换热器可以是管壳式换热器。在这种情况下,可以移除在第一换热器上游的 相分离器,所述壳执行这个任务。
[0027] 所有涉及纯度的百分比都是摩尔百分比。
[0028] 本发明将参照图示本发明的方法的附图更详细地进行说明。
[0029] 在图1中,原料气1可以是含有98%二氧化碳和2%氮的富二氧化碳气体。气体1 在压缩机C3中被压缩到压力为43巴。然后该气体在压缩机C4中被压缩到80巴。处于80 巴压力下的气体在冷却器E4中被冷却以产生超临界气体5。超临界气体5在第一换热器 El中被冷却且然后在阀9中膨胀到压力为55巴而不产生气体但产生液体11、13。
[0030] 替代地,如果在压缩机C4中被压缩的气体处于亚临界压力下,则它将在冷却器E4 中冷凝并且所形成的液体将在第一换热器E1中被冷却且然后在阀9中膨胀到压力为55巴 而不产生气体。
[0031] 第一换热器E1例如是由钎焊铝制成的板翅式换热器或管壳式换热器。膨胀的液 体被分成两股流11、13。液体13在第二换热器E2中被冷却,直到后者的冷端。液体13被 分成三部分。一部分18形成所述方法的液体产物并被送去在7巴压力下储存。一部分7 在12巴压力下膨胀而不产生气体、在第二换热器E2中被加热并被送到压缩机C2的上游。 余下部分在阀43中膨胀并被送到相分离器35。在相分离器中形成的气体部分37和液体部 分39在第二换热器E2中被分别加热,该第二换热器是由钎焊铝制成的板式换热器。液体 部分汽化并与气体部分混合,所得混合物被送到压缩机C1。在压缩机C1中被压缩的流与流 7混合并在与原料气1和流15混合之前在压缩机C2中被压缩。
[0032] 从阀9出来的另一部分液体11被冷却至换热器E2的中间温度。然后,该部分被 分成两股流。流17在阀21中膨胀到43巴而不产生气体并且在被再循环到压缩机C4的上 游之前在第一换热器E2中被加热到43巴。在分离罐中形成的气体绕过换热器E2并与在 压缩机C4的上游汽化的液体混合。另一流15在阀19中从55巴膨胀至18巴和26巴之间 (例如至24巴)而不产生气体。然后,流15在中间温度下被送到第二换热器E2、被加热并 且被再循环到压缩机C2的下游和压缩机C3的上游。
[0033] 在图2中,与图1不同,流17不是在第二换热器E2中被冷却,而是在没有被冷却 到超过换热器E2的最低温度的情况下在阀21中膨胀到43巴并被送到分离罐22。所形成 的液体28在被再循环到压缩机C4的上游之前在第一换热器E1中被加热并汽化到43巴。 在分离罐中形成的气体26绕过换热器E1并在压缩机C4的上游与汽化的液体28混合。
[0034] 在图3中,在相分离器22中形成的液体被分成两部分。一部分液体13在第二换 热器E2中被完全冷却,另一流28在与第一流混合之前在第一换热器E1中汽化。
[0035] 为了降低换热器E2的成本,该换热器被分成两个换热器E2、E2A。从相分离器35 出来的液流被分成两部分。一部分39在换热器E2A中被加热,另一部分在换热器E2A中被 并行加热。
[0036] 这里我们可以看出,能通过在相分离器PI、P2、P3中在低温下分离来随后处理流 18。在阀49中膨胀的流18被送到相分离器P1。相分离器的液体23在换热器E2A中汽化 然后被送到相分离器P3以产生液态C0 2流25。相分离器P3的顶部气体27与相分离器P1 的顶部气体混合、在换热器E2A中被加热、可能被压缩机C5压缩、在换热器31中被冷却,然 后在被送到相分离器P2之前在换热器E2A中被冷却。相分离器P2的顶部气体33在换热 器E2A中被加热并且底部(槽,cuve)液体36被送到分离器P1。
[0037] 这里能看出,换热器E2中的流体的数目减至最少,因为只有低压流19在该换热器 中汽化。
[0038] 图4示出图3的更复杂型式,其中处于3种不同压力下的三股流5、7、9在第二换 热器E2中汽化。
[0039] 因此在所有附图中,第一换热器E1仅包含两组通道并因此容许两股单个的流体 之间的热交换。在这个方法中仅第二换热器E2具有气体输入箱/进气箱。
[0040] 出于简化的原因并未示出在图1和图2的压缩机Cl、C2、C3和C4之间的冷却器。 [0041] 没有任何被送到第二换热器E2的流处在大于60巴的压力下。
[0042] 被送到第一换热器E1的两股流5、17处在大于40巴的压力下。
[0043] 在附图中,HHP表示"很高压力",HP表示"高压力",MP表示"中压力",BP表示"低 压力",标号按压力从最高到最低的次序引用。
[0044] 压缩机Cl、C2、C3、C4能形成一个或两个压缩机的级。
[0045] 在附图中,流7在第二换热器E2中的汽化不是绝对地必不可少,但其能改善换热 的效率。
[0046] 图1-4示出了在压缩机C3的输入压力下被引入的流1的分离。显然,该流能在其 它压缩机Cl、C2、C4的输入压力下被引入,或者如果压缩机C4处于很高压力下则甚至在压 缩机C4的输出压力下被引入。
[0047] 优选地,循环液体的汽化在与压缩的压缩级C1、C2、C3、C4中相同的压力下执行,4 是最佳数目。
【权利要求】
1. 一种用于在超临界压力下使原料气液化或冷却原料气的方法,所述原料气例如是 富二氧化碳气体,其中,与循环气体混合的所述原料气冷凝以形成第一压力下的液体,或者 如果所述第一压力是超临界的,则与循环气体混合的所述原料气被冷却以形成第一压力下 的冷却气体,所述液体或所述冷却气体在所述第一压力下在第一换热器(E1)中被冷却,该 被冷却的液体或冷却气体被从所述第一换热器中移出并且膨胀到低于所述第一压力的第 二压力以形成膨胀流,该膨胀流的至少一部分在第二换热器中被冷却,所述膨胀流被从所 述第二换热器(E2)中移出,该膨胀流被分成包括第一部分和第二部分的至少两部分,所述 膨胀流的第一部分形成液化产品,所述第二部分和优选地第三部分在所述第二换热器中汽 化,由此形成的至少一种循环气体因此与所述原料气混合并且在与所述原料气混合之后或 之前在压缩机(C2, C3, C4)中被压缩。
2. 根据权利要求1所述的方法,其特征在于,所述膨胀流的一部分在所述第二换热器 (E2)中被冷却至该第二换热器的中间温度,并且这个部分的至少一份膨胀、在所述第二换 热器中被加热并且可能在已经被压缩之后被送至所述压缩机或所述压缩机(C3, C4)之一。
3. 根据权利要求1或2所述的方法,其特征在于,所述膨胀流的一部分再次膨胀、在所 述第一换热器(E1)中被加热并且被送至所述压缩机(C3, C4),其中可能地,所述膨胀流的 一部分在再次膨胀之前在所述第二换热器(E2)中被冷却至该第二换热器的中间温度。
4. 根据上述权利要求中任一项所述的方法,其特征在于,仅所述第一压力下的液体和 另一流体在所述第一换热器(E1)中交换热量。
5. 根据上述权利要求中任一项所述的方法,其特征在于,没有任何被送到所述第二换 热器(E2)的流具有大于60巴的压力。
6. 根据上述权利要求中任一项所述的方法,其特征在于,被送到所述第一换热器(E1) 的流具有大于40巴的压力。
7. 根据上述权利要求中任一项所述的方法,其特征在于,所述液体或所述冷却气体在 所述第一换热器(E1)中仅通过与单一其它流体交换热量而被冷却至所述第一压力。
8. 根据上述权利要求中任一项所述的方法,其特征在于,所述膨胀流的至少一部分在 所述第二换热器(E2)中通过与多股其它流体交换热量而被冷却。
9. 一种用于使原料气液化或冷却超临界的原料气的设备,包括压缩机(C3, C4)、第一 换热器(E1)、不同于所述第一换热器的第二换热器(E2)、连接到所述压缩机上的冷凝或冷 却装置(E4)、用于将与循环气体混合的所述原料气导引到冷凝或冷却装置的管道、用于将 通过冷凝或冷却装置冷凝的液体或被冷却的气体的至少一部分导引到所述第一换热器以 形成第一压力下的冷却液体或冷却气体的管道、阀(9)、用于将所述冷却液体或冷却气体 送到所述阀以使该冷却液体或冷却气体膨胀到低于所述第一压力的第二压力以形成膨胀 流的管道、用于将所述膨胀流的至少一部分送到所述第二换热器的管道、用于将所述膨胀 流从所述第二换热器中移出的管道、用于输送所述膨胀流的形成液化产品的第一部分的管 道、用于输送所述膨胀流的第二部分和优选地第三部分以在所述第二换热器中汽化用以形 成循环气体的管道、至少一个用于将所述循环气体引至所述压缩机的管道、用于在所述压 缩机的上游或下游将所述循环气体和所述原料气混合的装置,以及可能地,至少一个在所 述压缩机的上游用于压缩所述循环气体的压缩装置(Cl,C2)。
10. 根据权利要求9所述的设备,其特征在于,包括用于将所述膨胀流的一部分送到膨 胀装置(21)的管道、用于将该部分从所述膨胀装置送到所述第一换热器(El)的管道,以及 可能地,位于所述膨胀装置的上游用于运送所述膨胀流的该部分以使该部分在所述第二换 热器(E2)中冷却的管道。
11. 根据权利要求9或10所述的设备,其特征在于,包括用于将膨胀流的在所述第二换 热器(E2)中被冷却到该第二换热器的中间温度的一部分送到膨胀装置(19)的管道,以及 用于将该部分从所述膨胀装置送到所述第二换热器的管道。
12. 根据权利要求9-11中任一项所述的设备,其特征在于,所述第一换热器(E1)仅包 括容许仅两股流体之间的热交换的装置,例如仅两组交换通道。
13. 根据权利要求9-12中任一项所述的设备,其特征在于,所述第二换热器(E2)包括 容许至少三股流体之间、优选地至少六股流体之间的热交换的装置。
14. 根据权利要求13所述的设备,其特征在于,所述第二换热器(E2)连接到用于引导 所述膨胀流的第二部分和第三部分以在该第二换热器中汽化的管道。
【文档编号】F25J1/00GK104067078SQ201280018398
【公开日】2014年9月24日 申请日期:2012年4月12日 优先权日:2011年4月14日
【发明者】A·达德, X·特拉维萨 申请人:乔治洛德方法研究和开发液化空气有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1