一种声学共振型热声发动机驱动的气体多级液化装置的制造方法

文档序号:9347718阅读:458来源:国知局
一种声学共振型热声发动机驱动的气体多级液化装置的制造方法
【技术领域】
[0001]本发明属于气体液化领域,特别涉及一种声学共振型热声发动机驱动的气体多级液化装置。
【背景技术】
[0002]液化指物质由气态转变为液态的过程。由于通常气体液化后体积会变成原来的几千分之一,便于贮藏和运输,所以现实中通常对一些气体进行液化处理。实现液化有两种手段,一是降低温度,二是压缩体积。任何气体在温度降到足够低时都可以液化。
[0003]热声发动机是一种利用管道和换热器在其内部获得合适的声场,并通过工作介质和回热器固体填料之间的相互作用将外部热能转化为声能的装置,具有无机械运动部件、可靠性高、寿命长和潜在热效率高等优点,受到人们的广泛关注。根据热声转换的声场特性,热声发动机分为行波热声发动机和驻波热声发动机。行波热声发动机基于可逆的热声斯特林循环,相较于基于不可逆循环的驻波热声发动机而言潜在热效率高,应用前景好。近几年,环路声学共振型热声发动机因具有结构紧凑、功率密度高、潜在热效率高等优点,弓丨起了广泛关注,进一步推动了行波热声发动机的发展。
[0004]图1为罗二仓等人提出的声学共振型热声制冷系统。该系统主要由多级热声发动机单元I和脉管制冷机单元2组成。每一级热声发动机单元通过谐振管12首尾相连构成环路结构;其结构紧凑,能实现谐振管中声功回收,潜在热效率高,并且可根据冷量的需要串入多个数量的热声发动机单元及脉管制冷机单元;由于该系统可提供较高的冷量,可被应用在液化气体流程的最后部分,即吸收液化温度下气体的潜热,使气体由气态变为液态;但是,气体温度由常温降到液化温度的过程仍需要依靠其他装置,该系统无法实现气体由常温气态到液态的整个液化过程。图1中各部件名称如下:热声发动机单元1、脉管制冷机单元2、旁路3、直流抑制器4、发动机主冷却器5、发动机回热器6、加热器7、高温端层流化元件8、热缓冲管9、发动机室温端层流化元件10、发动机次冷却器11、谐振管12、制冷机主冷却器13、制冷机回热器14、冷头15、低温端层流化元件16、脉冲管17、制冷机次冷却器18、制冷机调相结构19、制冷机室温端层流化元件20。

【发明内容】

[0005]本发明的目的在于为了克服上述系统无法实现气体液化的整体流程问题,而提供一种声学共振型热声发动机驱动的气体多级液化装置,该系统结构简单、紧凑、无运动部件,安全可靠,热声发动机单元工作在行波相位,能量密度高,可梯级降低气体温度,传热损失小;在气体液化方面具有广阔的发展和应用前景。
[0006]本发明的技术方案如下:
[0007]本发明提供的声学共振型热声发动机驱动的气体多级液化装置,其由通过谐振管首尾相连构成环路结构的N级热声发动机单元、分别连接于N级热声发动机单元的每一级热声发动机单元的发动机次冷却器出口与谐振管连接处的N级旁路和连接于每一级热声发动机单元的脉管制冷机单元组成;其中,与第N级热声发动机单元相连通的第N级旁路上连接一个脉冲管制冷机单元,其余各级旁路上分别连接至少三个脉管制冷机单元,N = 3?6正整数;
[0008]每一级热声发动机单元的高温端层流化元件安装在该级热声发动机单元的热缓冲管高温侧,每一级热声发动机单元的发动机室温端层流化元件安装在该级热声发动机单元的热缓冲管室温侧;每一级脉管制冷机单元的低温端层流化元件安装在该级脉管制冷机单元的脉冲管低温侧,每一级脉管制冷机单元的制冷机室温端层流化元件安装在该级脉管制冷机单元的脉冲管室温侧;
[0009]每一级热声发动机单元的加热器与热源相连以吸收热源热量形成相同温度的高温端;每一级热声发动机单元的发动机主冷却器和发动机次冷却器通过水冷器冷却以维持在室温范围;由此,在每一级热声发动机单元的发动机回热器上形成温度梯度;在该温度梯度下,每一级热声发动机单元的发动机回热器内部工作气体与其内的固体填料间产生热声效应,将输入至该级热声发动机单元加热器的热量转化成声功;声功沿着温度梯度的正方向传播并放大,一部分声功传递到与该级热声发动机单元相连的旁路中,另一部分声功通过谐振管传递到下一级热声发动机单元,在该下级热声发动机单元中重复以上工作过程;传递到每级旁路中的声功在与该级旁路相连的脉管制冷机单元的制冷机回热器中发生热声转换,将与该级脉管制冷机单元的冷头的热量栗送至该级脉管制冷机单元的制冷机主水冷器输出,热量由该级脉管制冷机单元的制冷机冷却器中的冷却水带走,使该级脉管制冷机单元冷头保持低温;
[0010]随着旁路级数的增加,从与第I级旁路连接的脉管制冷机单元至与第N-1级旁路连接的脉管制冷机单元的冷头的温度依次降低至气体液化温度,与第N级旁路相连的脉管制冷机单元的冷头维持在气体液化温度;待气化气体按照脉管制冷机单元的冷头温度从高到低的顺序依次通过各级脉管制冷机的冷头,待气化气体显热被吸收,待气化气体温度降至液化温度,最后,待气化气体通过与第N级旁路相连的脉管制冷机单元的冷头,释放潜热后,待气化气体由气态转变为液态;
[0011]所述声学共振型热声发动机驱动的气体多级液化装置使用的工质为氦气、氢气、氮气或其组合。
[0012]每一级热声发动机单元由依次相连的直流抑制器、发动机主冷却器、发动机回热器、加热器、高温端层流化元件、热缓冲管、发动机室温端层流化元件和发动机次冷却器组成;所述脉管制冷机单元由依次相连的直制冷机主冷却器、制冷机回热器、冷头、低温端层流化元件、脉冲管、制冷机室温端层流化元件、制冷机次冷却器和调相结构组成。
[0013]所述每一级热声发动机单元的直流抑制器为弹性隔膜元件或非对称水力元件。待液化气体为天然气、氮气或氢气。
[0014]与第I级至第N-1级旁路相接的脉管制冷机单元的数量相同或不相同。
[0015]与第I级至第N-1级旁路相连的脉管制冷机单元的尺寸相同、或者根据待液化气体通过的先后顺序依次增大;与第N级旁路相连的脉管制冷机单元的尺寸最大;脉管制冷机单元的尺寸是指脉管制冷机单元长度和截面面积。
[0016]所述谐振管尺寸相等或者不相等,谐振管尺寸指谐振管长度和截面面积。所述每一级热声发动机单元长度相等,横截面积相等或者不相等。
[0017]本发明的声学共振型热声发动机驱动的气体多级液化装置,其优点在于:采用多级脉管制冷机作为不同温度的冷源,梯级降低待气化气体的温度,可减小传热损失;环路中各级热声发动机单元均处于行波相位,结构紧凑,能量密度高;本发明可有效地实现待气化气体多级液化的整体流程,在液化气体领域具有好的应用前景。
【附图说明】
[0018]图1是现有技术中罗二仓等人提出的声学共振型行波热声制冷系统结构示意图;
[0019]图2是本发明的声学共振型热声发动机驱动的气体多级液化装置(实施例1)结构示意图;
[0020]图3是本发明的声学共振型热声发动机驱动的气体多级液化装置(实施例2)结构示意图。
【具体实施方式】
[0021]为使本发明的目的、技术方案和优点更加清楚,下面将结合附图及实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护范围。
[0022]本发明梯级降低气体温度,可更好地降低传热损失;系统对谐振管消耗的声功进行了回收,具有较高的潜在热效率;系统无运动部件,可靠性高,结构紧凑,能量密度高;本装置能够高效实现气体多级液化的整体流程。
[0023]实施例1
[0024]图2是本发明的声学共振型热声发动机驱动的气体多级液化装置(实施例1)结构示意图。如图2所示,本实施例1的声学共振型热声发动机驱动的气体多级液化装置有3级(#1热声发动机单元、#2热声发动机单元和#3热声发动机单元)长度相等的热声发动机单元I和3级旁路3 ;各级热声发动机单元通过谐振管12首尾相连而成构成环路结构;每一旁路3中均连接脉管制冷机单元2,其中第I级和第2级旁路分别连接(并联)三个脉管制冷机单元2,第3级旁路连接一个脉管制冷机单元2,且各制冷机单元的尺寸(长度和横截面积)由第I级至第3级依次变大;每一级旁路均处于该级热声发动机单元的发动机次冷却器11出口与谐振管(12)连接处;
[0025]每一级热声发动机单元I均由依次相连的直流抑制器4、发动机主冷却器5、发动机回热器6、加热器7、高温端层流化元件8、热缓冲管9、发动机室温端层流化元件10和发动机次冷却器11组成;每一脉冲管制冷机单元2均由依次相连的直制冷机主冷却器13、制冷机回热器14、冷头15、低温端层流化元件16、脉冲管17、制冷机室温端层流化元件20、制冷机次冷却器18和调相结构19组成;
[0026]每一级热声发动机单元的加热器7与热源相连以吸收热源热量形成相同温度的高温端;每一级热声发动机单元的发动机主冷却器5和发动机次冷却器11通过水冷器冷却以维持在室温范围;由此,在每一级热声发动机单元的发动机回热器6上形成温度梯度;在该温度梯度下,每一级热声发动机单元的发动机回热器6内部工作气体与其内的固体填料间产生热声效应,将输入至该级热声发动机单元的加热器7的热量转化成声功;声功沿着温度梯度的正方向传播并放大,一部分声功传递到与该级热声发动机单元相连的旁路3中,另一部分声功通过谐振管12传递到下一级热声发动机单元,在该下级热声发动机单元中重复以上工作过程;传递到每级旁路3中的声功在与该级旁路相连的脉管制冷机单元的制冷机回热器14中发生热声转换,将与该级脉管制冷机单元的冷头15的热量栗送至该级脉管制冷机单元的制冷机主水冷器13输出,热量由该级脉管制冷机单元的制冷机冷却器13中的冷却水
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1