一种提高外压缩流程产液效率的装置及方法与流程

文档序号:15838055发布日期:2018-11-07 08:06阅读:222来源:国知局
一种提高外压缩流程产液效率的装置及方法与流程

本发明涉及的是一种提高外压缩流程产液效率的装置及方法,主要适用于外压缩空分设备增加液体产量,属于低温精馏空气分离技术领域。

背景技术

随着中国经济及工业气体行业的发展,近年来越来越多空分装置开始生产液体用于外卖或备用,相比于内压缩空分装置,外压缩空分生产液体效率低,当其液体产量≤5%以内时液体能耗较低,而液体产量≥10%时能耗变得很高。外压缩空分装置是当前钢铁公司配套空分的主要流程之一,占据了最大的市场份额,配套设备大小覆盖各个空分等级。因此提高外压缩空分装置的产液效率具有积极的意义。

图1所示,常规外压缩空分流程:原料空气经过滤器除去灰尘和机械杂质后,在空气透平压缩机中压缩,先送入空气冷却塔预冷,然后送入分子筛吸附器中去除杂质,净化后的加工空气分二股:一股空气进入主换热器,被返流气体冷却至饱和温度进入下塔;一股空气进入膨胀机增压端增压冷却后进入主换热器,从中部抽出进入膨胀机,膨胀后送入上塔;送入塔中的空气经过精馏后获得了氧、氮及氩等产品。

当前外压缩空分的液体生产有如下两种,一种是:设备处于低负荷或急需液体时通过开两台并联的膨胀机增加液体产量;第二种是:通过配置外置的氮循环液化装置实现液氮的生产及液氧的转换。这两种方式生产的液体能耗普遍偏高,根据规模其液氮能耗约0.6-0.9kwh/nm3

通常而言,内压缩空分装置的液体生产具备较好的效率,但由于其增压膨胀系统与内压缩液体的换热匹配问题,导致其液体产量的调节性能相对较差,而且机器工况点的偏离也会导致运行能耗的增加。相比之下外液化装置具备极其灵活的运行方式,不仅可以快速开停车,而且运行时可以保持最佳效率,同时可以跟任意空分设备匹配,因此具有非常广泛的应用。



技术实现要素:

本发明的目的在于克服现有技术存在的不足,而提供一种可大幅提高外压缩空分装置产液效率,使液体产品占比提高至10-25%,对应能耗较外液化装置降低10-50%约0.3-0.55kwh/nm3;同时兼具随时开停的负荷调节能力,特别适用于外压缩空分装置增产增效的提高外压缩流程产液效率的方法与装置。

本发明的目的是通过如下技术技术方案来完成的,一种提高外压缩流程产液效率的方法,该方法是:原料空气经过滤器除去灰尘和机械杂质后,在空气透平压缩机中压缩,先送入空气冷却塔预冷,然后送入分子筛吸附器中去除杂质,净化后的加工空气分二股:一股空气进入主换热器,被返流气体冷却至饱和温度进入下塔;另一股空气先送入独立增压压缩机增压冷却至更高压力后再进入膨胀机增压端增压冷却,然后进入主换热器并从中部抽出进入膨胀机,膨胀后的大部分空气送入上塔,并有一部分空气冷凝成液空送入下塔;送入塔器中的空气经过精馏后获得氧、氮及氩等产品。

作为优选:所述独立增压压缩机,增压冷却至最高压力为15bar;另一股空气先送入独立增压压缩机增压冷却至最高压力15bar后进入膨胀机增压端增压冷却,然后进入主换热器并从中部抽出进入膨胀机,膨胀后的大部分空气送入上塔,有一部分空气冷凝成液空送入下塔,还有一部分空气经过增压冷却后送入膨胀机膨胀冷却后送入下塔。

作为优选:所述的方法中,当空分装置需要增产液体产品时,可以启动单独开启增压机并通过回流阀控制逐渐增加排气压力,然后启动膨胀机,并最终在主换热器中生产得到液空并送入下塔精馏,使得下塔中的液体量增加;

所述的方法中,当空分装置不需要增产液体产品时,逐渐退出增压压缩机并将原膨胀机的气源切换至来自原料空气压缩机的气源即可恢复常规状态。

一种用于所述提高外压缩流程产液效率的方法的装置,所述的装置包括:

一空气透平压缩机mac,用于压缩经过滤器除去灰尘和机械杂质后的原料空气;

一空气冷却塔ac,用于将压缩后的原料空气送入后预冷;

一分子筛ms吸附器,用于遇冷后原料空气的杂质去除

一主换热器eh,用于一股净化后的加工空气01进入被返流气体冷却至饱和温度后送入精馏塔的下塔;

一独立增压压缩机bac,用于另一股净化后的加工空气01进入后增压冷却至更高压力;后;独立增压压缩机bac后面相接有膨胀机增压端bt1/bt2,将增压冷却至更高压力的加工空气增压冷却02;

所述的膨胀机增压端bt1/bt2连接所述的主换热器,将加工空气增压冷却02后送入主换热器,并从中部抽出进入相连的膨胀机et1/et2,膨胀机et1将膨胀后的大部分空气送入连接的精馏塔的上塔,而有一部分空气冷凝成液空03送入连接的精馏塔下塔。

作为优选:一部分空气冷凝成液空03送入连接的精馏塔下塔同时,还有一部分空气经过增压冷却后送入连接的膨胀机膨胀后再送入连接的精馏塔下塔。

本发明对新增增压机及膨胀机组可以设置独立模块,根据液体需求随时开停增压机以实现液体产量的调节,约1-2小时可以完成工况调节与切换。

本发明提高外压缩产液效率的方法中,通过开停增压机及膨胀机组实现,使高品位的冷量具有较大幅度的增加,从而使液体产量比例最高增至25%;

本发明所述的提高外压缩产液效率的方法中,可以获得大量低能耗的液体,其能耗较优为0.3~0.55kwh/nm3,比外液化装置的能耗低10%-50%;

本发明不仅大幅增加外压缩空分产液效率,大量生产低能耗液体,而且能够兼具外液化装置开停便利的特点。

附图说明

图1是现有的外压缩空分设备的流程示意图。

图2是本发明所述一种提高外压缩空分装置产液效率的流程示意图。

图3是本发明所述一种提高外压缩空分装置产液效率的优选流程示意图。

具体实施方式

下面将结合附图对本发明作详细的说明,图2所示,本发明涉及的是一种提高外压缩流程产液效率的方法,该方法是:原料空气经过滤器除去灰尘和机械杂质后,在空气透平压缩机中压缩,先送入空气冷却塔预冷,然后送入分子筛吸附器中去除杂质;净化后的加工空气分二股:一股空气进入主换热器,被返流气体冷却至饱和温度进入下塔;另一股空气先送入独立增压压缩机增压冷却至更高压力后进入膨胀机增压端增压冷却,然后进入主换热器并从中部抽出进入膨胀机,膨胀后的大部分空气送入上塔,并有一部分空气冷凝成液空送入下塔;送入塔器中的空气经过精馏后获得氧、氮及氩等产品。

作为优选的实施例,本发明所述独立增压压缩机增压冷却至最高压力为15bar;另一股空气先送入独立增压压缩机增压冷却至最高压力为15bar后进入膨胀机增压端增压冷却,然后进入主换热器并从中部抽出进入膨胀机,膨胀后的大部分空气送入上塔,有一部分空气冷凝成液空送入下塔。

作为优选的另一实施例,本发明所述的方法中,当空分装置需要增产液体产品时,可以启动单独增压增压机并通过回流阀控制逐渐增加排气压力,然后启动膨胀机,并最终在主换热器中生产得到液空并送入下塔精馏,使得下塔中的液体量增加;

作为优选的另一实施例,本发明所述独立增压压缩机增压冷却至最高压力为15bar;另一股空气先送入独立增压压缩机增压冷却至最高压力为15bar后进入膨胀机增压端增压冷却,然后进入主换热器并从中部抽出进入膨胀机,膨胀后的大部分空气送入上塔,有一部分空气冷凝成液空送入下塔,还有一部分空气经过增压冷却后送入膨胀机膨胀冷却后送入下塔。

所述的方法中,当空分装置不需要增产液体产品时,逐渐退出增压压缩机并将膨胀机气源切换至原料空气压缩机后气体然后恢复常规状态。

所述的方法中:增压机气量、排气压力及流程的组织方式是根据具体项目进行匹配的。一般而言其增压后的最高压力可达15bar,根据流量情况,可以使得液体产量占比达5-15%,优选9%。

当液体产量占比至25%时,可以采用下述优选方法:原料空气经过滤器除去灰尘和机械杂质后,在空气透平压缩机中压缩,先送入空气冷却塔预冷,然后送入分子筛吸附器,总去除杂质;净化后的加工空气分二股:一股空气进入主换热器,被返流气体冷却至饱和温度进入下塔。一股空气先送入独立增压压缩机增压冷却至更高压力后进入膨胀机增压端增压冷却后然后进入主换热器并从中部抽出进入膨胀机,膨胀后的大部分空气送入上塔,有一部分空气冷凝成液空送入下塔,还有一部分空气经过增压冷却后送入膨胀机膨胀送入下塔;送入上下塔及氩塔的空气经过精馏后获得了氧氮氩等产品。

所述的方法中:增压机气量、排气压力及流程的组织方式是根据具体项目进行匹配的。一般而言其增压后的最高压力可达15bar,通过增加一个膨胀去下塔的膨胀机,可以使得液体产量占比达15-25%,优选15-20%。

所述的方法中,当空分装置需要增产液体产品时,可以启动单独增压机并通过回流阀控制逐渐增加排气压力,然后启动增压膨胀机,并最终在主换热器中生产得到液空并送入塔总精馏,使得中液体量增加;

所述的方法中,当空分装置不需要增产液体产品时,逐渐退出增压压缩机并将膨胀机气源切换至原料空气压缩机后气体然后恢复常规状态。

一种用于所述提高外压缩流程产液效率的方法的装置,所述的装置包括:

一空气透平压缩机mac,用于压缩经过滤器除去灰尘和机械杂质后的原料空气;

一空气冷却塔ac,用于将压缩后的原料空气送入后预冷;

一分子筛ms吸附器,用于遇冷后原料空气的杂质去除

一主换热器eh,用于一股净化后的加工空气01进入被返流气体冷却至饱和温度后送入精馏塔的下塔;

一独立增压压缩机bac,用于另一股净化后的加工空气01进入后增压冷却至更高压力;后;独立增压压缩机bac后面相接有膨胀机增压端bt1,将增压冷却至更高压力的加工空气增压冷却02;

所述的膨胀机增压端bt1/bt2连接所述的主换热器,将加工空气增压冷却02后送入主换热器,并从中部抽出进入相连的膨胀机et1/et2,有膨胀机et1将膨胀后的大部分空气送入连接的精馏塔的上塔,而有一部分空气冷凝成液空03送入连接的精馏塔下塔。

作为优选的实施例,本发明所述一部分空气冷凝成液空03送入连接的精馏塔下塔同时,还有一部分空气经过增压冷却后送入连接的膨胀机膨胀后再送入连接的精馏塔下塔。

实施例:

图2所示,原料空气经过滤器除去灰尘和机械杂质后,在空气透平压缩机mac中压缩,先送入空气冷却塔ac预冷,然后送入分子筛ms吸附器中去除杂质;净化后的加工空气01分二股:一股空气进入主换热器,被返流气体冷却至饱和温度进入下塔;一股空气先送入独立增压压缩机bac增压冷却至更高压力后进入膨胀机增压端bt1增压冷却02,然后进入主换热器并从中部抽出进入膨胀机et1,膨胀后的大部分空气送入上塔,并有一部分空气冷凝成液空03送入下塔;送入上下塔及氩塔(c1、c2、c11)的空气经过精馏后获得了氧氮氩等产品。对于6万等级外压缩空分装置,加工供气量01为292000nm3/h,02的对应压力为10bar,其产品液氧1000nm3/h,液氮产品3000nm3/h,液氩产品为2000nm3/h,其总液体量占比约9%,相比常规外压缩装置增加液体产品的能耗约为0.3-0.4kwh/nm3

图3所示,本发明另一优选的实施例是:原料空气经过滤器除去灰尘和机械杂质后,在空气透平压缩机mac中压缩,先送入空气冷却塔ac预冷,然后送入分子筛ms吸附器中去除杂质;净化后的加工空气分二股:一股空气进入主换热器,被返流气体冷却至饱和温度进入下塔。一股空气先送入独立增压压缩机bac增压冷却至更高压力后进入膨胀机增压端bt1增压冷却后然后进入主换热器并从中部抽出进入膨胀机et1,膨胀后的大部分空气送入上塔,有一部分空气冷凝成液空送入下塔03,还有一部分空气经过增压bt2增压冷却后送入膨胀机膨胀et2送入下塔;送入上下塔及氩塔(c1、c2、c11)的空气经过精馏后获得了氧氮氩等产品。通过此优选方法可以使外压缩空分装置的液体产品占比提高至10-25%。对于6万等级外压缩空分装置,加工供气量01为302000nm3/h,对应液氧1000nm3/h,液氮产品6000nm3/h,液氩产品为2000nm3/h,其总液体量占比约15%,相比常规外压缩装置增加液体产品的能耗约为0.4-0.5kwh/nm3

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1