原位电加热修复有机污染土壤的系统及治理方法与流程

文档序号:15005757发布日期:2018-07-24 21:12阅读:1504来源:国知局

本发明涉及土壤修复技术领域,具体涉及原位电加热修复有机污染土壤的系统及治理方法。



背景技术:

有机污染土壤修复技术分为异位修复技术和原位修复技术。异位修复技术是指受污染的土壤从场地发生污染的原来位置挖掘或抽提出来,搬运或转移到其他场所或位置进行治理修复的土壤修复技术。异位修复技术以其修复周期短,不影响原位置土地开发,且处理过程中的条件容易控制而在我国广受欢迎,但由于异位修复涉及挖土和运土,异味问题难以解决,很难治理污染较深的区域,使得原位修复技术在近年来越来越显示出旺盛的生命力。原位修复技术按热量来源方式分类有蒸汽注入,燃气加热,电阻加热、电加热等。

申请号为201610389712.6,名称为“污染场地原位电加热脱附修复技术及其装置”的专利,虽采用电加热管对土壤进行加热,但该专利未涉及针对土壤中抽提出的有机污染气体的处理工艺,限制了电加热原位热脱附系统的完整性。

申请号为201521119238.2,名称为“用于处理voc/svoc污染土壤的原位热脱附系统”的专利,采用天然气作为能源对土壤进行加热。燃气式加热技术主要是采用天然气作为能源,虽能处理难挥发性有机污染物,但涉及易燃物质存储和燃烧尾气排放等问题,不符合绿色施工的要求。

申请号为201710335360.0,名称为“污染场地原位热脱附的电加热-抽提/通风一体化装置”的专利,将电加热管和抽提管进行集成,但未涉及污染土壤原位治理过程中此类装置的布局和配套的气处理工艺。

申请号为201520196696.x,名称为“一种蒸汽强化热脱附及气相抽提土壤修复系统”的专利,采用蒸汽对土壤进行加热。该技术只能处理易挥发性有机物污染的土壤,且对土壤渗透率有一定的要求。因此,使用范围有限。

综上可以看出,目前国内申请的专利大多数停留在理论设计阶段,缺少工程实施方面的设计参数支持,同时缺少系统性和整体性考虑,因而,在污染地块修复工程的实际应用程度不高,技术转化率较低。本发明在加热管材料选择、加热和抽提井布设要求、抽提气处理系统、监测和数据采集系统以及效果评估方面与国内已有专利相比,具有一定的创新性。



技术实现要素:

本发明针对以上专利技术的不足,提供一种工艺线路完整,无需转运土壤,对土壤性质适用性广,加热温度可达500℃以上,可同时处理易挥发性和难挥发性有机污染物的原位电加热修复有机污染土壤的系统及治理方法。

原位电加热修复有机污染土壤的系统,包括基础建设技术,电控系统,气处理系统,监测与数据采集系统和修复效果综合评估系统;

所述基础建设技术包括加热井和抽提井构建、地面压实和保温层建设技术;

所述加热井按照互为三角形布置原则和就近原则布设在污染场地,抽提井设置在加热井布局的几何中心;

所述气处理系统由预冷吸附橇,抽提橇和处理橇组成,用于处理污染气体;所述加热井对污染场地进行加热,场地加热后产生的污染气体由抽提管抽出,并送入气处理系统;

所述监测与数据采集系统由若干个温度传感器和压力传感器组成,数据采集系统包括对原位电加热修复污染土壤层中温度和压力监测采集,抽提气体的污染浓度检测采集;所述原位电加热修复有机污染土壤的过程通过电控系统自动控制,并自动适应区块变化;

修复效果评估系统,包括对修复过程中污染土壤层升温效果评估和对污染土壤处理效果评估。

进一步,所述加热和抽提井的构建具体步骤如下:

a、利用工程机械在指定位置钻孔施工,将钻探插入污染土壤;

b、钻探清孔后,布设加热井和抽提井,安装电加热管和配套抽提管,加热管和配套抽提管与井壁之间的孔隙采用填砂处理;

c、在污染土壤的表面铺设30~50cm粘土层,进行地面压实,压实度为90~94;

d、在粘土层上敷设保温层,所述保温层包括保温砖和设置在保温砖上的水泥砂浆层。

进一步,所述电加热管工作温度为400~600℃。

进一步,所述钻探的深度超过污染土壤地层50~100cm,钻孔孔径在90~130cm。

进一步,所述加热井布设采用三角形或者四边形或者五边形或者六边形方式;所述加热井和抽提井的设置数量根据场地实际情况进行设计调整。

进一步,所述抽提橇由气液分离器、过滤器和抽提风机组成;处理橇由二燃室、空冷器和离心排烟风机组成;预冷吸附橇由换热器、活性炭吸附箱和冷却水塔组成。

进一步,用于掌握修复进度的温度传感器和压力传感器布设在加热井布局的几何中心冷点位置,场地边缘位置和其他需要重点监测的位置。

进一步,所述修复过程中污染土壤层升温效果评估通过对不同位置和深度的温度随时间变化的监测数据来实现。

进一步,所述污染土壤处理效果评估,通过对土壤中污染物初始浓度、加热处理过程中土壤中污染物含量、以及修复结束后土壤中污染物含量变化进行分析。

进一步,所述污染土壤处理效果评估通过评估抽提气中vocs含量以及修复后土壤中残留污染物含量实现,根据抽提中vocs含量变化曲线,判断原位电加热修复所处阶段、加热井升温功率拐点、修复终点。

本发明的有益效果体现在:

1、本发明提供原位电加热修复有机污染土壤的系统,可以大规模应用于处理重污染土壤、含napl相的污染土壤、污染源区域、以及深层土壤、干洗店、居住建筑物等较难开展异位修复的污染地块,同时也适用于多氯联苯(pcbs)、二噁英、农药(敌敌畏、六六六等)、石油、pahs、pbdes、pcbs、pcdd/fs等有机污染土壤和汞污染土壤,该方法具有普适性,加热温度可达500℃以上,可同时处理易挥发性和难挥发性有机污染物的土壤治理技术。

2、本发明提供原位电加热修复有机污染土壤的系统,采用原位修复方式,避免了异位修复技术中因挖土和运土过程所产生的异味问题,同时可治理不易开挖或开挖难度大,以及建筑物下面的污染土壤。直接在污染场地内设置电加热管,布设方法科学合理,每根电加热管的辐射范围相互叠加,保证整个污染场地内部不存在加热盲点,抽提管进行横向筛缝加工,保证污染气体及时抽出。采用清洁能源,不涉及易燃物质存储,没有燃烧尾气排放,填补了现有技术的空白。

3、本发明所提供的原位电加热修复有机污染土壤的系统,电加热管的核心加热元件选用非金属的碳硅棒材料,硅碳棒连接电源端填充或浇注硅酸铝纤维进行隔热处理,而国内外原位电加热修复装置的相关专利大多数采用金属电阻元件,使原位电加热处理系统对污染土壤处理的稳定、有效温度较大提高。

4、本发明提供的原位电加热修复有机污染土壤的系统,系统设计能够根据抽提气体vocs含量高低,实现活性炭吸附处理和二燃室处理的两种流程通道之间切换使用,能够使尾气稳定达标排放。

5、本发明提供的原位电加热修复有机污染土壤的系统,工艺路线完整,建立一套多指标效果综合评估系统,包括抽提尾气中污染物含量评估、污染土壤层升温效果评估、以及处理后土壤中污染物残留量评估,能够判断修复所处阶段、加热井升温功率拐点、修复终点等关键信息,为节能运行提供依据。

本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的主要目的和其它优点可通过在说明书、权利要求书中所特别指出的方案来实现和获得。

附图说明

图1、原位电加热修复有机污染土壤的系统的基本组成示意图;

图2、本发明的原位电加热技术原理示意图;

图3、本发明的原位电加热技术布局示意图;

图4、本发明的气处理系统工艺流程图;

图5a~5e为实施例1焦化污染场地不同土壤层温度分布情况示意图。

附图标记:1-电缆,2配电系统,3-测控室,4-加热井,5-抽提井,6-温度与压力监测孔,7-抽提设备,8-气处理系统,9-电加热管,10-砂砾,11-外壳,12-抽提管,13-筛缝,14-保温层。

具体实施方式

如本文所用,术语“包含”、“包括”、“含有”、“具有”的含义是非限制性的,即可加入不影响结果的其它步骤和其它成分。以上术语涵盖术语“由……组成”和“基本上由……组成”。如无特殊说明的,材料、设备、试剂均为市售。

原位电加热技术属于一种热处理技术,主要是通过加热井4将热量传递给地下土壤,当污染土壤升至一定温度后,污染物从土壤颗粒上得以挥发或分离,如图1所示,原位电加热修复有机污染土壤的系统的基本组成示意图,整体系统外接电缆1,经配电系统2分别向测控室3、加热井4、抽提井5、监测与数据采集系统(具体为温度与压力监测孔6)供电。经抽提设备7抽提出的污染气体进入气处理系统8。

包括基础建设技术,电控系统,气处理系统8,监测与数据采集系统和修复效果综合评估系统,

所述基础建设技术包括加热井4和抽提井5构建、地面压实和保温层14建设技术;

具体步骤如下:

a、利用工程机械在指定位置钻孔施工,将钻探插入污染土壤;加热井4和抽提井5构建要求钻探深度超过污染土壤地层50~100cm,钻孔孔径在90~130cm;如图2所示,电加热管9设置在加热井4内,由电缆接口提供动力。

b、钻探清孔后,布设加热井4和抽提井5,安装电加热管9和配套抽提管12,加热管和配套抽提管12与井壁之间的孔隙采用填砂砾10处理,保证热量在纵向污染深度内均匀传递。施工时,必须保证加热管高温段和抽提管12割缝处至少在高污染土壤层范围上下不超过30cm;

所述电加热管9采用硅碳棒元件作为加热元件,处于密闭绝氧环境,电加热管9设定温度范围0~1300℃,长期保持的有效高温范围为400~600℃;采用陶瓷套保护加热元件与不锈钢外壳11之间非接触,当电流通过后,硅碳棒元件开始产生热量,并与不锈钢外壳11之间进行热辐射过程,进而对周围的土壤进行热传导;硅碳棒连接电源端填充或浇注硅酸铝纤维进行隔热处理。

所述抽提管12在污染区域深度范围内,通常选择碳钢管或者不锈钢管做外壳11,做定向割缝或钻孔处理。

c、在污染土壤的表面铺设30~50cm粘土层,进行地面压实,压实度为90~94;

d、在粘土层上敷设保温层14,所述保温层14可以为保温砖和设置在保温砖上的水泥砂浆层,保温层14也可以选择纤维浇筑料(注料厚度不小于50mm)。当选用保温砖时,材质要求粘土或含粘土比例不少于70%的其他复合材料,耐压1~4mpa,导热系数0.03~0.12,耐高温范围1300~1800℃,其厚度不小于100mm。

如图3所示,根据修复周期、污染物种类(重点考虑待处理污染土壤中污染物沸点)确定电加热管9之间的间距和目标加热温度设置加热井4,同时要按照互为三角形布置原则和就近原则布设在污染场地(具体的,所述加热井4布设可以采用三角形或者四边形或者五边形或者六边形方式),抽提井5设置在加热井4布局的几何中心,可以组成不超过6个抽提井5(簇)。抽提管12与电加热管9一一对应,并且就近安装。所述抽提管12可以进行横向筛缝13加工,保证污染气体及时抽出。

如图2所示,放置时,抽提管12与井壁之间采用填砂处理,防止抽出污染气体中夹带的土壤颗粒堵塞筛缝13;所述加热井4和抽提井5的设置数量根据场地实际情况进行设计调整,以完成对污染土壤进行加热和气体抽提,最终实现将土壤中的污染物全部清除。

所述加热井4对污染场地进行加热,场地加热后产生的污染气体由抽提管12抽出,并进入气处理系统8。所述气处理系统8由预冷吸附橇,抽提橇和处理橇组成,将污染气体进行无害化处理后才排放入大气。

如图4所示,其中,所述抽提橇由气液分离器、过滤器和抽提风机组成,保证挥发或分离出的气相污染物被抽出;处理橇由二燃室、空冷器和离心排烟风机组成,保证高浓度污染气体处理达标;预冷吸附橇由换热器、活性炭吸附箱和冷却水塔组成,保证低浓度污染气体处理达标。其中,根据抽提气体vocs含量高低,系统可实现活性炭吸附处理和二燃室处理的流程通道切换使用。具体的,气液分离器的主要功能是对抽出气体中夹带的土壤颗粒和冷凝液滴进行初步分离;过滤器是对抽出气体中的小液滴进行二次分离,防止其进入抽提风机。二燃室所用能源可采用柴油或天然气,对含高浓度污染物的气体进行处理;空冷器用于抽提气体和二燃室燃烧产生烟气之间的换热,一方面可对高温烟气进行冷却,满足后续离心风机进气要求,另一方面可对抽提气体进行预热,降低二燃室的能耗;换热器可采用列管换热器或板翅式换热器,主要功能是对抽提气体进行冷却;活性炭吸附箱采用抽屉式设置,对低浓度有机污染气体进行吸附处理;冷却水塔的主要功能是为换热器提供冷却用水。其中,流程管道切换参考图4工艺流程图,使用活性炭吸附箱通道则打开阀门v1,关闭阀门v2;使用二燃室则打开阀门v2,关闭阀门v1。

所述监测与数据采集系统由若干个温度传感器和压力传感器组成,数据采集系统包括对原位电加热修复污染土壤层中温度和压力监测采集以及对抽提气体的污染浓度检测采集,用于掌握修复进度的温度传感器和压力传感器布设在加热井4布局的几何中心冷点位置(冷点位置为加热场内温度最低点,当冷点处温度达到目标加热温度时,可判断整个场地达到目标加热温度),场地边缘位置和其他需要重点监测的位置。监测和数据采集系统用于监测土壤内部的温度和负压状况,控制修复进度;电控系统用于整套系统的自动控制,动态适应污染土壤变化。

其中,原位电加热修复污染土壤层中温度和压力监测采用在线传感器,满足耐受高温要求;抽提气体的污染浓度采用在线vocs监测系统;数据采集系统收集传感器的电信号,进行变送传输、存储和显示,温度和压力数值同时以曲线和数字两种方式显示。

所述原位电加热修复有机污染土壤的过程通过电控系统自动控制,并自动适应区块变化;电控系统包括热电偶、压力传感器、数据信号采集箱和综合电控柜。调功信号依据对应目标区域温度逻辑计算值及加热设定值进行调功。加热区域测温信号由热电偶仪表连接至就近数据信号采集箱,数据信号箱通过总线传送信号至综合电控柜内的plc或pid调功温控表。整个加热电阻元件升温过程通过电控系统自动控制,对不同加热井4温度进行自动调整,以适应不同修复区域温度要求和区块变化。

所述污染土壤处理效果评估,通过对土壤中污染物初始浓度、加热处理过程中土壤中污染物含量、以及修复结束后土壤中污染物含量变化进行分析。修复效果综合评估系统,包括对修复过程中污染土壤层升温效果评估和对污染土壤处理效果评估。修复过程中污染土壤层升温效果评估通过对不同位置和深度的温度随时间变化的监测数据来实现。污染土壤处理效果评估通过评估抽提气中vocs含量以及修复后土壤中残留污染物含量实现,根据抽提中vocs含量变化曲线,判断原位电加热修复所处阶段、加热井4升温功率拐点、修复终点,为节能运行提供依据。

实施例1

1)可以利用冲击钻或螺旋钻在污染场地指定位置进行钻孔施工,并将电加热管9和抽提管12埋入对应深度。电加热管9之间互为三角形布置,抽提管12与电加热管9就近安装;在污染区域表面铺设保温层14,防止热量流失。

2)所述电加热管9内有金属电阻元件,采用陶瓷套保护加热元件与不锈钢外壳11之间的接触,当电流通过后,电阻元件开始产生热量,并与不锈钢外壳11之间进行热辐射过程,进而对周围的土壤进行热传导;

3)所述抽提管12通常选择1寸或2寸的碳钢管,在污染区域深度范围内做横向割缝处理,狭缝宽度2~3mm,狭缝间距15~20cm。

4)电加热管9、抽提管12与井壁之间的孔隙采用填砂处理,砂砾10选择粒径5~8mm的粗砂;

5)通过数据采集系统对加热和抽提过程中土壤内部的温度和负压状况进行监测;

具体处理过程:电加热管9开始工作,加热污染土壤,土壤中的污染物挥发和分解,对抽出气体中夹带的土壤颗粒和冷凝液滴在气液分离器进行初步分离,气体中的小液滴和粉尘在过滤器进行二次分离,防止其进入抽提风机。在二燃室使用天然气对含高浓度污染物的气体进行处理。

其中,尾气处理选择通道依据抽提气体pid读数判定,当pid读数低于50~200ppm,选择活性炭吸附箱通道处置,具体根据抽风速率、活性炭吸附能力情况而定;当pid读数高于500ppm,必须选择二燃室通道处置。流程管道切换参考图4工艺流程图,使用活性炭吸附箱通道则打开阀门v1,关闭阀门v2;使用二燃室则打开阀门v2,关闭阀门v1。

修复效果评估系统的工作情况:原位电加热修复40天后,焦化污染场地不同土壤层温度分布情况如图5a~5e所示。图5a为0.5m深度土层内温度场分布,图5b为1.0m深度土层内温度场分布,图5c为2.0m深度土层内温度场分布,图5d为3.0m深度土层内温度场分布,图5e为5.0m深度土层内温度场分布。本发明提供的方法能够实现污染土壤层快速升温,达到预期设定温度,满足pahs目标污染物去除要求;抽提气在加热初始阶段,pid读数在1~10ppm之间,随着加热温度升高,pid读数增大到50~500ppm之间,而通过活性炭吸附箱或二燃室后尾气排放达到《大气污染物综合排放标准》(db11/501-2007);经过40天加热升温达到修复拐点,经过30天冷却,焦化厂污染场地污染最高区域土壤中∑pahs由160.7mg/kg降低到1.3mg/kg,去除率达到99.2%,其中,土壤中苯并(a)芘含量由5.8mg/kg降低到≤0.2mg/kg、二苯并(a,h)蒽由1.18mg/kg降低到≤0.05mg/kg,修复后土壤中16种pahs残留量均满足《场地土壤环境风险评价筛选值》(db11t811-2011)中住宅用地标准。

本发明提供的原位电加热修复有机污染土壤的系统,采用原位修复方式,避免了异位修复技术中因挖土和运土过程所产生的异味问题,同时可治理不易开挖或开挖难度大,以及建筑物下面的污染土壤。污染场地的土壤修复过程由电控系统实现自动化控制。加热形式为热传导加热,不受土壤渗透率、含水率等参数的影响,加热温度可达500℃以上,因此可处理多环芳烃等难挥发性有机污染物。本发明工艺路线完整,既可用于粗糙或细小的土壤颗粒环境,也可以用于混合颗粒组成的夹层地质条件以及地质断裂层。可根据污染气体中有机污染物浓度高低选择不同处理流程。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1