一种金属捕集剂及其制备方法和应用以及一种催化裂化方法

文档序号:4918338阅读:175来源:国知局
一种金属捕集剂及其制备方法和应用以及一种催化裂化方法
【专利摘要】本发明提供了一种金属捕集剂及其制备方法和应用,该金属捕集剂含有氧化镁和具有阶梯孔分布的氧化铝,且至少部分氧化铝和至少部分氧化镁形成镁铝尖晶石结构;所述具有阶梯孔分布的氧化铝含有大孔氧化铝和小孔氧化铝;以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%。本发明提供了一种催化裂化方法。本发明的金属捕集剂具有很好的金属捕集效果,将本发明提供的金属捕集剂用于高钒重油催化裂化,可以减缓钒对裂化催化剂的破坏,提高液体产品收率,降低干气及焦炭收率。
【专利说明】一种金属捕集剂及其制备方法和应用以及一种催化裂化方法
【技术领域】
[0001]本发明涉及一种金属捕集剂以及一种金属捕集剂的制备方法,以及金属捕集剂在催化裂化中的应用以及一种催化裂化方法。
【背景技术】
[0002]原油价格的不断攀升大幅度增加了炼厂的加工成本,目前,催化裂化为炼厂重油加工的重要手段,为了降低成本以使效益最大化,可以通过深度加工重质油和使用劣质油进行加工来实现。
[0003]然而,劣质原油的重金属(如钒)含量一般较高。石油中的含钒化合物是一类非常复杂的金属络合物,一般以卟啉钒和非卟啉钒的形式存在。金属卟啉沸点一般在565-650°C之间,主要集中在渣油中,但因其挥发性较强,也会进入催化裂化馏分中。非卟啉金属化合物可能是与浙青质大分子缔合在一起的相对分子量小于400的化合物,其配体可能为4N,NO2S或4S ;当浙青质大分子的三维结构被破坏以后,这些小分子就会被释放出来。钒对催化裂化催化剂的污染主要是钒对催化剂造成了不可逆的破坏。实验表明,平衡剂上沉积1000 μ g/g的钥;足以对沸石造成损害,恶化产品分布。
[0004]目前通常使用金属捕集剂进行重金属的捕集,以减少重金属(如钒)对裂化催化剂的破坏。尖晶石是常用的金属捕集剂材料,如US5603823A公开了一种钒捕集剂,其组成为(a) 15-60w% 的 MgO, (b) 30_60w% 的 Al2O3 以及(c) 10_30w% 的稀土,稀土选自镧氧化物和 /或钕氧化物,其中,至少部分MgO和Al2O3形成了 Mg-Al尖晶石。
[0005]CN1148 2 56C公开了 一种含镁铝尖晶石的组合物及其制备方法,该组合物含有25-30重%的氧化镁,60-70重%的氧化铝和5-15重%的除铈以外的稀土金属氧化物,其中,镁和铝形成尖晶石结构,游离氧化镁的含量低于组合物总量的5重%,所述组合物的最可几孔直径不小于10nm。

【发明内容】

[0006]本发明的目的是在现有技术的基础上提供一种具有优良的金属捕集性能的金属捕集剂及其制备方法和应用。
[0007]为实现前述目的,一方面,本发明提供了一种金属捕集剂,该金属捕集剂含有氧化镁和具有阶梯孔分布的氧化铝,且至少部分氧化铝和至少部分氧化镁形成镁铝尖晶石结构;
[0008]其中,所述具有阶梯孔分布的氧化铝含有大孔氧化铝和小孔氧化铝;以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20_35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50% ;所述小孔氧化铝中2_5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15_30%,10_60nm孔的孔体积占10_20%。
[0009]另一方面,本发明提供了一种金属捕集剂的制备方法,其中,该方法包括:[0010](I)将小孔氧化铝、去离子水和酸混合制浆得到第一浆液;
[0011](2)将所述第一浆液与氢氧化镁和/或氧化镁接触得到第二浆液;
[0012](3)将所述第二浆液与大孔氧化铝接触得到第三浆液;
[0013](4)将所述第三浆液进行喷雾干燥后进行焙烧;
[0014]其中,以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%, 5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50% ;所述小孔氧化铝中2_5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10_60nm孔的孔体积占10-20%。
[0015]再一方面,本发明提供了一种采用本发明的金属捕集剂的制备方法制备得到的金属捕集剂。
[0016]再一方面,本发明提供了 一种本发明的金属捕集剂在催化裂化中的应用。
[0017]再一方面,本发明提供了一种催化裂化方法,该方法包括:在催化裂化条件下,将重油原料与含有金属捕集剂和催化裂化催化剂的催化剂混合物接触,其中,所述金属捕集剂为本发明所述的金属捕集剂。
[0018]本发明的金属捕集剂具有很好的金属捕集效果,将本发明提供的金属捕集剂用于高钒重油催化裂化,可以减缓钒对裂化催化剂的破坏,提高液体产品收率,降低干气及焦炭收率。例如当本发明提供的钒捕集剂与工业裂化催化剂按重量比为6:94混合,催化剂混合物上Ni含量约为2000ppm、钒含量约为4500ppm时,与单独使用工业裂化催化剂相比,重油收率由12.36重量%减少至10.27重量%,总液体产品收率由71.60重量%增加至74.22重量%,干气选择性由0.0358降至0.0340,焦炭选择性由0.1910降至0.1787。由此可见,本发明提供的金属捕集剂能更有效地将重油转化成高价值产品。
[0019]本发明的其他特征和优点将在随后的【具体实施方式】部分予以详细说明。
【专利附图】

【附图说明】
[0020]附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的【具体实施方式】一起用于解释本发明,但并不构成对本发明的限制。在附图中:
[0021]图1为本发明所使用的大孔氧化铝A、小孔氧化铝A的孔分布图;
[0022]图2为按照实施例1的方法制备得到的金属捕集剂Al的新鲜态(图中称为新鲜剂)和于800°C、100%水蒸汽气氛下水热老化17小时后(图中称为水热老化剂)的孔分布图;
[0023]图3为按照对比例I的方法制备得到的金属捕集剂BI的新鲜态(图中称为新鲜剂)和于800°C、100%水蒸汽气氛下水热老化17小时后(图中称为水热老化剂)的孔分布图;
[0024]图4为按照实施例1的方法制备得到的金属捕集剂Al和按照对比例I的方法制备得到的金属捕集剂BI的XRD谱图。
【具体实施方式】
[0025]以下对本发明的【具体实施方式】进行详细说明。应当理解的是,此处所描述的【具体实施方式】仅用于说明和解释本发明,并不用于限制本发明。
[0026]本发明提供了一种金属捕集剂,该金属捕集剂含有氧化镁和具有阶梯孔分布的氧化铝,且至少部分氧化铝和至少部分氧化镁形成镁铝尖晶石结构;
[0027]其中,所述具有阶梯孔分布的氧化铝含有大孔氧化铝和小孔氧化铝;以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20_35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50% ;所述小孔氧化铝中2_5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10_60nm孔的孔体积占10-20%。
[0028]根据本发明的金属捕集剂,优选情况下,以2-100nm孔的孔体积为基准,所述大孔氧化招中2-5nm孔的孔体积占20-30%, 5-10nm孔的孔体积占25-40%, 10-60nm孔的孔体积占25-45% ;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-lOnm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%,其余的为60_100nm孔的孔体积含量;更优选情况下,以2-100nm孔的孔体积为基准,所述小孔氧化铝中2_5nm孔的孔体积占52_68%,5_10nm孔的孔体积占15-30%, 10_60nm孔的孔体积占11-18%,以2_100nm孔的体积为基准,所述的大孔氧化招中60-100nm孔的孔体积优选不超过10%,所述小孔氧化招中60_100nm孔的孔体积不超过5%。本发明中,所述的2-5nm的孔是指孔径大于等于2nm,小于5nm的孔,5-lOnm的孔,是指孔径大于等于5nm小于IOnm的孔,10_60nm的孔是指孔径大于等于IOnm,小于60nm的孔,2-100nm是指孔径大于等于2nm小于等于IOOnm的孔。
[0029]本发明中,优选所述大孔氧化铝的BET比表面积不小于350m2.g_\孔体积优选不小于 0.70mL.g'
[0030]本发明中,孔分布(又称孔体积分布)、孔径、孔体积采用低温氮吸附法测定(参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年出版)。
[0031]本发明的所述具有阶梯孔分布的氧化铝(包括所述大孔氧化铝和所述小孔氧化铝)在中国专利CN101745417B中亦有详细的介绍。本发明在此一并引用用于说明本发明。
[0032]根据本发明的金属捕集剂,满足本发明要求的所述大孔氧化铝和小孔氧化铝可以通过合成得到,也可以通过商购得到,本发明对此无特殊要求。
[0033]根据本发明的金属捕集剂,优选所述具有阶梯孔分布的氧化铝含有10-90重量%的大孔氧化铝和10-90重量%的小孔氧化铝;更优选所述具有阶梯孔分布的氧化铝含有15-85重量%的大孔氧化铝和15-85重量%的小孔氧化铝。
[0034]根据本发明的金属捕集剂,只要保证本发明的金属捕集剂中含有所述具有阶梯孔分布的氧化铝即可很好的实现本发明的目的,所述金属捕集剂中具有阶梯孔分布的氧化铝的含量的可选范围较宽,针对本发明,优选所述金属捕集剂中含有5-95重量%的具有阶梯孔分布的氧化招和5-95重量%的氧化镁。
[0035]根据本发明的金属捕集剂,依据需要,所述金属捕集剂中还含有第三组分,所述第三组分为除所述氧化镁、所述具有阶梯孔分布的氧化铝以外的耐热无机氧化物和/或粘土。所述第三组分的含量的可选范围较宽,具体可以依据实际需要进行选择,本发明对此无特殊要求,一般以金属捕集剂的总重量为基准,所述第三组分的含量为0.001-30重量%,更优选的,所述金属捕集剂中含有10-95重量%的具有阶梯孔分布的氧化铝和5-60重量%的氧化镁以及平衡量的所述第三组分。
[0036]根据本发明的金属捕集剂,所述耐热无机氧化物的种类的可选范围较宽,满足前述要求的现有技术常用的耐热无机氧化物(本领域中通常也称为粘结剂氧化物)均可用于本发明,针对本发明,优选所述耐热无机氧化物选自二氧化硅,除所述具有阶梯孔分布的氧化铝外的氧化铝和氧化镁外的金属氧化物(如氧化钙、氧化钛、氧化锆)中的一种或多种。
[0037]根据本发明的金属捕集剂,所述粘土的种类的可选范围较宽,本领域常用的粘土均可用于本发明,针对本发明,优选所述粘土选自高岭土、偏高岭土、海泡石、凹凸棒石、蒙脱石、累脱石、硅藻土、埃洛石、皂石、硼润土、水滑石中的一种或多种,更优选所述粘土选自高岭土、硅藻土、海泡石、凹凸棒石、蒙脱石和累脱石中一种或多种。
[0038]本发明中所述金属捕集剂的制备方法可以参照现有技术进行,其可以采用本领域常规的方法制备得到,根据本发明的一种实施方式,本发明提供了一种金属捕集剂的制备方法,该方法包括:
[0039](I)将小孔氧化铝、大孔氧化铝、去离子水和酸混合制浆得到第一浆液;
[0040](2)将所述第一浆液与氢氧化镁和/或氧化镁接触得到第二浆液;
[0041](3)将所述第二浆液进行喷雾干燥后进行焙烧;
[0042]其中,以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2_5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50% ;所述小孔氧化铝中2-5nm孔的孔体积占50_70%,5-10nm孔的孔体积占15_30%,10-60nm孔的孔体积占10_20%。
[0043]根据本发明的一种优选的实施方式,本发明提供了一种金属捕集剂的制备方法,该方法包括:
[0044](I)将小孔氧化铝、去离子水和酸混合制浆得到第一浆液;
[0045](2)将所述第一浆液与氢氧化镁和/或氧化镁接触得到第二浆液;
[0046](3)将所述第二浆液与大孔氧化铝接触得到第三浆液;
[0047](4)将所述第三浆液进行喷雾干燥后进行焙烧;
[0048]其中,以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2_5nm孔的孔体积占20-35%, 5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50% ;所述小孔氧化铝中2_5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10_60nm孔的孔体积占10-20%。
[0049]根据本发明的制备方法,所述大孔氧化铝和小孔氧化铝在本发明前述介绍本发明的金属捕集剂的过程中已经详细描述,在此不再赘述。
[0050]根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,制备过程中各种物质用量的可选范围较宽,针对本发明,优选所述大孔氧化铝和小孔氧化铝的用量使得制备得到的金属捕集剂中的氧化铝中含有10-90重量%,优选15-85重量%的大孔氧化铝和10-90重量%,优选15-85重量%的小孔氧化铝,且所述大孔氧化铝和小孔氧化铝的总用量使得制备得到的金属捕集剂中大孔氧化铝和小孔氧化铝的总含量为5-95重量%。
[0051]根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,如前所述制备过程中各种物质用量的可选范围较宽,针对本发明,优选所述氢氧化镁和/或氧化镁的用量使得制备得到的金属捕集剂中含有5-95重量%的氧化镁。
[0052]根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,步骤(I)中所述混合制浆的条件的可选范围较宽,具体可以参照现有技术进行,针对本发明优选步骤(I)中酸的用量使得第一浆液的PH值为1-3.0 ;步骤(I)中小孔氧化铝与去离子水的用量使得第一浆液的固含量为8-20重量%。
[0053]根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,步骤(2)中所述接触的条件的可选范围较宽,针对本发明,优选步骤(2)中所述接触的条件包括:温度为0-70°C,优选为15-60°C ;时间为15min以上,优选为15_90min。根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,步骤(3)中所述接触的条件的可选范围较宽,针对本发明,优选步骤(3)中所述接触的条件包括:温度为10-60°C,时间为20-60min。
[0054]根据本发明的制备方法,依据需要可以在制备所述金属捕集剂的过程中引入第三物质,具体地例如可以在步骤(I)的混合制浆和/或步骤(2)的将所述第一浆液与氢氧化镁和/或氧化镁的接触和/或步骤(3)的将所述第二浆液与大孔氧化铝的接触过程中引入第三物质,也可以将所述第三物质与步骤(4)焙烧得到的固体接触通过负载引入;针对本发明,优选步骤(I)的混合制浆和/或步骤(2)的将所述第一浆液与氢氧化镁和/或氧化镁的接触和/或步骤(3)的将所述第二浆液与大孔氧化铝的接触在第三物质存在下进行,其中,所述第三物质可以为粘土,除氧化镁、所述大孔氧化铝、所述小孔氧化铝、所述氢氧化镁以外的耐热无机氧化物和/或耐热无机氧化物的前驱体中的一种或多种,更优选的,所述大孔氧化铝和小孔氧化铝的总用量、所述氢氧化镁和/或氧化镁的用量、所述第三物质的用量使得制备得到的金属捕集剂中含有10-95重量%的大孔氧化铝和小孔氧化铝,5-60重量%的氧化镁及平衡量的所述第三物质的氧化物。
[0055]根据本发明的制备方法,所述粘土和耐热无机氧化物的种类在前述介绍本发明的金属捕集剂的部分已经详细描述,在此不再重复赘述。
[0056]根据本发明的制备方法,所述耐热无机氧化物前驱体的种类的可选范围较宽,满足前述要求的本领域常用的耐热无机氧化物前驱体(本领域也称为粘结剂)均可用于本发明,针对本发明,优选所述耐热无机氧化物前驱体选自硅溶胶、水玻璃、拟薄水铝石、铝溶胶和硅铝溶胶中的一种或多种。
[0057]根据本发明的制备方法,所述喷雾干燥、干燥、焙烧的方法均可参照现有技术进行,本发明对此无特殊要求。
[0058]本发明提供了一种按照本发明的制备方法制备得到的金属捕集剂。
[0059]本发明提供了本发明所述的金属捕集剂在催化裂化中的应用。
[0060]本发明的金属捕集剂具有很好的金属捕集效果,将本发明提供的金属捕集剂用于高钒重油催化裂化,可以减缓钒对裂化催化剂的破坏,提高液体产品收率,降低干气及焦炭收率。例如当本发明提供的钒捕集剂与工业裂化催化剂按重量比为6:94混合,催化剂混合物上Ni含量约为2000ppm、钒含量约为4500ppm时,与单独使用工业裂化催化剂相比,重油收率由12.36重量%减少至10.27重量%,总液体产品收率由71.60重量%增加至74.22重量%,干气选择性由0.0358降至0.0340,焦炭选择性由0.1910降至0.1787。由此可见,本发明提供的金属捕集剂能更有效地将重油转化成高价值产品。
[0061]本发明提供了一种催化裂化方法,该方法包括:在催化裂化条件下,将重油原料与含有金属捕集剂和催化裂化催化剂的催化剂混合物接触,其中,所述金属捕集剂为本发明所述的金属捕集剂。
[0062]根据本发明的催化裂化方法,优选所述催化剂混合物中金属捕集剂与催化裂化催化剂的重量比为1:4-99,优选为1:5.7-99,更优选为1:6-32。
[0063]根据本发明的催化裂化方法,所述催化裂化条件可以为本领域常用的催化裂化条件,本发明对此无特殊要求,在此不进行详细描述。
[0064]下面通过实施例对本发明予以进一步说明,但并不因此而限制本发明。[0065]在本发明中,以干基计的重量是指在约800°C的条件下焙烧I小时后的重量。
[0066]本发明中,物质的固含量指的是物质经过高温焙烧后的重量与焙烧前的重量比,即物质的固含量=100%-物质的含水量%。
[0067]本发明中,剂油比指的是催化剂与原料油的质量比。
[0068]本发明中,如未特别说明,ppm为以重量计的ppm。
[0069]在实施例中和对比例中:
[0070]铝溶胶由中石化催化剂齐鲁分公司提供(Al2O3含量为21.5重量%),高岭土产自中国苏州(固含量为76.9重量%),拟薄水铝石由山东铝厂提供(固含量为60.8重量%),氧化镁由河北镁神化工有限公司提供。工业催化剂C (牌号HGY)由中国石化齐鲁催化剂分公司提供,对比例和实施例中所用化学试剂未特别注明的,其规格为化学纯。
[0071]在各实施例中,磨损指数及堆积密度采用RIPP标准方法测定(参见《石油化工分析方法(RIPP实验方法)》,杨翠定等编,科学出版社,1990年出版)。催化剂混合物中N1、V含量用X射线荧光法测定;金属捕集剂的物相采用XRD法测定。
[0072]实施例1
[0073]本实施例用于说明本发明提供的金属捕集剂的制备过程。
[0074]( I)将小孔氧化铝A加入脱离子水中,分散均匀后,加入盐酸,接触30分钟后得到第一浆液,第一浆液的PH值为1.1,浆液固含量为15重量% ;
[0075](2)接着加入脱离子水分散的MgO浆液(含MgO 750g)至所述第一浆液中,温度控制在55°C下接触60分钟后得到第二浆液,第二浆液的pH值为9.6,固含量为28重量% ;
[0076](3)接着加入大孔氧化铝至第二浆液中得到第三浆液,在10_40°C下接触15min ;
[0077](4)将所述第三浆液喷雾干燥成型后,直接焙烧,焙烧条件为550°C /2h,得到金属捕集剂Al ;
[0078]其中,氧化铝的孔分布列于表I中(大孔氧化铝A、小孔氧化铝A的孔分布图见图1),Al的配方、制备参数及磨损指数列于表2中。Al的XRD谱图见图4,由图4可以看出,金属捕集剂Al中含有镁铝尖晶石结构,即金属捕集剂中至少部分氧化镁和氧化铝形成了镁铝尖晶石结构;
[0079]其中,金属捕集剂Al的新鲜态和于800°C、100%水蒸汽气氛下水热老化17小时后的孔分布图见图2 ;由图2可以看出金属捕集剂Al经水热老化后中孔保持完好,且提供更大的孔体积。
[0080]实施例2-8
[0081]实例2-8用于说明本发明提供的金属捕集剂的制备过程。
[0082]按照实施例1的方法制备金属捕集剂A2-A8,不同的是配方、制备参数及磨损指数列于表2中。
[0083]实施例9
[0084]按照实施例1的方法制备金属捕集剂A9,不同的是,没有步骤(3),且直接将大孔氧化铝与小孔氧化铝一起在步骤(I)中加入,其余步骤及条件均相同,得到金属捕集剂A9。
[0085]对比例I
[0086]本对比例用于说明对比金属捕集剂BI的制备过程。
[0087](I)将拟薄水铝石250g (按Al2O3计)加入脱离子水中,分散均匀后,加入盐酸,接触30分钟后得到第一浆液,第一浆液的pH值为1.5,固含量为15重量% ;
[0088](2)接着加入脱离子水分散的MgO浆液(含MgO 750g)至所述第一浆液中,在76°C
下接触60分钟后得到第二浆液,第二浆液的pH值为9.9,固含量为28重量% ;
[0089]将第二浆液喷雾干燥成型,直接焙烧,焙烧条件为550°C /2h,得到金属捕集剂BI。
BI的配方、制备参数及磨损指数列于表3中。BI的XRD谱图见图4,由图4可以看出,金属
捕集剂Al中含有镁铝尖晶石结构,即金属捕集剂中至少部分氧化镁和氧化铝形成了镁铝
尖晶石结构;
[0090]其中,金属捕集剂BI的新鲜态和于800°C、100%水蒸汽气氛下水热老化17小时后
的孔分布图见图3 ;由图3可以看出金属捕集剂B I水热老化后基本没有形成中孔。
[0091]对比例2-3
[0092]按照对比例I的方法制备对比金属捕集剂B2-B3,不同的是,B2、B3的配方、制备参
数及磨损指数列于表3中。从磨损指数看,仅用大孔氧化铝的对比助剂B3强度差,不适合
用于催化裂化过程。
[0093]表1
[0094]
【权利要求】
1.一种金属捕集剂,该金属捕集剂含有氧化镁和具有阶梯孔分布的氧化铝,且至少部分氧化铝和至少部分氧化镁形成镁铝尖晶石结构; 其中,所述具有阶梯孔分布的氧化铝含有大孔氧化铝和小孔氧化铝;以2-100nm孔的孔体积为基准,所述大孔氧化招中,2_5nm孔的孔体积占20-35%, 5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50% ;所述小孔氧化铝中2_5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15_30%,10-60nm孔的孔体积占10_20%。
2.根据权利要求1所述的金属捕集剂,其中,所述具有阶梯孔分布的氧化铝含有10-90重量%的大孔氧化招和10-90重量%的小孔氧化招。
3.根据权利要求1或2所述的金属捕集剂,其中,所述金属捕集剂中含有5-95重量%的具有阶梯孔分布的氧化铝和5-95重量%的氧化镁。
4.根据权利要求1-3中任意一项所述的金属捕集剂,其中,所述金属捕集剂中还含有第三组分,所述第三组分为除所述氧化镁、所述具有阶梯孔分布的氧化铝以外的耐热无机氧化物和/或粘土。
5.根据权利要求4所述的金属捕集剂,其中,所述金属捕集剂中含有10-95重量%的具有阶梯孔分布的氧化铝和5-60重量%的氧化镁以及平衡量的所述第三组分。
6.根据权利要求4所述的金属捕集剂,其中,所述耐热无机氧化物选自二氧化硅,除所述具有阶梯孔分布的氧化铝外的氧化铝和氧化镁外的金属氧化物中的一种或多种。
7.根据权利要求4所述的金属捕集剂,其中,所述粘土选自高岭土、硅藻土、海泡石、凹凸棒石、蒙脱石和累脱石中一种或多种。
8.一种金属捕集剂的制备方法,其中,该方法包括: (1)将小孔氧化铝、去离子水和酸混`合制浆得到第一浆液; (2)将所述第一浆液与氢氧化镁和/或氧化镁接触得到第二浆液; (3)将所述第二浆液与大孔氧化铝接触得到第三浆液; (4)将所述第三浆液进行喷雾干燥后进行焙烧; 其中,以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50% ;所述小孔氧化铝中2_5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15_30%,10_60nm孔的孔体积占10_20%。
9.根据权利要8所述的制备方法,其中,所述大孔氧化铝和小孔氧化铝的用量使得制备得到的金属捕集剂中的氧化铝中含有10-90重量%的大孔氧化铝和10-90重量%的小孔氧化铝,且所述大孔氧化铝和小孔氧化铝的总用量使得制备得到的金属捕集剂中大孔氧化铝和小孔氧化铝的总含量为5-95重量%。
10.根据权利要求8或9所述的制备方法,其中,所述氢氧化镁和/或氧化镁的用量使得制备得到的金属捕集剂中含有5-95重量%的氧化镁。
11.根据权利要求8-10中任意一项所述的制备方法,其中, 步骤(1)中酸的用量使得第一浆液的pH值为1-3.0 ; 步骤(1)中小孔氧化铝与去离子水的用量使得第一浆液的固含量为8-20重量%。
12.根据权利要求8-11中任意一项所述的制备方法,其中,步骤(2)中所述接触的条件包括:温度为0-70°C,时间为15min以上。
13.根据权利要求8-12中任意一项所述的制备方法,其中,步骤(3)中所述接触的条件包括:温度为10-60°C,时间为2-20min。
14.根据权利要求8-13中任意一项所述的制备方法,其中,步骤(1)的混合制浆和/或步骤(2)的将所述第一浆液与氢氧化镁和/或氧化镁的接触和/或步骤(3)的将所述第二浆液与大孔氧化铝的接触在第三物质存在下进行,所述第三物质为粘土,除氧化镁、所述大孔氧化铝、所述小孔氧化铝、所述氢氧化镁以外的耐热无机氧化物和/或耐热无机氧化物的前驱体中的一种或多种。
15.根据权利要求14所述的制备方法,其中,所述大孔氧化铝和小孔氧化铝的总用量、所述氢氧化镁和/或氧化镁的用量、所述第三物质的用量使得制备得到的金属捕集剂中含有10-95重量%的大孔氧化铝和小孔氧化铝,5-60重量%的氧化镁及平衡量的所述第三物质的氧化物。
16.根据权利要求14所述的制备方法,其中,所述耐热无机氧化物前驱体选自硅溶胶、水玻璃、拟薄水铝石、铝溶胶和硅铝溶胶中的一种或多种。
17.一种由权利要求8-16中任意一项所述的制备方法制备得到的金属捕集剂。
18.权利要求1-7和权利要求17中任意一项所述的金属捕集剂在催化裂化中的应用。
19.一种催化裂化方法,该方法包括:在催化裂化条件下,将重油原料与含有金属捕集剂和催化裂化催化剂的催化剂混合物接触,其特征在于,所述金属捕集剂为权利要求1-7和权利要求17中任意一项所述的金属捕集剂。
20.根据权利要求19所述的方法,其中,所述催化剂混合物中金属捕集剂与催化裂化催化剂的重量比为 1:4-99。
【文档编号】B01J21/10GK103785370SQ201210420936
【公开日】2014年5月14日 申请日期:2012年10月29日 优先权日:2012年10月29日
【发明者】陈蓓艳, 朱玉霞, 沈宁元, 蒋文斌, 黄志青, 任飞, 宋海涛 申请人:中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1