一种在紫铜表面上加工亲滑界面的方法与流程

文档序号:15164493发布日期:2018-08-14 17:18阅读:480来源:国知局

本发明属于换热器技术领域,具体涉及一种在紫铜表面上加工亲滑界面的方法。



背景技术:

冷凝换热作为一种高效的热量回收与利用过程广泛存在于电力、化工、冶金、制冷等工业领域。冷凝传热强化技术对提高能源利用效率具有重要意义。为了提高冷凝换热,要求冷凝表面具有成核速率高、冷凝液滴易输运、界面热阻小的特性。近年来,国内外学者发展并采用表面改性技术将普通冷凝表面制备成疏水或超疏水表面,使得表面上冷凝液滴易滚动,实现珠状冷凝,提高了冷凝传热性能。虽然在超疏水表面上能够形成稳定的珠状冷凝,但是此表面在应用过程中存在一些问题。在纯蒸气环境中,由于冷凝液滴在粗糙结构间隙中冷凝变大,会形成粘滞的wenzel状态,冷凝液滴滚动角增大,不利于换热。并且,根据经典成核理论,表面接触角越小,冷凝液滴越容易成核。超疏水表面上水滴的接触角大于150°,不利于成核。考虑到亲水表面上水滴的接触角较小,更易于成核,文献中提出一种亲疏水结合表面,利用亲水区域增大成核速率,利用疏水区域增大冷凝液滴输运能力,从而提高冷凝换热效率。但是目前这种亲疏水结合表面仅在硅表面进行加工,且需要昂贵的加工设备以及对加工环境要求较高,同时表面上精细的微纳米结构易受损。最近aizenberg课题组基于猪笼草叶子的研究,提出一种超滑表面,利用其基底上的微纳结构通过毛细作用将润滑油等液体锁定在孔隙中,孔隙中浸润的润滑油在基底形成一层动态油膜,油膜与不溶液体的液液界面代替了固体与液体的固液界面,从而大幅减少了滑动阻力。与传统具有类似低滚动角特性的超疏水和超疏油表面相比,孔隙中填充润滑油比空气具有更好的压力稳定性,而且润滑油的毛细流动性使得超滑表面具有良好的自修复能力。在纯蒸气冷凝中,液滴在超滑表面上极易滚动,同时在滚动中清扫成核区域,从而增强换热。但是目前文献中研究的用于冷凝的超滑表面接触角约为110°,属于疏水表面,成核密度依然低于亲水表面。



技术实现要素:

本发明的目的在于提供一种在紫铜表面上加工亲滑界面的方法,其加工过程简单,能够大面积应用,水滴在这种表面上同时具有小接触角和小滚动角的特性,即能增大冷凝液滴成核速率,又使冷凝液滴易于输运。

为达到上述目的,本发明采用的技术方案是:

1)首先,将紫铜浸入酸溶液中静置,然后依次用有机溶剂和去离子水清洗紫铜表面,并用氮气吹扫干燥;

2)其次,将干燥后的紫铜置于含有过硫酸钾的碱溶液中于70℃恒温处理1小时后用去离子水再次清洗紫铜表面,将清洗后的紫铜置于真空箱中于180℃恒温处理两小时后取出在室温下干燥;

3)然后,将再次干燥后的紫铜浸入0.0025mol/l的十八烷基硫醇乙醇溶液中于70℃恒温处理1小时后用去离子水再次洗净,并用氮气吹干;

4)最后,将润滑油涂覆在处理后的紫铜表面上,配合氮气吹扫至表面平滑。

所述的酸溶液为2mol/l的盐酸或硫酸溶液。

所述的静置时间为30min。

所述有机溶剂为丙酮或乙二醇。

所述过硫酸钾的碱溶液中过硫酸钾的浓度为0.065mol/l,碱溶液为2.5mol/l的氢氧化钠或氢氧化钾溶液。

所述润滑油为辛基三甲氧基硅烷。

由于基于增强冷凝换热的三个必要条件是成核速率高、冷凝液滴易输运、界面热阻小,本发明针对超疏水表面、亲疏水结合表面、亲滑表面在冷凝换热情况中的不足采用辛基三甲氧基硅烷作为表面润滑剂,使得界面具有高表面自由能和低接触角滞后的优点,水滴在此界面上同时具有较小的接触角和较小的滚动角;界面具有易恢复的特性,润滑剂的蒸发会影响表面的亲滑特性,通过重新涂覆润滑剂,即可恢复表面的亲滑特性;在涂覆润滑剂之前,在紫铜表面上加工了十八烷基硫醇自组装膜,使得此界面上的润滑剂即使完全蒸发,依然能保持较小的接触角滞后特性。

附图说明

图1为本发明制得的亲滑表面未涂覆润滑剂时的微观结构图,比例尺:5μm。

图2为本发明制得的亲滑表面上水滴的静态接触角和滚动角示意图,ca=32±3°,sa=2±1°。图2a为水滴在亲滑表面上的静态接触角示意图,图2b为水滴在亲滑表面上滚动角的测量示意图。

图3为本发明制得的亲滑表面润湿特性随时间的变化曲线图。a:亲滑状态;b:滑动wenzel状态;c:粘滞wenzel状态;d:超疏cassie状态。

具体实施方式

下面结合附图对本发明作进一步详细说明。

实施例1:

1)首先,将紫铜浸入2mol/l的盐酸或硫酸溶液中静置30min,然后依次用丙酮或乙二醇和去离子水清洗紫铜表面,并用氮气吹扫干燥;

2)其次,将干燥后的紫铜置于含有过硫酸钾的碱溶液中于70℃恒温处理1小时后用去离子水再次清洗紫铜表面,将清洗后的紫铜置于真空箱中于180℃恒温处理两小时后取出在室温下干燥;

其中,过硫酸钾的碱溶液中过硫酸钾的浓度为0.065mol/l,碱溶液为2.5mol/l的氢氧化钠或氢氧化钾溶液;

3)然后,将再次干燥后的紫铜浸入0.0025mol/l的十八烷基硫醇乙醇溶液中于70℃恒温处理1小时后用去离子水再次洗净,并用氮气吹干;

4)最后,将润滑油辛基三甲氧基硅烷涂覆在处理后的紫铜表面上,配合氮气吹扫至表面平滑。

由图1可以看出,按以上实施例制备的产品具有纳米级粗糙结构。

由图2可以看出,按以上实施例制备的产品能使水滴具有较小的静态接触角和滚动角。

由图3可以看出,按以上实施例制备的产品放置在室温中,表面润滑剂的质量会随时间减小,从而使水滴在其表面上的接触角和滚动角随时间发生变化,从亲滑状态(a)变为滚动wenzel状态(b)、粘滞wenzel状态(c)和超疏cassie状态(d)。对处于b、c和d任一状态的表面重复步骤4均可重新得到亲滑状态(a)的表面。



技术特征:

技术总结
一种在紫铜表面上加工亲滑界面的方法,将紫铜浸入酸溶液中静置30min,然后依次以有机溶剂/去离子水清洗紫铜表面,并用氮气吹扫;随后,将干燥后的紫铜置于含有过硫酸钾的碱溶液中,保持70℃恒温处理一小时;之后,以去离子水再次清洗表面,保持180℃恒温一小时;将再次干燥后的紫铜浸入十八烷基硫醇乙醇溶液中,保持70℃恒温一小时;取出后以去离子水再次洗净,并用氮气吹干备用;最后,将润滑油涂覆在处理后的紫铜表面上,配合氮气吹扫至表面平滑。本发明采用氧化刻蚀、十八烷基硫醇自组装膜和润滑油涂覆的方法,在紫铜基底上制备得到亲滑界面。本发明制得的亲滑界面具有高表面自由能和低接触角滞后的特性,具有自修复、易恢复的优点。

技术研发人员:唐桂华;郭琳;牛东
受保护的技术使用者:西安交通大学
技术研发日:2018.01.26
技术公布日:2018.08.14
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1