一种蒽油加氢的反应系统及方法与流程

文档序号:22809577发布日期:2020-11-04 04:37阅读:672来源:国知局
一种蒽油加氢的反应系统及方法与流程

本发明涉及蒽油加氢领域,具体而言,涉及一种蒽油加氢的反应系统及方法。



背景技术:

蒽油是煤焦油组分的一部分,通过蒸馏焦油切取280~360℃的馏分,一般为黄绿色油状液体,室温下有结晶析出,结晶为黄色、有蓝色荧光,能溶于乙醇和乙醚,不溶于水,部分溶于热苯、氯苯等有机溶剂,有强烈刺激性。遇高温明火可燃,主要组成物有蒽、菲、芴、苊、咔唑等。

通过采用蒽油加氢工艺可有效实现脱硫、不饱和烃饱和化、脱氮反应以及芳烃饱和化,从而改善蒽油的安定性、降低硫氮含量和降低芳烃含量,获得高品质的石脑油和柴油调和成分。

目前,大多蒽油加氢工艺均是采用加氢精制、加氢裂化或者两者的结合两段加氢工艺,虽然加氢过程操作方便,容易产业化,但是能耗高,加氢反应器压力高、温度高,产能也比较低。

有鉴于此,特提出本发明。



技术实现要素:

本发明的第一目的在于提供一种蒽油加氢的反应系统,该反应系统通过将加氢反应器与微界面发生器进行组合后,降低了能耗,降低了反应温度,提高了反应产率,提高了原料的利用率,尤其是提高氢气的利用率,同时有效的提高了产能,进而提高了产品的品质以及收率,此外也起到了节省设备成本,节约设备占地面积的作用。

本发明的第二目的在于提供一种采用上述反应系统进行蒽油加氢的反应方法,反应得到的加氢蒽油环保、清洁,应用广泛,提高了蒽油本身的适用面,值得广泛推广应用。

为了实现本发明的上述目的,特采用以下技术方案:

本发明提供了一种蒽油加氢的反应系统,包括:依次连接的微界面发生器、加氢反应器;

所述微界面发生器内通入氢气与蒽油;所述加氢反应器的侧壁设置有加氢产物出口,从所述加氢产物出口出来的产物通入第一分离罐以用于分离热高分气和热高分油,所述热高分气去往第二分离罐分离成冷高分气和冷高分油;所述热高分油去往第三分离罐去往第三分离罐分离成热低分气和热低分油,所述热低分油进入裂化反应塔进行裂化反应后,得到的所述裂化反应产物去往分馏塔进行分馏,所述冷高分气、冷高分油以及热低分气分别收集排出。

本发明的蒽油加氢的反应系统,通过在加氢反应器内部设置有微界面发生器,将进入的氢气进行分散破碎成微气泡,从而提高传质效果,在微界面发生器内部通入的蒽油主要作用是配合气体的分散破碎,相当于介质的作用。

并且,该微界面发生器相对于加氢反应器是设置在其外部,但是对于裂化反应塔来说,也可以相应的设置微界面发生器,并且其最好同时设置在裂化反应塔的外部以及内部,相当于将外部以及内部的微界面发生器同时结合应用,并且裂化反应塔本身为固定床反应器,因此在裂化反应塔内部的微界面发生器是最好沿垂直方向呈一条直线依次均匀设置在相邻所述固定床层之间,这样的设置方式可以在加氢裂化反应进行的同时,以保证两个固定床层间隙的裂化加氢效果更佳,提高了大分子物质裂化为小分子物质的效果,相当于分散破碎与反应同时进行,也使得分散破碎操作与反应的进行联系更加紧密,并且通过设置在裂化反应塔顶部外侧的微界面发生器的作用,使得进料在源头上就能够实现充分破碎成微米气泡,这样进到反应器内部后的粉碎效果就会更加充分,起到了协同配合的效果,因此微界面发生器的设置位置也是经过实践设计所得到的,需要根据不同反应的不同特点进行特定的设计。

优选地,所述裂化反应塔内设置有多层催化剂床层,每个所述催化剂床层上装填有催化剂;所述裂化反应塔的顶部通入氢气,所述氢气预先通过压缩机压缩,所述热低分油从所述裂化反应塔的顶部进入。

更优选地,所述催化剂床层最好为4段,位于所述裂化反应塔内部的所述微界面发生器最好为3个,每个微界面发生器设置在相邻两段催化剂床层之间。3个微界面发生器的数量已经可以保证分散破碎的效果。

上述加氢反应器之前设置的微界面发生器为气动式,通过将氢气与蒽油通入微界面发生器后分散破碎,以加强后续加氢反应,脱除硫、氮等杂质,提高传质效果。

上述裂化反应塔内部以及外部的微界面发生器为气动式,通过将氢气通入微界面发生器后与热低分油直接触后破碎形成微气泡的方式,提高传质效果。

本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号cn201610641119.6、201610641251.7、cn201710766435.0、cn106187660、cn105903425a、cn109437390a、cn205833127u及cn207581700u的专利。在先专利cn201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。

另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利cn106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器s-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。

由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(cn201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。

综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。

优选地,进行加氢反应的加氢反应器的类型为固定床反应釜,固定床反应釜内催化剂固定在床层上,加氢反应的催化剂一般采用的镍基催化剂,优选地催化剂可以为负载型的镍基催化剂,或者采用碱土金属氧化物或稀土金属氧化物改性过的镍基催化剂更优,载体选择为氧化硅或者氧化铝。

优选地,进行裂化加氢反应催化剂的活性成分为镍、钴、钼的氧化物,载体为氧化铝、硅铝氧化物或分子筛。

加氢反应器的作用在于脱除硫、氮等杂质,提高蒽油产品的质量,裂化反应塔的作用在于加工重油,使其在催化剂作用下,大分子裂化成小分子,可以将大部分渣油转化成为燃料油、液化气等,从而提供油品的利用率,产品中的烯烃含量也会比较高。

从加氢反应器出来的产物经过第一分离罐、第二分离罐以及第三分离罐的分离,分离罐根据分离的产品不同会调整加压的压力,分离出的热低分油从所述裂化反应塔的顶部进入与氢气共同进行裂化加氢,通过将加氢反应与加氢裂化循环并联的方式,提高了加氢效果,也相应的提高了反应深度。

优选地,所述裂化反应塔的底部设置有用于将所述裂化反应产物排出的裂化反应产物出口,所述裂化反应产物出口连接用于油气分离的第四分离罐,第四分离罐底部分离出的油相去往所述分馏塔。

优选地,所述第四分离罐底部分离出的油相去往第五分离罐进一步分离后,从所述第五分离罐底部分离出的油相再去往所述分馏塔。

优选地,第四分离罐的顶部分离出的气相返回所述裂化反应塔重新进行裂化反应。

优选地,从所述第二分离罐顶部出来的冷高分气去往所述第四分离罐进行继续分离。

优选地,从所述第二分离罐底部出来的冷高分油去往所述第五分离罐进行继续分离。

从裂化反应塔出来的裂化反应产物同样会通过第四分离罐以及第五分离罐进行不同程度的气液分离,同时前面分离罐中的产物也可以进入到后续的分离罐中进行再分离,以提高分离效果。

优选地,所述分馏塔内设置有多层塔板,所述塔板内装填有助于分馏效果的填料,从所述分馏塔的塔顶出来的塔顶气通过管道排出,从所述分馏塔底部出来的尾油通过管道排出,从所述分馏塔的塔段中间部位出来的不同馏分分别收集。分馏塔的作用在于根据不同的用途收集不同的馏分进行相应的应用。中间塔段的馏分为燃料油、石脑油以及液化气等成分。

本发明还提供了一种蒽油加氢反应系统的反应方法,包括:

将蒽油与氢气混合微界面分散破碎后进行加氢反应,再进行分离、加氢裂化后,气液分离以及分馏。

优选地,所述加氢反应的压力8-10mpa,所述加氢反应的温度为220-230℃;

优选地,所述加氢裂化的压力8-10mpa,温度为220-230℃。

上述反应方法中,加氢反应与裂化加氢反应较以往的反应相比,均降低了能耗,并同时提高了反应效果,提高了原料利用率,尤其是氢气的利用率。

采用本发明蒽油加氢反应得到的油品品质好、收率高,脱硫率可以达到99.95%。

本发明的蒽油加氢的反应方法反应温度低、压力大幅度下降,液时空速高,相当于提高了产能,最终的脱硫率接近100%,较以往提高了近1个百分点。

与现有技术相比,本发明的有益效果在于:

(1)本发明蒽油加氢的反应系统通过将加氢反应器与微界面发生器进行组合后,降低了能耗,降低了反应温度,提高了反应产率,提高了原料的利用率;

(2)本发明的蒽油加氢的反应系统通过将微界面发生器设置在特定的位置,从而对于提高传质效果是最为有利的;

(3)本发明的蒽油加氢的反应方法反应温度低、压力大幅度下降,液时空速高,相当于提高了产能,最终的脱硫率接近100%,较以往提高了近1个百分点。

附图说明

通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:

图1为本发明实施例提供的蒽油加氢的反应系统的结构示意图。

附图说明:

10-储氢罐;20-微界面发生器;

30-蒽油储罐;40-氢气预热器;

50-加氢反应器;60-第一分离罐;

70-第二分离罐;80-裂化反应塔;

90-第四分离罐;100-分馏塔;

110-第三分离罐;120-第五分离罐;

801-催化剂床层;802-裂化反应产物出口;

1001-塔板。

具体实施方式

下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。

为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。

实施例

参阅图1所示,为本发明实施例的蒽油加氢的反应系统,其主要包括微界面发生器20、加氢反应器50以及裂化反应塔80;

微界面发生器20内同时通入氢气与蒽油,蒽油从蒽油储罐30输送过来,氢气从储氢罐10输送过来先经过氢气预热器40预热后再通入微界面发生器20中,在微界面发生器20内氢气经过分散破碎成小分子后,分散破碎处理后的蒽油与氢气的混合物共同输送到加氢反应器50内进行加氢反应;

经过加氢脱硫、脱氮后的油从加氢反应器50出来先经过第一分离罐60分离成热高分气和热高分油,然后热高分气继续通过第二分离罐70进行分离,分离成冷高分气和冷高分油,第二分离罐70顶部的冷高分气去往后续的第四分离罐90进行进一步的分离,第二分离罐70底部的冷高分油直接去往后续的第五分离罐120进行进一步的分离,第一分离罐60出来的热高分油经过第三分离罐110进行分离,从第三分离罐110底部出来的热低分油从裂化反应塔80的顶部进入进行加氢催化裂化。

裂化反应塔80的顶部通入氢气,一部分为新氢,另一部分为从第四分离罐90顶部重新返回的气相,先通过压缩机压缩后再通入到裂化反应塔80内,这样氢气和热低分油均从顶部进入到裂化反应塔80内,以进行裂化催化反应。

裂化反应塔80内设置有多层催化剂床层801,优选为4层催化剂床层801,在每个催化剂床层801上装填有催化剂,为了提高传质效果,在裂化反应塔80的顶部进料口处以及裂化反应塔80内的相邻催化剂床层801之间均设置有微界面发生器20,该微界面发生器20的类型与加氢反应器50之前所设置的微界面发生器20类型是一致的,均选择为气动式类型的微界面发生器20,通过设置在不同位置的微界面发生器20的协同配合作用,以提高整个反应的传质效果。

经过了加氢裂化催化反应后,在裂化反应器的底部设置有用于将裂化反应产物排出的裂化反应产物出口802,从裂化反应产物出口802出来的物质去往第四分离罐90进行油气分离,从第四分离罐90底部分离出的油相去往第五分离罐120进行进一步的分离。第四分离罐90的顶部分离出的气相重新返回到裂化反应塔80作为裂化反应的原料再利用。

在第五分离罐120的顶部出去的气相直接排出,第五分离罐120的底部出去的油相去往分馏塔100进行分馏,分馏塔100内设置有多层塔板1001,塔板1001内装填有助于分馏效果的填料,常用的填料可以为拉西环、鲍尔环等等。

经过分馏塔100的分馏后,塔顶出来的塔顶气通过管道排出,从分馏塔100底部出来的尾油通过管道排出,从分馏塔100的塔段中间部位出来的不同馏分分别收集,不同馏分主要为液化气、石脑油、燃料油等等。

在上述实施例中,为了增加分散、传质效果,也可以多增设额外的微界面发生器20,安装位置其实也是不限的,可以外置也可以内置,内置时还可以采用安装在釜内的侧壁上相对设置,以实现从微界面发生器20的出口出来的微气泡发生对冲。

在上述实施例中,加氢反应器50的类型除了可以是固定床反应釜以外,还可以是沸腾床反应釜等其他类型,除此之外进出料的方式也不限,可以从下方进料上方出料,也可以采用上方进料下方出料的方式,但是比较优选地是侧方进料,上方出料的方式。

在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。

以下简要说明本发明的蒽油加氢反应系统的工作过程和原理:

氮气吹扫反应系统中的各个设备,然后开车进行操作,氢气与蒽油先在加氢反应器50内进行加氢反应,进行加氢反应之前,将氢气与蒽油先通入到微界面发生器20中进行分散破碎后使得气体形成微气泡,更有利于反应高效的进行,加氢反应后,反应产物经过分离罐的分离后去往裂化反应塔80进行催化裂化反应,裂化反应产物出来后经过分离去往分馏塔100进行分馏,得到最终的产品。

其中,上述加氢反应的压力8-10mpa,所述加氢反应的温度为220-230℃。

裂化加氢的压力8-10mpa,温度为220-230℃。通过设置了微界面发生器20后相应的降低了操作压力、温度,降低了能耗,提高了产能。

以上各个工艺步骤循环往复,以使整个合成系统平稳的运行。

通过采用本发明的加氢反应工艺,脱硫的脱除率可以达到99.95%,较以往的加氢反应工艺,其脱除率提高了近1个百分点。

此外,通过铺设微界面发生器降低了加氢反应釜的压力以及温度,充分降低了能耗。

总之,与现有技术的蒽油加氢的反应系统相比,本发明的蒽油加氢的反应系统设备组件少、占地面积小、能耗低、成本低、安全性高、反应可控,原料转化率高,相当于为蒽油加氢领域提供了一种操作性更强的反应系统,值得广泛推广应用。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1