带有可拆卸式催化结构的板式反应器的制作方法

文档序号:83530阅读:240来源:国知局
专利名称:带有可拆卸式催化结构的板式反应器的制作方法
本发明涉及一种适用于在化学工艺中将天然气转变成长链烃的催化反应器,以及包括这种催化反应器以执行所述工艺的设备。
在专利WO 01/51194和WO 03/048034(Accentus plc)所描述的工艺中,甲烷与蒸汽在第一催化反应器中反应而生成一氧化碳和氢气;然后,所得的气体混合物用来在第二催化反应器中进行费托(Fischer-Tropsch)合成。总的结果是将甲烷转化为更高分子量的烃,其在环境条件下通常为液态或固态。该工艺的两个阶段,即蒸汽/甲烷重整和费托合成,需要不同的催化剂,并且描述了为每一个阶段使用的催化反应器。当反应分别为吸热反应和放热反应时,相应地,催化反应器能使热量传输到反应气体或者能使热量从反应气体中传输出来。用于两个不同阶段的反应器必须遵守若干不同的必需条件费托合成通常在比蒸汽/甲烷重整更高的压力、但更低的温度下进行;并且在费托反应器的传热通道中只需要冷却剂流体,而蒸汽/甲烷重整所需的热量通常将由燃烧来提供,并且还将需要合适的催化剂。
根据本发明,提供了一种紧凑的催化反应器,其包括多个设置成叠组并结合在一起的金属片材,所述叠组限定了多个用于第一流体的第一流动通道,所述第一流动通道与多个用于第二流体的第二流动通道交替设置在叠组中,从而确保在所述第一流体和第二流体之间的良好热接触,每个流动通道限定在相应的一对相邻片材之间;其中发生化学反应的每个流动通道直接穿过叠组,并包含结合有金属衬底的可拆卸的气体可透过的催化剂结构;以及用于第一流体的入口和出口;第一流动通道定向在与第二流动通道垂直的方向上;
其中,在叠组中的连续的第二流动通道之间,反应器限定了至少三个并列的第一流动通道;并且反应器包括分流装置,使得第一流体在从入口流向出口时必须接连地流过所述至少三个第一流动通道。
在一个实施例中,分流装置包括连接在叠组的相对表面上的集管。作为备选,分流装置可包括连接流路,其在连续的并列的第一流动通道的末端部分之间提供了连通,连接流路提供了在与第二流动通道定向大致平行的方向上的流动。这些连接流路可由孔或开孔来限定,或通过限定连接流路分段的装置来限定。在连续的并列的第一流动通道的末端部分之间的流通能力由连接流路提供的情况下,不需要经由集管的任何流路来连接连续的第一流动通道。在各种情况下,整个流型具有Z字形或蛇形的流路,其相对于第二流动通道中的流路至少是部分逆流或并流的。这可改善在第一及第二气体流动通道之间的传热。
反应器可包括扁平板材的叠组,板材中的凹槽限定了第一和第二流动通道。作为备选,流动通道可由加工成造型(castellated)并与扁平片材交替地叠起来的薄金属片材限定;流动通道的边缘可由密封条限定。为了确保所需的良好热接触,所述第一和第二气体流动通道可以具有10mm至2mm的深度,该深度优选小于6毫米,更优选在2mm至5mm的范围内。形成反应器模块的板材叠组通过例如扩散焊、钎焊或热等静压而结合在一起。制成反应器的材料将取决于操作温度和所暴露于其中的气体。例如,在反应器用于蒸汽重整的情况下,合适的金属是用于高温用途的铁/镍/铬合金,例如海恩斯HR-120或铬镍铁合金800HT(商标)等类似的材料。
如果第一流动通道由相应板材中的凹槽限定,并且这些凹槽被平台分开时,那么在各凹槽的末端附近可限定穿过平台的开孔或孔,从而在相邻的凹槽之间限定连接流路。
催化剂结构优选具有金属衬底,以提供强度,并增强在催化剂结构中由传导引起的传热,以防止热点。通常金属衬底将被覆包含有活性催化材料的陶瓷覆层。用于催化剂结构的金属衬底优选是钢合金,当加热时,其形成了氧化铝的附着性表面覆层,例如含铝的铁素体钢(如Fecralloy(TM))。当这种金属在空气中加热时,其会形成氧化铝的附着性氧化物覆层,该覆层能保护所述合金免受进一步的氧化和腐蚀.当陶瓷覆层是氧化铝时,这看来似乎是结合在该表面上的氧化物覆层上。各催化剂结构优选加工成可将流动通道划分成多个平行的流动子通道,催化材料位于各个子通道中的表面上。衬底可以是箔片、金属丝网或毡膜,其可为波纹状、凹陷状或褶皱的;优选的衬底是例如厚度小于100μm的薄金属箔片。
因而,在一个实施例中,催化剂结构包括波纹状的金属箔片。催化剂结构不是结构化的,也就是说,其并不显著地有助于反应器的机械强度,从而可将这种催化剂结构插入到各流动通道中,使催化剂适合于相应的反应。这种催化剂结构可从反应器的通道中拆卸下来,从而在催化剂用过时可更换它。
可根据本发明来构造适用于甲烷/蒸汽重整反应或用于费托合成的反应器。因此,用于处理天然气以获得较长链烃的设备可包括使甲烷和蒸汽起反应以形成合成气的本发明的蒸汽/甲烷重整反应器,以及用以产生较长链烃的本发明的费托反应器。在蒸汽/甲烷重整反应器中,第一和第二气体流动通道的深度均优选小于5mm,更优选小于3mm;在费托反应器的情形下,用于反应的通道的深度优选小于10mm。
这类反应器提供了较短的扩散路径长度,因而热量和质量的传递速率可以较高,使得化学反应的速率可以较高。因此,这种反应器可提供较高的功率密度。在各种情况下,流动方向优选是至少部分地并流的。在用于蒸汽甲烷重整的反应器的情况下,需要在重整通道的出口具有峰值温度,并且这最容易利用并流来获得。对于费托反应器而言,优选在费托通道的出口附近具有最热的冷却剂,以抑制固相沉积,因此再次优选并流。
分流装置优选使得第一流体必须接连地流过不超过十个的第一流动通道,例如接连地流过五个流动通道。
下面将结合附图仅以示例方式对本发明作进一步的和更具体的描述,其中图1显示了包括本发明反应器的化学设备的流程图;图2显示了适合于蒸汽/甲烷重整的反应器的截面图;图3显示了局部剖视的图2所示反应器的部分的平面图;图3a以更大比例显示了图2所示反应器的部分;和图4显示了适于费托合成的反应器的概略平面图。
本发明与用于将天然气(主要是甲烷)转化成长链烃的化学工艺相关。这个工艺的第一阶段包括蒸汽/甲烷重整,就是说使天然气和蒸汽混合,使其经历以下类型的反应H2O+CH4->CO+3H2该反应是吸热反应,并且可以通过第一气体流动通道中的铑或铂/铑催化剂进行催化。引起该反应所需要的热量可以通过可燃性气体例如甲烷或氢的燃烧来提供,这种燃烧是放热的,并且可通过相邻的第二气体流动通道中的钯催化剂进行催化。在这两种情况下,催化剂优选位于稳定的氧化铝载体上,该氧化铝载体在金属衬底上形成了通常小于100μm厚的覆层。这种燃烧反应可在大气压下进行,但重整反应可在4至5个大气压下进行。燃烧所产生的热量将通过使相邻通道分开的金属片材来传导。
然后,蒸汽/甲烷重整所产生的气体混合物用于执行费托合成,以产生长链烃,也就是说nCO+2nH2->(CH2)n+nH2O这是一种通常在190-280℃,例如210℃的较高温度下,并且通常在1.8-2.1MPa(绝对值),例如2.0MPa的较高压力下,在存在诸如铁、钴或与钾促进剂相融合的磁铁等催化剂的条件下进行的放热反应。用于费托合成的优选催化剂包括比表面积为140-230m2/g的γ-氧化铝覆层,其具有大约10-40%的钴(同氧化铝的重量比),并具有小于钴重量10%的例如钌、铂或钆等促进剂。
现在参看图1,其以其中显示了设备部件的流程图显示了整个化学工艺。在这个示例中,天然气供料5由主要的甲烷和一定百分比的更高烃C2至C11组成。通常这些高级烃根据天然气源的情况而高达10%v/v。气体供料5可处于例如1.0MPa(10个大气压)的压力下。
气体压力由阀门调整到8至0.6MPa,之后在热交换器10中,利用催化燃烧排出的热气体而将气体5预热到大约400℃,之后供给到固体床脱硫系统12中,其将气体中的硫含量减少到0.1ppm或更少。然后在例如流体旋涡混合器14中将脱硫后的天然气5和蒸汽混合。在热交换器16中,利用催化燃烧的热废气来加热气体/蒸汽的混合物,使得气体混合物达到500℃的温度。混合物进入绝热的固定床预重整器18,在这里它与基于镍或铂/铑的甲烷化催化剂接触。高级烃和蒸汽起反应,以形成甲烷和CO。
气体在通常为450℃的较低温度下离开预重整器18。然后在进入重整器20之前,通过阀门19将压力下调至0.45MPa(绝对压力)。重整器20是上述由板材叠组制成的紧凑型催化反应器,这些板材限定了用于吸热和放热反应的流路,这些流路保持良好的热接触,并且在波纹状金属箔片载体上包含合适的催化剂。重整器20的重整器通道包含铂/铑催化剂,并且蒸汽和甲烷起反应而形成一氧化碳和氢。重整器的温度从入口处的450℃升高到出口处的大约800-850℃。供给混合器14的蒸汽与气体的流速可使供给至重整器20的蒸汽碳的摩尔比率在1.2-1.6之间,优选在1.3和1.5之间。因此,根据气体5的高级烃的含量,重整器18的入口处的蒸汽对碳的比率需要比这更高。
重整反应器20中的吸热反应所需要的热量由短链烃和氢的混合物的催化燃烧来提供,所述氢是费托合成的尾气22;尾气22和鼓风机24提供的空气流组合。在相邻的重整反应器20的流动通道中,在钯/铂催化剂之上发生燃烧。燃烧气体路径相对于重整器气体路径是并流的。催化剂可包括作为载体的γ氧化铝,其被3∶1的钯/铂混合物覆盖,这种钯/铂混合物是在较宽温度范围内有效的催化剂。可燃性气体混合物可供给至沿着反应器20的各级装置中,以确保在燃烧通道的整个长度上发生燃烧。
高于800℃的一氧化碳和氢的混合物从重整器20中脱出,并通过使其穿过产生蒸汽的热交换器26而淬冷至400℃以下。通过泵28将水供给至这个热交换器26中,并通过控制阀门30将用于重整工艺的蒸汽供给至混合器14。在热交换器32中利用冷却水将气体混合物进一步冷却至大约60℃,使过量的水冷凝,并通过穿过旋流器33的通道和分离器导管34而分开。然后通过压缩机36将气体混合物压缩至大约2.5倍的压力,并再次由热交换器40进行冷却,之后穿过第二旋流器41和分离器导管42,以去除冷凝水。分离的水再循环回到产生蒸汽的回路。然后在第二压缩机44中将气体压缩到20个大气压。
之后将高压力的一氧化碳和氢的气流供给至催化的费托反应器50,这又是一种由上述板材叠组形成的紧凑型催化反应器;反应物的混合物流过一组通道,而冷却剂流过另一组通道。
费托合成的反应产物主要是水和烃类如石蜡,其通过穿过热交换器54和旋流器的分离器56,之后穿过分离室58而进行冷却,以使液体冷凝,在分离室中,三种相态的水、烃类和尾气被分开,并且该烃产物在大气压下是稳定的。保持气态的烃和过量的氢气(费托尾气22)被收集并分离。一部分经过减压阀60,以便为重整器20中的催化燃烧工艺提供燃料(如上述)。剩余尾气62供给至燃气涡轮63,其驱动发电机64。
燃气涡轮63产生用于设备的所有功率,并且具有输出过剩功率的能力。主要的设备电功率需求是压缩机36和44,以及泵24和28;电力也可用于操作真空蒸馏装置,以便为蒸汽的产生提供工艺水,并可提供饮用水。
从上面论述的方程式中应该懂得,蒸气重整阶段形成了比费托合成所需要更多的氢。因而尾气22包含大量的氢,以及少量的链烷烃(即C1至C5)。然而,尾气22还包含大量的一氧化碳。因此其可通过经过这样的第二反应器(未显示)来进行第二费托合成,从而提高了一氧化碳的总转化率,并且获得了更多一些的所需产物。
现在参看图2和图3,其显示了适合用作蒸汽重整反应器20的反应器70。首先参看图2,其以剖视图显示了反应器70的部件,并且出于清晰起见而使部件分开了,反应器70由在平面图上看去为矩形的板材叠组制成,各板材为1mm厚,并且由不锈钢(例如316L或铬镍铁合金800HT)制成。平板72和造型板材74,75交替地布置,其中,所述造型可限定从板材一边直通到另一边的通道76,77。造型板材74和75交替地设置成叠组形状,使得通道76,77在交替的造型板材74,75中定向在正交方向上。造型高度(通常在2-10mm的范围内)在这个示例中为4mm,并且沿着侧边提供了4mm厚的实心边缘条78。
该叠组如上述进行组装,并通过高温钎焊而结合在一起;然后将波纹状的金属箔片催化剂载体80(只显示了其中两个)插入到通道中,该催化剂载体80携带了用于两种不同反应的催化剂。然后可将合适的集管连接在叠组的外部。金属箔片优选为含铝的钢合金,例如Fecralloy。
现在参看图3,其显示了反应器70的截面图,其以平面图显示了一个这样的造型板材74,并且局部地剖开而以截面显示造型,蒸汽/甲烷重整反应发生在该板材74所限定的通道内。燃烧反应发生在位于合适集管(未显示)之间的交替板材75(图3中未显示)的通道77中,燃烧物的流动方向由箭头表示。在各个通道76中设有在平面图中为平行四边形形状的催化剂携带箔片80,并且这些箔片插入到通道76中的不同位置,使得箔片的末端彼此对准。箔片80的末端因而限定了Z字形。如图3a中更清晰地所示(其显示了图3的圆圈B中的部分的放大图),分隔相邻通道76的壁的末端部分被孔82穿透,从而气体可在其中没有箔片80的末端区域中在相邻通道76之间流动。越靠近这些末端区域所形成的三角形的中心,就逐渐地有更多的孔82,因此每单位长度外露壁的气体流通面积是恒定的。
部分圆柱形的集管连接在叠组侧上,从而允许进入通道76中;在反应器70的一端设有与四个相邻通道76相通的入口集管84,在反应器70的相对对角端设有与四个相邻通道76相通的出口集管85,并且空白(blank)集管86覆盖叠组侧面的其它部分。箭头C指示了用于蒸汽/甲烷混合物的流路,蒸汽/甲烷混合物进入到入口集管84中,沿着四个相邻的通道76从右至左地流动(如图所示),之后经由孔80流向下一组四个通道76;然后从左至右穿过那些通道76(如图所示),并从而穿过孔80而进入最后一组通道76;并通过最后一组通道76而流向出口集管85。因而蒸汽/甲烷的混合物在其发生反应时,经过总体上相对于燃烧气流A并流的路径,但各个单个的流动分段76是横向的。
应该懂得,并不需要任何气体都流过空白集管86,所以这些集管可具有与所示不同的形式和尺寸。实际上,这些集管86可被空白板取代,或被更多数目的具有较小曲率半径的空白集管取代。这些集管需要提供进入通道76的通路,所述通道76包含有携带催化剂的箔片80,所以当催化剂已用过时就可更换它。在另一变型中,各箔片80具有方形的末端,箔片80经插入,使得末端形成台阶状的Z字形(例如,这种方形末端的箔片的末端可位于图3中所示的倾斜末端的中点位置),因此在各箔片80的末端与相应通道76的末端之间存在间隙,所以可在相邻的通道76之间经由孔82发生流动。作为另一备选实施例,各个单个箔片80可具有台阶状的倾斜末端。
在另一备选反应器中,这对相邻的集管86被两倍宽度(图3中虚线所示)的更大集管88取代,在这种情况下,没有对孔82的需求,并且催化剂箔片80可在通道76的整个长度上延伸。在这种情况下,集管88导致气体方向变化,从而再次使蒸汽/甲烷混合物经过总体上相对于燃烧气流A并流的路径。
现在考虑费托反应器50,在冷却剂通道中不需要催化剂,所以不需要通向那些通道的通路。现在参看图4,适合用作反应器50的反应器90按照与图2-3所示反应器70相类似的方式构造而成。它包括与造型板材交替地布置的扁平板材的叠组,并且如上面关于图2所述,在交替设置的造型板材中由造型所限定的通道方向是正交的。用于费托反应的通道(图4中未显示)包含携带催化剂的箔片,并且径直穿过位于合适集管(未显示)之间的反应器90,箭头F指示沿着这些通道的流动。冷却剂通道由1mm厚的长片条构成,所述长片条沿着其长度形成所述造型。如图所示,造型条被切成各种长度,并且并列地放置,以限定横向于箭头F方向的流路91,三个这种造型条长度92与沿着边缘的边缘条94形成了矩形,从而在入口95和出口96之间提供路径。靠近入口95和出口96的造型条末端被切成方形,而其它末端被切成45°,造型条的三角形片件97提供了流路92之间的连接。
在一种变型中,在造型条长度92的并列边缘之间还提供了如同边缘条94的另外的密封条。如同反应器70一样,该叠组如上所述进行组装,然后通过高温钎焊而结合在一起。
通过插入波纹状的箔片(未显示),可改善进入和穿过冷却剂通道91的传热,这些箔片与反应器70的箔片80是相类似的,但不包含催化剂,并且是不可拆卸的。这种插入的箔片可以被穿孔。在一种变型中,限定了流动通道91的造型可以不遵循沿着所述条长度的直线路径,而是可以遵循弯曲的或Z字形路径,并且也可以被穿孔。还应该懂得,反应器90容许冷却剂在经过入口95和出口96之间时三次穿过费托通道的宽度;或者冷却剂可以穿过费托通道的宽度三次以上。
还应该懂得,在反应器70和90中,其中一个或多个包含催化剂的通道可由在厚钢板中加工出的凹槽来限定,而非由薄板中的造型来形成。
权利要求
1.一种紧凑的催化反应器,包括多个设置成叠组并结合在一起的金属片材(72,74,75),所述叠组限定了多个用于第一流体的第一流动通道(76),所述第一流动通道与多个用于第二流体的第二流动通道(77)交替地设置在所述叠组中,从而确保在所述第一流体和第二流体之间的良好热接触,每个所述流动通道(76,77)被限定在相应的一对相邻片材之间;其中将发生化学反应的每个流动通道笔直地穿过所述叠组,并且包含结合有金属衬底的可拆卸的气体可透过的催化剂结构(80);以及用于所述第一流体的入口(84)和出口(85);所述第一流动通道(76)定向在与所述第二流动通道(77)的方向相垂直的方向上;其特征在于,在所述叠组中的连续第二流动通道(77)之间,所述反应器限定了至少三个并列的第一流动通道(76);并且所述反应器包括分流装置(82;88),使得所述第一流体在从所述入口流向所述出口时,必须接连地流过至少三个第一流动通道(76)。
2.根据权利要求
1所述的反应器,其特征在于,所述分流装置包括连接在所述叠组相对表面上的集管(88)。
3.根据权利要求
1或权利要求
2所述的反应器,其特征在于,所述分流装置包括连接流路(82),其在连续的并列的第一流动通道的末端部分之间提供了连通,所述连接流路提供了在与所述第二流动通道(77)的定向大致平行的方向上的流动。
4.根据权利要求
3所述的反应器,其特征在于,所述连接流路由孔或开孔(82)限定。
5.根据权利要求
3所述的反应器,其特征在于,所述连接流路由限定了连接流路分段(97)的装置来限定。
6.根据前面权利要求
中任一权项所述的反应器,其特征在于,所述直通通道由在厚板中加工出的凹槽来限定。
7.根据权利要求
1至5中任一权项所述的反应器,其特征在于,所述直通通道由沿着薄板(74,75)延伸的造型来形成。
8.根据上述权利要求
中任一权项所述的反应器,其特征在于,各催化剂结构(80)成形成可将所述流动通道分成多个平行的流动子通道,其中催化材料位于各个所述子通道中的表面上。
9.一种用于处理包括甲烷的气流以获得长链烃的设备,所述设备包括用于蒸汽/甲烷重整的第一反应器和用于费托合成的第二反应器,其中,各反应器包括根据上述权利要求
中任一权项所述的反应器。
专利摘要
一种紧凑的催化反应器,其包括限定了多个交替地设置在叠组中的第一和第二流动通道的一组板材(72,74,75);其中将发生化学反应的每个流动通道由穿过至少一个板材的笔直通道来限定,各个笔直通道包含结合有金属衬底的可拆卸的气体可透过的催化剂结构(80)。所述第一流动通道(76)定向在与所述第二流动通道(77)相垂直的方向上,并且在所述叠组中的连续第二流动通道之间,所述反应器限定了至少三个并列的第一流动通道(76);并且所述反应器包括分流装置(82;88),使得所述第一流体在从所述入口流向所述出口时,必须接连地流过至少三个这样的第一流动通道(76)。因此,整个流路可以是大致并流或逆流的。
文档编号B01J19/24GK1997447SQ200580020149
公开日2007年7月11日 申请日期2005年4月7日
发明者M·J·鲍 申请人:康帕克特Gtl有限公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1