用于氨氧化反应器的进料分布器设计的制作方法_2

文档序号:9225388阅读:来源:国知局
;以及多个支路分布器管道,其与主集管分布器管道流体连通,该支路分布器管道限定进料喷嘴以用于将含氨进料混合物排入氨氧化催化剂的流化床中,其中改进的分布器由布置在反应器内部的多个进料分布器部段构成,每个进料分布器部段具有其自己的分布器入口,以用于从反应器外部、其自己的主集管管道和其自己的支路分布器管道的系统接收含氨进料。
【附图说明】
[0021]通过参照以下附图可更好地理解本发明,在附图中:
图1是示意图,其示出了用于制备丙烯腈的常规氨氧化反应器的反应器部段;
图2是平面图,其示出了图1的氨氧化反应器的常规分布器系统的下侧;
图3是沿图2的线3-3截取的剖视图,图3示出了图2的常规分布器系统的进料喷嘴和相关联的进料护罩;
图4是剖视图,示出了商用氨氧化反应器的进料分布器的主集管管道穿透且连接到反应器的侧壁的方式;
图5是类似于图4的剖视图,示出了本发明的一个特征,其中进料分布器的主集管管道穿透且借助于气密性快速断开联接件连接到反应器的侧壁;
图6是图5的气密性快速断开联接件的侧视图;
图7是类似于图2的剖视图,示出了本发明的另一个特征,其中分布器支管管道借助于气密性快速断开联接件连接到分布器的主集管管道; 图8是平面图,更详细地示出了图7的气密性快速断开联接件;
图9A和图9B是根据本发明的另一个特征使用的分布器支管管道的侧剖视图,示出了该支管的直径如何随着距分布器集管管道的距离增加而减小;
图10A、图1OB和图1OC是图9的分布器支管管道的横剖视图,进一步示出了该支管的直径如何随距分布器集管管道的距离增加而减小;
图11A、图11B、图1lC和图1lD是根据本发明的分布器系统的另一个特征使用的分布器支管端盖的竖直剖视图;以及
图12是平面图,其示出了本发明的另一个特征,其中丙烯腈反应器的进料分布器被细分成多个进料分布器部段。
【具体实施方式】
[0022]定义
如本文所用,“流体连通”是指有效用于允许相同的液体或蒸气从一区域传送至另一区域的连接或管道。
[0023]如本文所用,“可释放地固定”是指允许物件通过非破坏性方式断开的非焊接连接。例如,可释放地固定可指螺栓、锚栓、螺接的凸缘以及它们的组合。
[0024]如本文所用,“含氨进料混合物”是指氨与饱和的和/或不饱和的C3至C4烃的共混物。饱和的和/或不饱和的C3至C4烃可包括丙烷、丙烯、丁烷、丁烯、以及它们的混合物。
[0025]快速断开联接件
如上文所述,在商用丙烯腈反应器的操作中遇到的主要问题是进料分布器由于形成其的金属的氮化而随时间推移失效。为了解决这个问题,已经提出由例如在U.S.3,704,690、U.S.4, 401, 153,U.S.5,110,584和EP O 113 524中所示的抗氮化合金来制造分布器。遗憾的是,由于流化床催化剂氨氧化反应特有的某些问题以及其成本原因,已证明该解决方案对于在商用丙烯腈反应器中使用是不成功的。
[0026]同时,U.S.5,256,810描述了一种用于大致消除商用丙烯腈反应器中的分布器的氮化的方法,该方法通过使用专门设计的绝热毯而使分布器内部的氨的温度保持足够低,以防止发生氮化。然而,由于成本和复杂设计,该解决方案也被证明是不令人满意的。
[0027]根据本发明的该特征,分布器由于金属氮化而随时间推移失效的这个问题通过采用使分布器的各个部段以及作为整体的整个分布器能够被快速而容易地更换的分布器设计来解决。虽然在进行这种更换时仍需要将丙烯腈反应器停机,但相比常规实践而言,实现这种更换所花费的时间大大缩短。结果,就损失生产时间和人力成本两者而言,用于在连续基础上解决这种氮化问题的总成本显著降低。
[0028]图4、图5和图6示出了本发明的一个特征,其中这种分布器氮化问题通过使用气密性快速断开联接件将分布器系统的入口连接到氨氧化反应器的外壁来解决。在这些附图中所示的特定实施例中,主集管30的端部直接附连到反应器10的壁40。因此,在该设计中,该集管端部构成分布器部段16的入口 31。在其它设计中,中间管路可用来将分布器入口 31连接到集管30。为了方便,将结合图4、图5和图6中所示的反应器设计来描述本发明的该特征。然而,应当理解,该特征及其优点同等地适用于其它反应器设计,诸如例如其中分布器入口 31与主集管30通过中间管路分离的设计。
[0029]如图4所示,将进料分布器16的分布器入口 31附连到反应器10的壁40的常规方式是通过焊接。相应地,当主集管管道30需要被更换时,必须采用焊接修理方法,其中紧紧围绕主集管管道30的那部分反应器壁40通过焊接被切掉,在反应器外壳12中由此形成的开口通过以合适的补丁焊接来修理,并且新的主集管管道30也通过焊接而安装在修理过的反应器壁40中。这需要显著量的现场人力以及附加的材料,这可是成本高昂的。
[0030]根据本发明的该特征,该问题通过采用用于将主集管管道30附连到反应器壁40的气密性快速断开联接件设计来避免。这样的联接件的示例在图5和图6中示出,图中示出了具有柱形套筒44形式的“检修孔”42,圆柱形套筒44的第一侧以气密方式永久地焊接到形成于反应器壁40中的永久性开口 48的周边46。圆柱形套筒44的另一侧或第二侧承载凸缘50,凸缘50限定用于在其中接纳螺栓52的一系列通孔。同时,平坦的圆形板形式的箍54以气密方式永久性地焊接到主集管管道30的外部。此外,箍54也限定对应于检修孔42的凸缘50中的通孔的一系列通孔56。
[0031]利用该结构,简单地通过将主集管管道30的箍54螺接到检修孔42的凸缘50可将主集管管道30以气密方式可释放地固定到反应器10的反应器壁40。以相同的方式,可简单地通过将箍54从凸缘50去螺接而使主集管管道30与反应器壁40分离。相应地,由于过度氮化而变得不可用的现有主集管30的更换可通过简单的去螺接和再螺接过程而简单且容易地实现。由于不需要现场焊接,所以该更换程序比起常规地进行的焊接修理方法实现起来容易得多且成本更低。
[0032]图2、图7和图8示出了本发明的另一个特征,其中使用气密性快速断开联接件来解决分布器支管氮化的问题。如图2中所示,将支管管道(或“支管”)32附连到主集管管道(或“集管”)30的常规方式是通过焊接。相应地,当各个支管32由于过度氮化而需要被更换时,采用焊接修理方法,其中旧支管通过焊接或其它合适的切割技术而与主集管管道30分离,并且将新支管通过焊接附连到主集管管道30。这也需要显著量的现场人力,这是成本高昂的。
[0033]根据本发明的该特征,该问题通过采用用于将每个支管32附连到主集管管道30的气密性快速断开联接件设计来避免。这在图7和图8中示出,图中示出了用来将每个支管32连接到分布器系统16的主集管管道30的气密性快速断开联接件60。虽然这些附图显示每个支管直接连接到主集管管道30,但应当理解,这些支管中的一个或多个可例如借助于中间管路(未示出)间接地连接到主集管管道30。
[0034]气密性快速断开联接件60是其中配合的部件(即,当进行连接时并在一起而在连接被断开时移开的部件)专门设计成仅通过机械手段(即,不使用焊接或粘合剂)接合到彼此的联接件。气密性快速断开联接件也设计成在高温条件下保持紧密密封,所述高温条件为例如在典型的商用氨氧化反应器的正常操作期间以及在当这样的反应器启动和停机时发生的温度循环期间遇到的那种。适合这种用途的市售联接件的示例为可得自GraylocProducts (Houston, Texas)的Grayloc金属间内孔密封夹具连接器。适合这种用途的市售联接件的另一个不例为可得自 Freudenberg Oil & Gas Technologies (Houston, Texas)的Vector集团的Techlok夹具连接器。适合这种用途的市售联接件的又一个示例为可得自 Australasian Fittings & Flanges (Osborne Park, WA, Australia)的 G-Lok? 夹具连接器。常规的凸缘连接对于这种应用是不太可取的,因为它们由于在反应器操作期间的温度循环而易于泄漏。
[0035]图8示
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1