钢管用螺纹接头的制作方法

文档序号:5109195阅读:168来源:国知局
专利名称:钢管用螺纹接头的制作方法
技术领域
本发明涉及一种钢管用螺纹接头,所述钢管适用于连接油井管,该油井管用于油井钻探。更具体地,本发明涉及一种管钢用螺纹接头,所述螺纹接头不需使用含有重金属粉的复合油脂,其通常在每次扣紧之前完成以防止磨损,并且具有良好的抗磨损能力和防锈性能。
背景技术
油井管通过钢管用螺纹接头连接,所述油井管是用于油井钻探的钢管,所述螺纹接头具有销孔结构,该结构包括销和孔,所述销具有外螺纹,所述孔具有内螺纹。如图1所示,外螺纹3A通常设在钢管A两端的外圆周表面上以形成销1;内螺纹3B设在独立接头件的内圆周表面的两侧,形成孔2,所述独立接头具有套管型连接B的形状。如图1所示,钢管A输送时处于连接B首先与一端连接的状态。
钢管用螺纹接头承受轴向张力,该轴向张力由钢管的重量和连接及复合压力产生,所述复合压力包括地下的内外压力,螺纹接头也承受地热,因此要求螺纹接头保持气密性(密封性能),使其在上述环境中不被损坏。此外,降低油井管的过程中,经常存在已扣紧的接头发生松开然后又扣紧的情况。因此,根据API(美国石油协会)标准,即使扣紧和松开对于套管接头发生十次,对于铸造接头发生三次的情况下,期望不出现磨损并保持气密性,所述铸造接头具有较大的直径。
近年来,为提高气密性,已经开始使用特殊的螺纹接头,所述螺纹接头能够进行金属与金属间的密封,在这种类型螺纹接头中,如图2所示,非螺纹金属接触部分4A和4B分别设在销1的终端和孔2的内部,所述销1具有外螺纹部分3A,所述孔2具有相应的内螺纹部分3B。在如图2所示扣紧状态中,螺纹部分3A或3B和非螺纹金属接触部分4A或4B形成销1或孔2的接触面。销1和孔2的非螺纹金属接触面4A和4B形成金属到金属间的密封部分并有利于提高气密性。
上述能够进行金属与金属间密封的螺纹接头中,使用称为复合润滑脂的高效液体润滑脂以防止接触面的磨损,特别是非螺纹接触部分的磨损。所述润滑脂在紧固前施加到至少销和孔其中之一的接触面。然而,该润滑脂含有大量的有害重金属粉,并且用清洗剂对扣紧时挤到外周的润滑脂进行清洗时,复合润滑脂和清洗剂流到海洋或土壤中带来环境污染,该问题已经开始考虑。此外,清洗问题和每次扣紧前润滑脂的重复使用问题降低了工作效率。
作为不需要使用复合润滑脂的钢管用螺纹接头,JP-A08-103724,JP-A08-233163,JP-A08-233164,和JP-A09-72467披露了螺纹接头,其中在螺纹部分和至少销和孔其中之一的非螺纹金属接触部分(即,接触面)施加了固体润滑涂层,所述固体润滑涂层包括用作粘合剂的树脂和用作固体润滑剂的二硫化钼或二硫化钨。
为提高固体润滑涂层和基体钢之间的粘结性,上述日本专利申请披露了形成磷酸锰化学转化涂层或氮化物层与磷酸锰的混合物,或提供具有最大半径为5~40微米的表面缺陷的接触面,作为底涂层用于固体润滑涂层。
专利JP-A08-105582中披露了氮化物层、铁或铁合金电镀层和固体润滑涂层的形成,所述固体润滑涂层用于油井管的螺纹接头并由覆着至少10%铬的不锈钢制成。
原油钻探中,深油井增多,油井管的使用温度达到150~250℃是通常的,然而,常规的钢管用螺纹接头在使用复合润滑脂时并没有好的抗磨磨性能,所述螺纹接头能够进行金属与金属间密封并且不需要通过在接触面上形成固体润滑涂层使用复合润滑脂,并且当扣紧和松开重复很少几次时,可能出现由于磨擦产生的磨损。此外,如果该螺纹接头保持在高温,固体润滑涂层容易脱落,且防磨损效果差。专利JP-A08-105582所描述的三层涂层具有复杂的处理过程且变得昂贵,并且此外,不锈钢基体和铁基电镀之间会发生电化腐蚀,并且会导致抗腐蚀性恶化。
本发明的目的是提供一种钢管用螺纹接头,所述螺纹接头能够进行金属-金属间密封,并且具有良好的抗磨损性,即使螺纹接头是由高铬钢制成,所述高铬钢是对磨损相对敏感的材料,当所述螺纹接头用于高温环境下诸如深油井的原油钻探时,能防止重复扣紧和松开时磨损的产生和气密性的降低,且不使用含有重金属粉末的液体润滑脂,如复合润滑脂。

发明内容
过去,增强固体润滑涂层粘结性的措施是通过加工或涂覆磷酸盐或类似物质的方法使基体表面粗糙化。然而,由于固体润滑涂层和基体之间存在清晰的接触面,提高固体润滑涂层的粘结性存在局限性,所述固体润滑涂层的粘结性依赖于其基体表面不规则的固定作用。特别地,在200℃或200℃以上的高温,由于固体润滑涂层的树脂和基体钢的热膨胀程度不同,固体涂层和基体钢的接触面很容易发生脱落现象,这会导致抗磨损性降低。
本发明中,由多孔金属形成底涂层,使固体润滑涂层能渗透到整个底涂层且消除了上述清晰接触面。多孔金属底涂层上形成固体润滑涂层保证了固体润滑涂层甚至在高温下良好的粘结性,并得到优良的抗磨损性。当液体润滑涂层形成代替固体润滑涂层时,同样可得到优良的抗磨损性。
本发明是一种钢管用螺纹接头,包括销和孔,每个都具有接触面,所述接触面包括螺纹部分和非螺纹接触部分;其特征在于至少销和孔其中之一的接触面覆有金属底涂层,和形成于其上的润滑涂层,底涂层具有5-80%的空隙率和1-30微米的厚度,润滑涂层包括不含重金属粉的固体润滑涂层或液体润滑涂层,并且底涂层和润滑涂层的总厚度最大为100微米。底涂层优选地具有50-250Hv的硬度。


图1是说明钢管输送时螺纹接头和钢管典型装配的视图;图2是说明钢管用螺纹接头的典型连结部分的视图;图3(a)和(b)是说明根据本发明的钢管用螺纹接头底涂层和润滑涂层的典型结构的解释视图,图3(a)说明由分散电镀涂层形成的底涂层的情况,图3(b)说明通过鼓风涂覆方法或火焰喷射方法形成底涂层的情况。
具体实施例方式
如图2所示,根据本发明的钢管用螺纹接头由销和孔形成,每个都具有螺纹部分和非螺纹部分。即,销1具有螺纹部分3A和非螺纹金属接触部分4A,而孔2具有螺纹部分3B和非螺纹金属接触部分4B。通常地,如图所示,销1设在钢管末端的外圆周表面上,且孔2设在连接的内圆周表面上。
销和孔的螺纹部分及非螺纹金属接触部分是螺纹接头的接触面。要求这些接触面和特别是非螺纹金属接触面具有抗磨损性和气密性,所述接触面形成金属-金属间密封。
根据本发明,多孔金属底涂层和其上的润滑涂层设在至少销和孔其中之一的接触面上,所述润滑涂层是固体润滑涂层或者是液体润滑涂层,液体润滑涂层实质上不含重金属粉。这样,螺纹接头的接触表面获得了所要求的性能,且不使用复合润滑脂,并且所述性能甚至在高温环境中也可有效地展示出。该效果可以通过用上述方法处理至少销和孔其中之一的接触面来实现。当处理仅一个元件的接触面时,处理形成在较短元件上的接触面时比较容易,即,连接(通常是孔的表面),但对设置在钢管上的接触面进行处理也是可能的。当然,销和孔的接触面都可进行处理。
根据本发明的螺纹接头中,润滑涂层的材料渗进多孔底涂层的孔内并将孔充满,所述材料是上层(为方便起见以下称为润滑剂),润滑涂层有力地紧固到底涂层上。另一方面,底涂层是金属的,因此,与也是金属的钢基体有很强的粘结。这样,润滑涂层与钢基体的粘结得到大大增强,并且对磨损的产生起到好的防止作用。此外,既使润滑涂层由于磨损或毁坏遭到破坏,或者由于局部压力升高使其耗光,渗透到底涂层的润滑剂供给到底涂层的表面,因此,可以避免磨损的出现。因此,钢管用螺纹接头得到极好的抗磨损性。
为获得上述效果,底涂层由具有5-80%孔隙率的多孔覆层制成,如果底涂层的孔隙率低于5%,通过渗透保存在底涂层孔中的润滑剂量少,高压条件下润滑剂补给不足,会发生磨损。另一方面,如果底涂层的孔隙率超过80%,底涂层的强度不足,扣紧时底涂层发生变形,会出现磨损。底涂层的孔隙率优选地是10-70%,并且更优选的是10-50%。
本发明中,底涂层的孔隙率测量利用光学显微镜通过观察底涂层纵向横载面的中心的固定区域实现,计算孔所占的比例,然后得到5个视野的平均数。
本发明中,底涂层是金属的,并且比磷酸盐覆膜软,金属底涂层的硬度优选为维氏硬度(Hv)50-250,如果硬度低于50Hv,螺纹接头紧固时底涂层的磨损加快,当扣紧和松开发生几次时,会出现磨损的情况。如果底涂层的硬度超过250Hv,涂层太硬,紧固时可能擦伤销或孔,这样抗磨损性降低。
只要能形成具有5-80%孔隙率的多孔金属涂层,对底涂层的形成方式无特别限制。上述涂层可以通过下列电镀或涂覆的方法形成,例如(1)电镀方法电镀在含有分散微粒的电镀液中进行,所述分散微粒可以随后去除,并且当电镀液被搅拌使溶液中的微粒均匀散布开时,含有分散微粒的电镀涂层(分散电镀涂层)形成。所用微粒可能是诸如PTFE(聚四氟乙烯)聚合物粉末或铁粉,但其并不限于上述材料。通常优选的微粒平均直径约为5微米。
然后,分散的微粒从得到的分散电镀涂层上被去除。当分散微粒是聚合物粉末时,分散微粒通过燃烧和加热使微粒气化的方式去除。当微粒是铁粉时,通过酸洗的方法去除。这样,除分散微粒所在的位置外,微粒气化时的溢出路径或酸洗液渗入的路径变成孔隙,形成多孔电镀涂层。所述电镀涂层的孔隙率可通过电镀液中的分散微粒的数量进行调整。
通过上述方法在底涂层上形成的孔的状况如图3(a)所示。如图所示,在底涂层上形成润滑涂层时,一部分润滑涂层(润滑剂)的材料渗进孔隙,这样底涂层能保留润滑剂。
(2)鼓风涂覆方法或火焰喷射的方法鼓风涂覆法是固体微粒(鼓风微粒)与所涂表面撞击的方法。火焰喷射法是通过燃烧火焰或弧等将金属熔化并吹离并建立在表面上的方法。另一种情况,涂层通过平铺的微粒的积聚形成,如图3(b)所示,形成微粒间保留空穴的多孔涂层。这样,润滑剂保留由这些空穴形成的孔中。
如JP-B59-9312所披露,例如,鼓风涂覆方法可以通过用一种微粒作为鼓风微粒实现,所述微粒具有覆有锌或锌合金的铁或铁合金芯体。这样,鼓风微粒表面的锌或锌合金粘附于被涂覆的表面,并形成由锌或锌合金制成的多孔涂层。
JP-A62-258283描述了上述鼓风涂层可以在螺纹接头的表面形成,所述螺纹接头用于油井管,而该技术以复合润滑脂的应用为前提,所述复合润滑剂含有大量的重金属微粒。即抗磨损性通过复合润滑剂的应用来保证。
火焰喷射法众所周知。除上述方法外,诸如用等离子体或爆炸的能量作为热源的各种方法都是已知的。只要能形成具有本发明所限定范围内的孔隙率的涂层,上述任一方法皆可应用。火焰喷射法可用于几乎所有的金属和合金。
通过上述方法形成的多孔涂层的孔隙率在鼓风涂覆方法中可以通过微粒直径和鼓风微粒的鼓风速度来控制。同样对于火焰喷射方法,涂层的孔隙率取决于火焰喷射的金属微粒直径和火焰喷射速度。这些可以通过诸如气体流率、温度和火焰喷射环境等因素来调节。
对底涂层的金属材料没有特别限制,但优选地使用能提高石油管的抗磨损性能的金属或合金。如果底涂层由具有优良抗腐蚀性的金属制成,即使该涂层是多孔的,孔隙由润滑涂层的材料充满,因此,底涂层能有效保护螺纹接头,并且优良的抗磨损性能可通过底涂层给予。
优选的用作底涂层的材料是锌或锌合金,所述锌或锌合金是与铁相对的基体,其具有优良的抗磨损性能,因为其具有良好的抗腐蚀性能,也可以是诸如Ni、Sn、Cr、Al、Co的金属,和贵金属(Au、Ag、Pd等)及本身具有良好的抗磨损性能的他们的合金。
底涂层的厚度是1-30微米。如果厚度低于1微米,底涂层容纳的润滑剂的量少,抗磨损性能力差。如果底涂层的厚度超过30微米,其强度会降低,并且扣紧时,油井管基体钢与底涂层的接触面发生涂层剥落。底涂层的厚度优选的是5-15微米。
上述多孔金属底涂层之上形成的是液体或固体润滑涂层。液体润滑层可能是象传统润滑油的材料,但不使用含有大量重金属的复合润滑脂。固体润滑涂层是一种固体润滑剂粉末与合适的粘合剂相粘结的涂层,如需要的话,所述固体润滑涂层可通过使用液体涂层成分经过加热烘干的方式形成,所述液体涂层成分是由粘合剂溶解在合适的溶剂中形成。
用液体或固体润滑涂层,涂层形成时所用的液体材料部分渗进底涂层的孔隙中,且润滑剂充满并容纳于底涂层。这样,通过润滑涂层和底涂层的坚固粘结和通过在高压下提供润滑剂,所述润滑剂渗入到底涂层,获得良好的抗磨损性能而不使用含重金属的复合润滑剂。
底涂层和上部润滑涂层的总厚度最大100微米。如果总厚度超过100微米,扣紧时所用压力升高,且发生磨损。总厚度优选地是最大80微米。
液体润滑涂层可由用于润滑的油制成,诸如矿物油、合成酯类油,动物或植物油等。一种或多种用于润滑油的添加剂可以加入上述油,所述添加剂诸如防锈添加剂或特压添加剂。当上述添加剂本身是液体时,添加剂本身可用于液体润滑涂层的制成。
有机酸的碱金属盐可用作防锈添加剂,诸如碱金属磺酸盐,碱金属酚盐和碱金属羧酸盐。这些通常为液体状态,因此,他们本身可用于润滑涂层的形成。作为特压添加剂,可使用诸如以下的任何物质,所述物质包括含硫、磷或氯的物质和有机酸金属盐。为增加所用油的涂层厚度,可以加入细粉末、聚合物的纤维、树脂或无机化合物等。上述物质中,优选使用一种油,所述油含有有机酸的碱金属盐和作为特压添合剂的有机锌化合物和树脂细粉中的任意一种或两种,或只使用有机酸的碱金属盐。优选的有机酸的碱金属盐是碱金属磺酸盐。
作为用于固体润滑涂层的固体润滑剂,可以使用金属硫族化物(氧化铅、二硫化钼、二硫化钨、硒化钨等)、石墨、氮化硼,PTFE等。作为粘合剂,使用有机树脂(诸如环氧树脂、丙烯酸、酚醛塑料、聚酰胺、聚酰胺酰亚胺或其它树脂)或无机成膜化合物(诸如硅酸盐或磷酸盐)。此外,有机金属化合物(诸如烷氧基钛或其它烷氧基金属)能用作粘结剂,所述有机金属化合物能通过溶-凝的方法形成金属氧化物型无机涂层(诸如钛氧化物涂层)。固体润滑涂层可以通过多种已知方法制成,但通常使用液体涂层成分,然后加热。
实例通过实例对本发明作进一步描述。
如表2(底涂层和润滑涂层的制成)所示,表面处理在螺纹接头(钢管外径7英寸(177.8mm),壁厚0.4英寸(10.16mm))的销和孔两者或其中之一的接触面(即螺纹部分和非螺纹金属接触部分)上进行,所述螺纹接头具有金属-金属间密封的能力。接头由碳素钢(A)、13%铬钢(B)、13%铬不锈钢(C)或高合金钢(D)(用D磨损更容易出现,用C、B和A磨损依次变得更困难)制成,所述钢具有表1所示的成分。如表1所示,销设在管两端的外周表面,并且孔设在连接的两端的内周表面。
表2所示的底涂层的制成方法中,火焰喷射用等离子火焰喷射设备实现,所述火焰喷射用Cu完成。细Cu粉用Ar气加速,所述Ar气用作载体,并且以熔融状态撞击接触面且在其上形成涂层。Ar气的流率是变化的,并且控制液态微粒对基体(孔接触面)的冲击速度以调整所得涂层的孔隙率。
鼓风涂层利用鼓风微粒实现,所述鼓风涂层用锌实现,所述鼓风微粒具有铁芯,该铁芯覆有锌(日本Dowa铁粉厂生产的锌铁)。控制鼓风微粒的直径和鼓风速度以调整所得涂层的孔隙率(孔隙率随微粒直径的增大和鼓风速度的降低而升高)。
电镀使用标准电镀液用于每种金属,所述电镀利用Ni、Au、Sn和Cu实现,有机树脂的细粉末加入所述电镀液。当搅拌电镀液时,电镀在孔的内表面的接触面上进行,并且在其上形成电镀涂层,所述电镀涂层含有分散细树脂粉末。通过密封外表面防止孔外表面电镀金属的沉积。然后,孔在空气中被加热至600℃使有机物质燃烧和蒸发并在电镀涂层上形成孔。孔隙率通过加入到电镀液中的树脂量来控制。
为方便对比,传统的底涂层也被准备,所述底涂层由渗氮和磷酸锰化学转化处理制成。
底涂层的厚度和孔隙率用光学显微镜测量。为确定孔隙率,将螺纹部分在纵向上分为约五个相等部分,用光学显微镜(500X)观察底涂层横截面中心部位,所述底涂层设在每个螺纹部分的螺纹上,测量孔所占的面积百分比,并且将五个部分的孔面积百分比的平均数作为孔隙率。底涂层的硬度(Hv)用维氏硬度测量仪测量。
润滑涂层中,液体润滑层是矿物油或只是碱金属磺酸盐(表2中的“磺酸盐”),所述矿物油中加入质量百分比约50%的碱金属磺酸盐(具有200mg/g的基数)沉淀磷酸钙和少量的有机锌复合型特压添加剂(表2中的“油+磺酸盐”)。用刷子将液体润滑剂涂于底涂层之上,以形成液体润滑涂层。厚度主要根据液体润滑剂的粘度,因此在某些情况下,加入酚醛树脂粉末作为增稠剂。
对于固体润滑涂层,二硫化钼(MoS2)粉末或石墨粉被加入作为固体润滑剂,所述二硫化钼粉具有约15微米的平均微粒直径,所述石墨粉具有约1微米的平均微粒直径。对粘合剂,酚醛树脂、聚酰胺-酰亚胺树脂或聚酰胺树脂都可作为有机树脂使用。作为能形成无机涂层的粘结剂,使用烷氧基钛(四异丙氧化钛)。烷氧基钛在空气中加热时通过水解和浓缩形成无机钛氧化物涂层。
固体润滑剂通过使用液体成分制成,所述液体成分包括粘合剂溶液,在该溶液中固体润滑剂粉末在底涂层之上用刷子散布开,随后加热干燥。加热温度取决于粘合剂,并且约230℃用于酚醛树脂,约260℃用于聚酰胺-酰亚胺树脂,约260℃用于聚酰胺树脂和约150℃用于烷氧基钛。
液体或固体润滑涂层的厚度通过用光学显微镜(100X)观察其横截面进行测量。
使用包括销和孔的螺纹接头,扣紧和松开试验在扣紧速度为10转/分钟,扣紧转矩为103340ft-lbs(14019N-m)条件下执行十次,所述螺纹接头具有上述方法制成的底涂层和润滑层。当试验中出现磨损时,对表面进行调节和修整以后再做下一次紧固,但试验在这样的点上终止,如果磨损是严重的和可恢复,从而即使表面调节或松开不可能扣紧不能进行。抗磨损性能取决于导致不可恢复的磨损出现时的扣紧和松开的数目。
使用销和孔时,所述销和孔用同样方式处理,扣紧在上述条件下完成,并且扣紧接头在250℃条件下保持100个小时。随后在上述高温条件下压紧接头,接头松开和表面剥落处理(底涂层+润滑层)状态可以真实地的观察到。
上述测量和实验的结果如表2所示。
表1

表2 (注释)Mat.=材料,Por.=孔隙率,Hv=硬度(Hv),μm=厚度(μm)Method涂覆方法;F.S.=火焰喷射,Blast=鼓风涂覆,Elect.=电镀Components(润滑涂层的成分);phenolic=酚醛树脂,PAI=聚酰胺酰亚胺,PA=聚酰胺,TiAlk=烷氧基钛,oil=矿物油*本发明的范围外由表2可见,根据本发明的钢管用螺纹接头都具有优良的抗磨损性能。特别地,底涂层的硬度处于优选的50-250的范围内的螺纹接头可以紧固和松开至少十次,并且其抗磨损性能非常好。此外,在250℃的紧固状态压紧100个小时后执行松开操作,没有看到涂层剥落现象,因此粘结力方面即使在高温条件下没有问题。所以,即使在高温油井中也能表现出足够的抗磨损性能。
相比之下,在对比例中,如果底涂层不是多孔的,或如果其是多孔的但其厚度较小,借助多孔底涂层提高抗磨损性能的效果不能获得,抗磨损性能大大降低。当多孔底涂层的孔隙率太高,或其厚度太大,或底涂层和润滑层的总厚度太大时,抗磨损性能也会降低。此外,当底涂层是磷酸锰涂层时,润滑涂层的粘结力不足,因此,高温条件下压紧之后润滑涂层剥落。
工业适用性根据本发明,提供一种钢管用螺纹接头,其具有相对较低的成本,所述钢管用螺纹接头具有优良的抗磨损性能,当重复性紧固和松开时,其抗磨损性能能防止磨损的出现和气密性的降低,并且甚至在高温环境中钻探原油时达到上述优点,并且即使螺纹接头是由高Cr钢制成,而不使用诸如复合润滑脂的含有重金属粉的液体润滑剂,所述高铬钢是一种对磨擦相对敏感的材料。
权利要求
1.一种钢管用螺纹接头,包括都具有接触面的销和孔,所述接触面包括螺纹部分和非螺纹部分;其特征在于,至少销和孔其中之一的接触面涂覆有金属底涂层和其上的润滑涂层,底涂层具有5-80%的空隙率和1-30微米的厚度,润滑涂层包括固体润滑涂层或液体润滑涂层,后者实质上不含有重金属粉,并且底涂层和润滑涂层的总厚度最多为100微米。
2.根据权利要求1所述的钢管用螺纹接头,其中底涂层具有50-250Hv的硬度。
3.根据权利要求1或2所述的钢管用螺纹接头,其中底涂层通过电镀、鼓风涂覆或火焰喷射制成。
4.根据权利要求1或2所述的钢管用螺纹接头,其中底涂层由金属制成,该金属是从Zn、Cu、Ni、Sn、Cr,Al、Co、贵金属及他们的合金中选出的。
5.根据权利要求1或2所述的钢管用螺纹接头,其中润滑涂层是液体润滑涂层,该液体润滑涂层主要由有机酸的碱金属盐构成或包含有机酸的碱金属盐。
6.根据权利要求1或2所述的钢管用螺纹接头,其中润滑涂层包括固体润滑剂和粘结剂,该粘结剂能制成有机或无机涂层。
全文摘要
一种钢管用螺纹接头,所述螺纹接头包括销和孔,该螺纹接头具有金属-金属间密封的性能和经受重复扣紧和松开且不使用含重金属粉的液体润滑剂,所述销和孔每个具有接触面,该接触面包括螺纹部分和非螺纹接触部分。至少销和孔其中之一的接触面之上覆有底涂层和润滑涂层。底涂层是多孔金属涂层,该金属多孔金属涂层具有5-80%的孔隙率和1-30微米的厚度,并且优选的具有50-250Hv的硬度。润滑涂层是固体润滑涂层或液体润滑涂层,后者实质上不含重金属粉。底涂层和润滑涂层的总厚度最大为100微米。
文档编号C10M109/02GK1529798SQ0281415
公开日2004年9月15日 申请日期2002年7月19日 优先权日2001年7月25日
发明者安乐敏朗, 后藤邦夫, 松本圭司, 永作重夫, 司, 夫 申请人:住友金属工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1