一种基于皮穰分离的玉米秸秆固体成型燃料制备方法与流程

文档序号:18619434发布日期:2019-09-06 22:20阅读:321来源:国知局
一种基于皮穰分离的玉米秸秆固体成型燃料制备方法与流程

本发明属于植物秸秆生物质能源领域,尤其指一种以玉米秸秆皮穰分离为预处理方法的固体成型燃料的制备方法。



背景技术:

目前可作为能源利用的农作物秸秆及农产品加工剩余物、林业剩余物和能源作物、生活垃圾与有机废弃物等生物质资源总量每年约4.6亿吨标准煤,当前大气污染形势严峻,县域燃煤消费是主要的污染源。生物质热电联产项目具有绿色低碳环保的特点,是治理县域燃煤污染的有效途径,组织开展生物质热电联产示范项目建设,将为治理县域散煤、特别是农村散煤开辟新路子,为探索生物质发电全面转向热电联产道路、完善生物质热电联产政策提供依据。加快推进生物质成型燃料锅炉建设,为城镇社区和农村清洁供暖。

同时,秸秆生物质成型燃料可以提高秸秆密度,节约运输和储存费用,扩大应用范围,提高燃烧效率,生物质燃料的利用还可以减少替代的煤燃烧所带来的环境污染[1]。所以发展生物质能源,获得更高效率的植物秸秆固体成型燃料是一项具有重大意义的研究。

本发明涉及玉米秸秆皮穰(髓)分离的相关技术。南方等[2]的研究表明,玉米秸秆不仅宏观组成松散,体积大,密度小,而且具体组成较为复杂,秸秆各组分理化特性差别较大。papatheofanous等[3]发现玉米秸秆茎皮含有丰富的纤维素、半纤维素和木质素,适于作为工业纤维原料。hoskinson等[4]发现玉米秸秆的叶和髓含有丰富的营养成分,适于作为饲料或肥料。孙竹莹,梁鸿馨等[5]和chenzhengguang等[15]均对玉米秸秆不同组分成分及特性进行了研究。孙竹莹等发现玉米秸秆外皮中木质素、纤维素含量高,纤维长、韧性好;髓原料透气性好,分离后原料的粗蛋白、粗脂肪提高65%,粗纤维降低50%,可溶性总糖提高30%。牛文娟[6]的研究表明稻秆的高位热值主要依赖于燃烧有机物,且有机化学组成纤维素、木质素和粗蛋白的热能值较高。玉米稻秆易于着火燃烧,就是由于稻秆中含有较多低分子糖造成的,并且其着火点温度较低。所以,粗蛋白和可溶性总糖含量较高的玉米秸秆穰拥有较高的热值,同时玉米秸秆穰能够降低生物质燃料着火点,起到助燃的作用。

闫贵龙等[7]利用体外消化试验对玉米秸秆各部位进行了更详尽的营养价值测定。结果发现,玉米秸秆中木质素主要集中在茎皮,同时它的木质化程度也是最高的,而玉米秸秆茎髓主要是由木质化程度较轻的薄壁细胞构成。玉米茎秆由外皮和穰(髓)组成,其中外皮和髓的质量比为2.29,体积比为0.33。外皮含量随茎秆直径加大略有增加,髓含量则相应减小[13]。被粉碎后的玉米秸秆在被加工成致密成型燃料的过程中,所含的木质素在温度为70~110℃时软化具有黏性,当温度达到200~300℃时成熔融状,黏性高,在28~30mpa的压力下,使秸秆纤维紧密地黏结在一起,成型燃料块经冷却降温后,增大了强度[8]。所以木质素在固体成型燃料的制备中起到了黏合剂的作用,保证压缩后的成型燃料具有了一定的形状和强度。并且,木质素含量的多少,与植物干物质的燃烧特性密切相关。对秸秆类生物质而言,挥发分和固定碳含量与其热值呈极显著正相关,而灰分含量与其热值呈极显著负相关[9]。研究表明,秸秆的纤维成分主要存在于秸秆的外皮中,分离后的玉米秸秆皮强度高、韧性好,纤维素含量为44.6%[10]。由此可以证明,分离玉米秸秆的皮和穰,减少固体成型燃料中穰的含量从而提高木质素所含比例可以有效提高固体成型燃料的热值,同时提高其黏性以提高其强度,改善其理化特性和力学特性及燃烧特性。

另外,根据陈升显[12]的研究,玉米秸秆皮的抗压弹性模量的平均值为3845.70mpa,最大压力的平均值为2961.90n,最大抗压强度的平均值为59.24mpa;玉米秸秆髓的抗压弹性模量的平均值为41.83mpa,最大压力的平均值为312.40n,最大抗压强度的平均值为1.05mpa;玉米秸秆整秆的抗压弹性模量的平均值为373.58mpa,最大压力的平均值为3210n,最大抗压强度的平均值为7.75mpa。显而易见,玉米秸秆皮具有更好的力学性能,所以应提高成型燃料中玉米秸秆皮的含量。

但是,根据orlandim等[14]的发现,压缩的玉米秸秆组织结构变的混乱无秩序,且层与层之间的空隙较小,连接物无明显界线,结合紧密,断面的形成有相互牵拉的迹象,且玉米秸秆致密成型燃料的组织结构由未被粉碎压缩前的有秩序排列变成了粉碎后的混乱无秩序,所以其空隙之间的连通变小甚至被隔断,在燃烧的时候就需要增大氧气的供入量,也就是增加供风量,才能保证其能更好的燃烧。根据霍丽丽等[11]的研究表明玉米秸秆皮的表皮组织呈蜂窝状,纵切面上细胞呈砖状,排列整齐而紧密,且表皮外具有角质层,光滑而坚硬,即使粉碎后细胞排列依旧紧密,空隙较小。而玉米秸秆芯部的髓呈纤维状,纤维间由少量的基本组织连接,组织松散,髓腔较大,空隙较大。所以制备固体成型燃料时,不能在分离皮穰后完全去除玉米秸秆的穰,添加合适比例的穰有助于使燃料成型后的结构内部空隙不会太过狭小,从而有利于氧气的进入和储存,进而方便燃烧,也能起到助燃的作用。

综上,对玉米秸秆进行皮穰分离预处理后,将玉米秸秆穰以适当的比例与玉米秸秆皮混合后粉碎压缩制成固体成型燃料可以使之具有较原来整体粉碎压缩制成的燃料更强的力学性能,更高的燃烧热值,以及更优良的理化性能。

[1]王建祥,蔡红珍.生物质压缩成型燃料的物理品质及成型技术[j].农机化研究,2008,(1):203-205,215.

[2]南方.2006.秸秆的收集与储存.中国建设动态:阳光能源:60-61

[3]m.gpapatheofanous,ebilla,d.pkoullas,bmonties,e.gkoukios.optimizingmultistepsmechanical-chemicalfractionationofwheatstrawcomponents[j].industrialcrops&products,1998,7(2).

[4]hoskinsone,satoyandpackardre2007simulationsofphaseslippageinanaperturearrayj.lowtemp.phys.149222

[5]孙竹莹.2005.玉米秸秆的皮髓分离及其应用.人造板通讯,(5):28-29

[6]牛文娟.主要农作物秸秆组成成分和能源利用潜力[d].中国农业大学,2015

[7]闫贵龙,曹春梅,鲁琳,等.玉米秸秆不同部位主要化学成分和活体外消化率比[j].中国农业大学学报,2006,11(3):70-74

[8]刘圣勇,杨国峰,苏超杰,王晓东,武少菁,张飞,白冰.玉米秸秆成型燃料的微观结构观察与分析[j].热科学与技术,2009,8(03):277-282

[9]温丽娜,陶琼,欧阳进,高福宏,杨正权,陈静,徐云.农林生物质原料热值比较及烟杆-玉米秆生物质燃料优化配方研究[j].湖南农业科学,2016(01):43-46

[10]胡伟.精打细算之玉米秸秆皮穰分离利用技术[j].当代农机,2007(03):40-41

[11]霍丽丽,田宜水,孟海波,赵立欣,姚宗路.生物质颗粒燃料微观成型机理[j].农业工程学报,2011,27(s1):21-25

[12]陈声显.玉米秸秆力学模型及压缩成型设备研究[d].吉林大学,2011

[13]杨中平.玉米秸秆主要组分的气流分离及模压成型流变特性研究[d].西北农林科技大学,2011

[14]orlandim,canevalic,rindoneb,etal.biomimeticapproachtolignindegradation:amechanisticstudyofmetallosalencatalysedoxida-tionofligninandligninmodelcompounds[c]//7theuroworkshoponlignocellulosicsandpulp,2002:369-373.

[15]chenzhengguang;wangdefu.powerconsumptionforcorescrapingintheseparationofrind-pithfromcornstalkbioresources,2017,12(1):1300-1316



技术实现要素:

本发明的目的是为了克服现有技术中的不足,在考虑玉米秸秆皮与穰力学特性与理化特性差异较大的基础上,提供基于皮穰分离的玉米秸秆固体成型燃料制备方法,即玉米秸秆皮穰分离技术与生物质燃料成型结合的方法。在对玉米秸秆进行皮穰分离预处理后,将穰按比例与玉米秸秆皮混合粉碎,最后压缩成型,提高了玉米秸秆固体成型燃料的性能,改善了玉米秸秆的应用性能,提高了其应用价值。

本发明的目的是通过以下技术方案实现的:

一种基于皮穰分离的玉米秸秆固体成型燃料制备方法,包括以下步骤:

(1)对玉米秸秆进行自然风干,分离玉米秸秆的皮和穰,并将玉米秸秆的皮与穰分别粉碎后过目筛形成皮颗粒和穰颗粒;

(2)在干燥箱内将皮颗粒和穰颗粒进行烘干操作;

(3)按照干重将皮颗粒与穰颗粒的比值≤35%的比例搅拌均匀制得原料混合物;

(4)加入原料混合物总重约15%的水后密封静置,待水分混合均匀后,通过成型设备压制成型,成型过程中成型压力为110~130℃,成型压力为5000-6000n,最终制得固体成型燃料。

进一步的,步骤(4)中制得的固体成型燃料的形状为圆柱形,长度尺寸为20~40mm;直径为6~7mm。

与现有技术相比,本发明的技术方案所带来的有益效果是:

1.本发明利用玉米秸秆皮穰性质的差异,进行分离再压制,充分利用了玉米秸秆不同部位的性质,可提高玉米秸秆的利用率,优化玉米秸秆生物质燃料的性能。

2.秸秆内部的穰部分,其生物特征为疏松多孔结构。将其按照一定比例和皮混合压制颗粒燃料,可以有效地在燃烧环节,增加燃料内部可燃物质和空气(氧气)的反应(燃烧过程化学反应)接触面积,有助于燃料的充分燃烧。

3.由于秸秆内部的穰是疏松多孔的结构,其材料弹性模量较大,因此其在与秸秆皮混合压制颗粒燃料过程中,过多的穰含量将导致燃料的物理性能下滑,压缩能耗升高,因此,本发明适当的降低穰含量将有助于燃料物理性能的提升和压缩能耗的改善。

4.通过测得不同玉米穰含量下的生物质成型燃料的燃烧性能、力学性能及压缩能耗,可以获得皮囊掺混的较优方案,以提升秸秆制备的颗粒燃料综合性能,指导工程实际。

附图说明

图1是本发明方法的流程示意图。

图2是不同玉米秸秆穰含量固体成型燃料的平均密度及平均比能耗变化图。

图3是不同玉米秸秆穰含量固体成型燃料的单位径向抗压强度变化图。

图4是不同玉米秸秆穰含量固体成型燃料的平均热值变化图。

具体实施方式

以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

本实施例选用天津地区玉米秸秆。处理过程见图1,自然风干后分离玉米秸秆皮与穰。将皮粉碎为粒度为1mm的颗粒,并在80℃的温度下干燥24h,将穰粉碎为粒度为200μm的粉末,并在80℃的温度下干燥24h。按不同比例混合皮与穰,加入原料混合物总重15%的水后密封静置24h,再由生物质成型设备压制成型,制得固体成型燃料。

本实施例中制备颗粒燃料的关键参数如下:

1.玉米秸秆、穰的比例:0%;5%;10%;15%;20%;25%;30%;35%;

2.颗粒尺寸:固体成型燃料的形状为圆柱形,尺寸为:20-40mm;底面直径为:6~7mm;

3.成型温度:120℃;

4.成型压力:5500n;

5.含水率:15%;

实验选用dclry-6型微型全自动量热仪测量热值,其主要参数见表1。

表1全自动量热仪原始参数

不同皮穰比例的玉米秸秆固体成型燃料颗粒所测得的密度,单位径向抗压强度,比能耗及热值数据统计见表2。

表2不同玉米秸秆穰含量固体成型燃料的性质

不同皮穰比例玉米秸秆成型燃料的密度变化趋势及比能耗变化趋势见图2,从中可以明显看出,随着玉米穰含量的增加,固体成型燃料颗粒密度和平均比能耗均逐渐增加。由于玉米皮颗粒密度大于玉米穰粉末密度,所以实验结果符合以往研究中得出的初始原料密度减小时,成型能耗逐渐增加的结论。

同时,根据陈争光等[15]的研究,采用皮穰分离机构加工单位质量的玉米秸秆所消耗的电能(有效比能)为0.5~2.0wh/kg,即1.8~7.2kj/kg;而实验室所用压缩机压制玉米秸秆生物质成型燃料的压缩比能耗约为20~25kj/kg。由此可知皮穰分离能耗仅为压缩能耗的20%左右。同时,玉米秸秆生物质燃料的低位热值约为15000~16500kj/kg,皮穰分离能耗仅为其的0.03%,而分离后玉米秸秆生物质成型燃料热值的提高远大于皮穰分离预处理的能耗。由此可以得出,皮穰分离预处理的耗能相较于最终其对于成型燃料热值的提高来说几乎可以忽略不计,所以皮穰分离是一种非常高效的预处理方法。

单位径向抗压强度变化趋势折线图为图3,在玉米秸秆穰含量为25%时单位径向抗压强度达到峰值,当玉米穰含量继续增加时,其强度降低。

热值变化趋势见图4,高位热值与低位热值均在玉米秸秆穰含量为10%左右时达到峰值。由此可见,添加玉米秸秆穰能起到助燃作用。

综上,经过皮穰分离预处理并适当添加玉米秸秆穰的固体成型燃料,其性能优于传统玉米秸秆生物质燃料。此种制备方法,能有效降低成型能耗,强化固体燃料的力学性能,并能显著提高其热值,对于工程实际生产来说具有十分重要的意义。

本发明并不限于上文描述的实施方式。以上对具体实施方式的描述旨在描述和说明本发明的技术方案,上述的具体实施方式仅仅是示意性的,并不是限制性的。在不脱离本发明宗旨和权利要求所保护的范围情况下,本领域的普通技术人员在本发明的启示下还可做出很多形式的具体变换,这些均属于本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1