内燃机的排气净化装置的制作方法

文档序号:5199607阅读:175来源:国知局
专利名称:内燃机的排气净化装置的制作方法
技术领域
本发明涉及一种内燃机的排气净化装置。
背景技术
当在稀空燃比的状态下燃烧时,作为用于净化排气中所含有的NOx的催化剂,公知的是,在由氧化铝构成的载体表面上形成由碱金属或碱土类构成的NOx吸收剂层,进而在载体表面载持铂的贵金属催化剂的催化剂(参照特许第2600492号公报)。此类催化剂可在废气的空燃比稀薄时利用铂将废气中所含的NOx氧化,并以硝酸盐的形态吸收在NOx吸收剂内。继而当使废气的空燃比短时间变浓时释放并还原其间被NOx吸收剂所吸收的NOx,接着,当再次使废气中的空燃比变稀薄时,开始发挥将NOx吸收到吸收剂中的作用。
另一方面,废气中也含有SOx,NOx吸收剂除了NOx之外还可以吸收SOx。此种情况下,SOx是以硫酸盐的形态被吸收的。但是与硝酸盐相比,该硫酸盐不易分解,仅靠增大废气的空燃比并不能分解。因此,在NOx吸收剂内SOx的吸收量逐渐增加,随之无法吸收NOx。因此,当使用了上述吸收剂的情况下,必须不时释放SOx。不过硫酸盐在催化剂温度达到600℃以上时会变得易于分解,若在此时使废气中的空燃比变浓,则可以从吸收剂中释放SOx。因此,在使用此种NOx吸收剂的情况下,当必须从NOx吸收剂中释放SOx时,可将催化剂的温度维持在600℃以上,并且维持高的空燃比。
不过由于设置此种NOx吸收剂层时,必然在吸收NOx的同时也吸收SOx,因而为阻止其吸收SOx,只有不设置此种NOx吸收剂层。于是提出了在由氧化铝构成的载体上仅载持铂的催化剂(参照特开平11-285624号公报)。如该公报所述,当在由氧化铝构成的载体上只载持铂的情况下,空燃比稀薄时,NOx可被催化剂吸收,交替稀浓切换空燃比,即可净化NOx。
此外,作为可净化在稀空燃比的状态下燃烧时所产生的NOx的催化剂,公知的是,在沸石上载持过渡金属或贵金属的稀薄NOx催化剂。该稀薄NOx催化剂虽有吸收废气中的HC和NOx后再将NOx还原的功能,但吸附氧气时,其NOx的净化性显著下降。因而公知的是,为使该吸附的氧气分离而使流入催化剂的废气的空燃比周期性变浓的内燃机(参照特许第3154110号公报)。该稀薄NOx催化剂具有即使在稀空燃比的状态下燃烧仍可还原NOx的特征,但必须向废气供应还原NOx用的HC,而且存在耐热性低、仅可得到50%以下的净化率的缺点。
本发明人多年来一直从事再载体上形成NOx吸收剂层的催化剂的研究,同时也对载体上没有NOx吸收剂层的催化剂进行了研究。结果证明载体上无吸收剂层的催化剂,例如在由氧化铝构成的载体上仅载持铂的催化剂中,当在稀空燃比状态下燃烧时,若暂时使空燃比变浓,则在催化剂温度为250℃以下的低温时,可以获得90%以上的NOx净化率。
关于其原因,经从各种角度反复进行研究,得出以下结论。即,就其总体而言,铂本来就具有低温活性,废气中所含的NOx在铂表面被直接分解或选择性地还原。此外,在由氧化铝构成的载体表面上存在碱性基点,在铂表面上氧化的NOx以NO2的形态被吸附于载体表面,或以硝酸离子NO3-的形态保持在载体表面上的碱性基点上。当进行NOx净化时,上述多种作用同时进行,因而可获得90%以上的高净化率。
然而,当把在由氧化铝构成的载体上仅载持铂的催化剂长期暴露在稀空燃比的废气中时,其NOx净化率会逐渐下降。其产生原因在于铂表面被氧原子覆盖,即,铂表面受到氧中毒,从而使铂表面上的NOx的直接分解及NOx的选择还原变得难以进行。事实上,若在此时暂时使空燃比变浓,则覆盖铂表面的氧原子就会因HC及CO的氧化而消耗,即,铂表面的氧中毒被消除,若继而使空燃比恢复到稀薄,则可以再次高效地进行NOx的直接分解及NOx的选择还原。
另一方面,当铂表面被氧原子覆盖时,NOx很容易在铂表面上氧化,从而增加可吸附或保持在载体上的NOx的量。尽管如此净化率下降这一事实说明,对于NOx的净化作用而言,NOx的直接分解或NOx的选择还原是决定性的。因此,最为重要的课题在于当由氧化铝构成的载体上只载持铂时,如何防止铂的整个表面氧中毒,所以必须在铂的整个表面被氧中毒之前暂时将废气中的空燃比由稀切换为浓。
另外,当暂时将废气的空燃比由稀切换为浓时,则吸附在载体上的NOx或保持在载体上的硝酸离子NO3-被HC和CO还原。即,为消除铂表面的氧中毒而暂时将废气的空燃比由稀切换为浓时,则可以去除吸附或保持在载体上的NOx,因此当空燃比由浓变稀时,再次开始发挥NOx的吸附作用或硝酸离子NO3-的保持作用。
如上所述,当在由氧化铝构成的载体上仅载持铂时,为确保NOx的高净化率必须防止铂的整个表面被氧中毒。然而,特开平11-285624号公报以及特许第3154110号公报对此并无任何提示。即,特开平11-285624号公报仅表示以NOx得以净化全部是由于NOx的吸附作用为前提的研究结果,而并未发现铂的氧中毒决定NOx的净化率。因此,特开平11-285624号公报自然不会提及250℃以下的低温可获得很高净化率。
此外,特许第3154110号公报则是以由沸石构成的稀薄NOx催化剂为对象,虽然表示该稀薄NOx催化剂的氧吸附影响NOx的净化率,但对铂表面的氧中毒决定NOx净化率并无任何提示。由于在该沸石上不存在碱性基点,与使用氧化铝时相比,不仅NOx的净化方式不同,而且很难获得50%以上的净化率,因此,特许第3154110号公报也并未提及可在250℃以下获得90%以上高净化率。

发明内容
本发明的目的在于,查明铂表面、即贵金属表面的氧中毒决定NOx的净化率,从而提供一种可确保高NOx净化率的内燃机的排气净化装置。
根据本发明提供一种内燃机的排气净化装置,可通过配置在排气通路内的排气净化催化剂来净化在稀空燃比状态下燃烧时所产生的NOx,其中,作为排气净化催化剂的催化剂载体,使用载体表面上存在碱基点的载体,不必在载体表面上形成可吸收NOx的NOx吸收剂层,而是分散载持贵金属催化剂,在贵金属催化剂的整个表面氧中毒之前,暂时将流入排气净化催化剂的废气的空燃比由稀切换为浓。


图1是压燃式内燃机的整体图。
图2是图解性地表示排气净化催化剂的载体表面部分的剖面的图。
图3是表示因供应还原剂所引起的废气的空燃比的变化的图。
图4是表示NOx净化率的图。
图5A~图5C是表示单位时间内的氧中毒量的图。
图6是表示氧中毒的消除控制以及SOx的释放控制的时间曲线图。
图7是表示燃料的各种喷射模式的图。
图8是用于控制各种标志的流程图。
图9、图10是用于控制还原剂供应的流程图。
图11A、图11B是用于说明废气的空燃比控制的图。
图12是用于进行还原剂供应控制的流程图。
图13是表示废气的空燃比的变化的图。
图14是用于控制还原剂供应的流程图。
图15A、图15B是表示微粒过滤器的图。
图16是表示压燃式内燃机的另一实施例的整体图。
图17是表示压燃式内燃机的另一实施例的整体图。
图18是表示压燃式内燃机的另一实施例的整体图。
图19是表示NOx净化率的图。
图20是用于控制尿素水溶液供应的流程图。
图21是表示压燃式内燃机的另一实施例的整体图。
图22是图解性地表示NOx吸藏催化剂的载体表面部分的剖面的图。
图23是表示因供应还原剂所引起的废气的空燃比的变化的图。
图24是表示NOx的净化率的图。
图25是表示氧中毒的消除控制以及SOx释放控制的时间曲线图。
图26A、图26B是用于说明单位时间内的NOx吸收量的图。
图27是表示NOx以及SOx释放控制的时间曲线图。
图28是用于控制还原剂供应的流程图。
图29是用于进行中毒消除处理的流程图。
图30是用于进行SOx释放处理I的流程图。
图31是用于进行NOx释放处理的流程图。
图32是用于进行SOx释放处理II的流程图。
图33是用于进行还原剂供应控制的流程图。
图34是用于进行中毒消除处理的流程图。
图35是用于进行NOx释放处理的流程图。
图36是表示释放NOx时的废气温度与催化剂碱度的图。
图37是表示SOx释放温度与催化剂碱度的关系的图。
图38是表示压燃式内燃机的另一实施例的整体图。
图39是表示压燃式内燃机的另一实施例的整体图。
图40是表示压燃式内燃机的另一实施例的整体图。
图41是表示压燃式内燃机的另一实施例的整体图。
图42是表示烟雾产生量的图。
图43A、图43B是表示燃烧室内的气体温度等的图。
图44是表示运转区域I、II的图。
图45是表示空燃比A/F的图。
图46是表示节气门开度等的变化等的图。
具体实施例方式
图1表示将本发明用于压燃式内燃机时的情况。另外,本发明同样也可适用于火花点火式内燃机。
从图1可知,1为内燃机主体,2为各个汽缸的燃烧室,3为用于分别向各个燃烧室2喷射燃料的电子控制式燃料喷射阀,4为进气歧管,5为排气歧管。进气歧管4通过进气管道6与排气涡轮增压器7的压缩机7a的出口相连,压缩机7a的入口则与空气过滤器相连。在进气管道6内设有由步进电动机驱动的节气门9,还在进气管道6的周围配置了用于冷却在进气管道6内流动的吸入空气的冷却装置10。在图1所示的实施例中,内燃机冷却水被引入冷却装置10内,可通过该冷却水冷却吸入空气。另外,排气歧管5与排气涡轮增压器7的排气涡轮7b的入口相连,排气涡轮7b的出口则与内置有排气净化催化剂11的套管12相连。在排气歧管5的集合部出口上配置了用于在排气歧管5内流动的废气供应由碳氢化合物构成的还原剂的还原剂供应阀13。
排气歧管5与进气歧管4通过废气再循环(下面称之为EGR)通路14彼此相连,EGR通路14内配置了电子控制式EGR控制阀15。此外,在EGR通路14周围配置了用于冷却在EGR通路14内流动的EGR气体的冷却装置16。在图1所示的例中,内燃机冷却水被引入冷却装置16之内,EGR气体可由内燃机冷却水冷却。另外,各燃料喷射阀3通过燃料供应管17与燃料箱,所谓的共用轨道18相连。由电子控制式的喷吐量可变的燃料泵19将燃料供应到该共用轨道18之内,供应到共用轨道18内的燃料再经由各燃料供应管17供应到燃料喷射阀3。
电子控制单元30由数字电子计算机构成,具有通过双向总线31彼此连接的ROM(只读存储器)32、RAM(随机存储器)33、CPU(中央处理机)34、输入口35以及输出口36。排气净化催化剂11上安装有用于检测排气净化催化剂11的温度的温度传感器20,该温度传感器20的输出信号可通过所对应的A/D变换器37输入到输入口35。此外,在与套管12的出口相连的排气管21内可根据需要配置各种传感器22。加速踏板40上连接着产生与加速踏板40的踏入量L成比例的输出电压的负载传感器41,负载传感器41的输出电压可经由所对应的A/D变换器37输入到输入口35。此外,输入口35上还连接着曲轴每旋转例如15o即产生输出脉冲的曲柄转角传感器42。另外,输出口36经由所对应的驱动电路38,与燃料喷射阀3、节气门驱动用步进电动机9、EGR控制阀15以及燃料泵19相连。
图1所示的排气净化催化剂11由整体型催化剂构成,在该排气净化催化剂11的基体上载持催化剂载体。图2图解性地表示该催化剂载体50的表面部分的剖面。如图2所示,在催化剂载体50的表面上分散载持贵金属催化剂51。在本发明中,作为催化剂载体50使用了载体50表面存在表示碱性的碱基点的载体,在采用本发明的实施例中,作为催化剂载体50使用了氧化铝。此外在本发明的实施例中,作为贵金属催化剂51使用了铂。
如上所述,在该实施例中,在由氧化铝构成的催化剂载体50的表面上仅载持铂51,而未形成由碱金属及碱土类构成的可吸收NOx的NOx吸收剂层。如上所述,经研究证明在采用由氧化铝构成的催化剂载体50的表面上仅载持铂51的排气净化催化剂11的情况下,当在稀空燃比的状态下燃烧时,如果暂时使空燃比变浓,排气净化催化剂11的温度为250℃以下的低温时,可获得90%以上的NOx净化率。
关于其原因,经从各种角度研究的结果,得出如下结论当进行NOx净化时,在铂51的表面上同时并列性产生NOx的直接分解作用或NOx的选择还原作用、以及催化剂载体50上的NOx的吸附作用或催化剂载体50上的NOx的保持作用,由于同时并列性产生上述各种作用,因而可获得高达90%以上的NOx净化率。
即,铂51本来就有低温活性,进行NOx的净化时产生的第1作用为当废气的空燃比稀薄时,废气中的NOx在铂表面上以离解为N和O的状态被吸附在铂51的表面上,离解的N形成N2而脱离铂51的表面,即NOx的直接分解作用。利用该直接分解作用可进行部分NOx的净化。
进行NOx的净化时产生的第2作用为当废气的空燃比稀薄时,吸附在铂51表面上的NO可由废气中的HC或吸附在催化剂载体50上的HC选择性地还原。利用该选择还原作用可进行部分NOx的净化。
另一方面,废气中的NOx、即NO在铂51表面被氧化之后形成NO2,若继续氧化则形成硝酸离子NO3-。进行NOx净化时产生的第3作用为NO2吸附到催化剂载体50上。利用该吸附作用可进行部分NOx的净化。此外,在由氧化铝构成的催化剂载体50的表面上存在碱基点,进行NOx净化时产生的第4作用为可将硝酸离子NO3-保持在催化剂载体50表面上的碱基点中。利用该保持作用,可进行部分NOx的净化。
如上所述,当进行NOx净化时,上述多种作用同时进行,因而可获得高达90%以上的净化率。
然而,若将在由氧化铝构成的催化剂载体50上仅载持铂51的排气净化催化剂11长期暴露在稀空燃比的废气中时,其NOx净化率会逐渐下降。这是因为铂51的表面被氧原子覆盖,即铂51的表面受到氧中毒,从而一方面使铂51表面上的NOx的直接分解及NOx的选择还原变得难以进行。即,由于铂51表面一被氧原子覆盖,废气中的NO无法吸附到铂51表面上,因而很难产生NOx的直接分解,另一方面,由于铂51表面一被氧原子覆盖,则NO无法吸附到铂51表面,因而很难产生NOx的选择还原。
然而,此时若暂时使空燃比变浓,则覆盖铂51表面的氧原子会因HC及CO的氧化而被消耗,即铂表51表面的氧中毒被消除,因而若使空燃比变稀时仍可再次高效进行NOx的直接分解及NOx的选择还原。
不过,若铂51表面被氧原子覆盖,NOx易在铂51表面氧化,因而吸附或保持在催化剂载体50上的NOx的量会增大。尽管如此NOx净化率下降这一事实说明,对于NOx的净化作用而言,NOx的直接分解或NOx的选择还原是决定性的。因此,当最重要的课题显然是在由氧化铝构成的催化剂载体50上仅载持铂51的情况下,如何防止铂51的整个表面被氧中毒,因而需要在铂51的整个表面受到氧中毒之前暂时将废气的空燃比由稀切换为浓。
下面参照试验结果对该问题进行说明。
图3表示每隔t2时间的时间间隔即由还原剂供应阀13喷射t1时间的还原剂,从而使流入排气净化催化剂11的废气的空燃比(供应给进气通路、燃烧室2以及排气净化催化剂上游的排气通路的空气量与燃料及还原剂的量的比值)在维持t2时间的稀空燃比之后提高为t1时间的浓空燃比的情况。
图4表示在由氧化铝构成的催化剂载体50上仅载持铂51的排气净化剂11上,在铂51的整个表面受到氧中毒之前暂时将流入排气净化催化剂11的废气的空燃比在图3所示的t1时间段内由稀切换为浓的情况下,排气净化催化剂11的温度TC(℃)与NOx净化率(%)的关系。另外,图4表示由氧化铝构成的催化剂载体50的涂敷量为150(g),铂51的载持量为3(g)时的情况。
由图4可知,当排气净化催化剂11的温度TC为250℃以下的低温时,可获得90%以上,几乎接近100%的NOx净化率。另外,当排气净化催化剂11的温度TC为200℃以下时,NOx净化率虽有一定量的下降,但是即使排气净化催化剂11的温度下降到150℃,其NOx净化率仍然在80%以上。此外,当排气净化催化剂11的温度高于250℃时,其NOx净化率逐渐下降。即,当排气净化催化剂11的温度升高时,NO变得难以吸附到铂51的表面上,结果由于不仅难以产生NOx的直接分解作用,也难以产生NOx的选择还原作用,所以NOx净化率逐渐下降。
而且,即使铂51的载持量超过3(g),无论增加多少,其NOx净化率也几乎不增加,但如果铂51的载持量少于3(g),则NOx净化率会下降。
此外,图4表示将图3中废气的空燃比稀薄的稀空燃比期间t2设定为60秒,将废气的空燃比高的浓空燃比期间t1设定为3秒时的情况。在此情况下,作为浓空燃比期间t1,由于3秒钟足以使铂表面的氧中毒完全消除,因而从消除氧中毒的角度而言,将浓空燃比期间t1设定为3秒以上没有任何意义。与之相反,如果把浓空燃比期间t1设定为3秒以下,则NOx净化率会逐渐下降。
此外,作为贵金属催化剂51,除铂之外,还可以使用铑(Rh)。在此情况下,图4中所示的NOx净化率为90%以上的温度TC(℃)区域还可以向高温一侧扩展,从而使高温一侧的NOx净化率变高。
如上所述,若在贵金属催化剂51的整个表面受到氧中毒之前暂时将流入排气净化催化剂11中的废气的空燃比由稀切换为浓,即可获得90%以上的NOx净化率。而且如上所述,若暂时将废气的空燃比由稀切换为浓,则吸附在催化剂载体50上的NO2或保持在催化剂载体50上的硝酸离子NO3-可被HC和CO还原。即,当为消除贵金属催化剂51表面的氧中毒而暂时将废气的空燃比由稀切换为浓时,还可去除吸附或保持在催化剂载体50上的NOx,因而当空燃比又变为稀薄时,可再次开始发挥有NO2的吸附作用及硝酸离子NO3-的保持作用。
如上所述,当在由氧化铝构成的催化剂载体50上仅载持铂51时,相对于NOx的净化率,NOx的直接分解及NOx的选择还原是决定性的。不过,催化剂载体50对NO2的吸附作用以及催化剂载体50上的硝酸离子NO3-的保持作用也同样有利于NOx的净化。不过众所周知,若与现有技术相比,废气中存在NO2,则不论使用何种催化剂,NO2多少总会吸附到催化剂之上。在采用本发明的实施例中,如上文所述,废气中的NO在铂51上被氧化而生成NO2,这样一来,NO2即可吸附到排气净化剂11之上。
与之相反,硝酸离子NO3-则并非任何催化剂均可保持,为使硝酸离子NO3-保持在催化剂上,需使催化剂表面呈碱性。在采用本发明的实施例中,如上所述,由于催化剂载体50由氧化铝构成,所以催化剂载体50的表面上存在具有碱性的碱基点,这样即可将硝酸离子NO3-保持到存在于催化剂载体50表面的碱基点上。
不过,存在于由氧化铝构成的催化剂载体50表面上的碱基点的碱性并不太强,因而对于硝酸离子NO3-的保持力也并不太大。因而排气净化催化剂11的温度TC上升时,保持在排气净化催化剂11上的NOx不得不脱离排气净化催化剂11。如图4所示,随着排气净化催化剂11的温度上升,NOx净化率逐渐下降,正是由于存在此种NOx的脱离作用。
而催化剂载体50表面上的碱基点的碱性越高,能以硝酸离子NO3-的形态保持的NOx的量越大。因而为增加保持在排气净化催化剂11上的NOx量就得增加碱基点的量或提高碱基点的碱性。在此情况下,如图2中的标号52所示,若在由氧化铝构成的催化剂载体50内至少从钾K、钠Na、锂Li、铯Cs、铷Rb之类的碱金属,钡Ba、钙Ca、锶Sr之类的碱土类,以及镧La、钇Y之类的稀土类中至少选择添加一种,即可使碱基点的量增加或提高碱基点的碱性。在此情况下,上述镧La及钡Ba等添加物52既可以为了结构稳定而构成氧化铝晶体结构的一部分而添加到催化剂载体50内部,也能以氧化铝和添加物52形成盐的方式添加到催化剂载体50内部。另外,如果增加镧La及钡Ba等添加物52的量,则当废气的空燃比稀薄时保持在排气净化催化剂11上的NOx量自然也会增加。
另一方面,若这样提高碱基点的碱性,则对硝酸离子NO3-的保持力自然也会变大。因此即使排气净化催化剂11的温度上升,硝酸离子NO3-也很难脱离,所以若提高碱基点的碱性,图4中高温一侧的NOx净化率也会升高。
不过,在废气中也含有SO2,该SO2在铂51上被氧化之后形成SO3,该SO3在该铂51上进一步氧化之后形成硫酸离子SO42-。若催化剂具有碱性,则该硫酸离子SO42-被保持在催化剂之上,而且与硝酸离子NO3-相比,该硫酸离子SO42-更容易保持在催化剂上。因此硝酸离子NO3-若能保持在催化剂之上,则硫酸离子SO42-必定也能保持在催化剂上。在采用本发明的实施例中,硝酸离子NO3-可保持在催化剂载体50之上,因此在采用本发明的实施例中,硫酸离子SO42-也可保持在催化剂载体50之上。
另外,如开头时所述,若在催化剂载体上形成由碱金属或碱土类金属构成的NOx吸收剂层,则SOx在NOx吸收剂层内形成硫酸盐。但是该硫酸盐难以分解,若不在使催化剂的温度升高到600℃以上的状态下使使废气的空燃比变浓,则无法使SOx从催化剂中释放出来。
但在该实施例中,存在于由氧化铝构成的催化载体50表面上的碱基点的碱性与NOx吸收剂的碱性相比极低,因此SOx在催化剂载体50表面上的碱基点上并不是以硫酸盐的形态,而是以硫酸离子SO42-的形态保持。而且在此情况下对硫酸离子SO42-的保持力相当小。
这样一来,由于对硫酸离子SO42-的保持力小,因而硫酸离子SO42 -在低温下即可分解脱离。事实上在该实施例中,若使排气净化催化剂11的温度TC大致上升到500℃左右,并使废气的空燃比变浓,则可使保持在排气催化剂11中的SOx从排气净化催化剂11中释放出来。
不过如上所述,若通过在催化剂载体50中添加镧La或钡Ba之类的添加物52,提高催化剂载体50表面的碱基点的碱性,在废气的空燃比稀薄时仍可增加保持在催化剂载体50上的NOx量,这样尤其可以提高高温一侧的NOx净化率。但是,若提高催化剂载体50表面的碱基点的碱性,则保持在催化剂载体50上的SOx量增加,而且对SOx的保持力也会增大。其结果是释放SOx所需的排气净化催化剂11的SOx释放温度上升。
而作为催化剂载体50并非仅有氧化铝,只要是在催化剂载体表面上存在碱基点的载体,可以使用现有的公知的各种载体。
下面根据具体实施例说明NOx以及SOx的处理。
首先说明计算出贵金属催化剂、例如铂51的氧中毒量,当计算出的氧中毒量超过预定的允许值时,将废气的空燃比由稀切换为浓,并以此消除铂51的氧中毒的第1实施例。
如图5A所示,每单位时间内的铂51的氧中毒量W与废气的氧浓度成正比。此外如图5B所示,每单位时间内的铂51的氧中毒量W随着排气净化催化剂11的温度升高而增加。此处的废气中的氧浓度以及排气净化催化剂11的温度取决于内燃机的运转状态,即二者是燃料喷射量Q和内燃机转速N的函数,因此,每单位时间内的铂51的氧中毒量W为燃料喷射量Q和内燃机转速N的函数。在第1实施例中,可通过试验预先求出与燃料喷射量Q和内燃机转速N对应的每单位时间内的铂51的氧中毒量W,并如图5所示将该氧中毒量W作为燃料喷射量Q和内燃机转速N的函数,以映像的形式预先存储在ROM32中。
图6表示氧中毒的消除控制以及SOx的释放控制的时间曲线图。如图6所示,每当氧中毒量W的积分值∑W超出允许值时,即由还原剂供应阀13供应还原剂,并暂时将流入排气净化催化剂11的废气的空燃比A/F由稀切换为浓。这时铂51的氧中毒即被消除,从催化剂载体50释放还原吸附或保持在催化剂载体50上的NOx。
此外,还计算出保持在排气净化催化剂11上的SOx量的积分值∑SOX,当该SOx的量的积分值∑SOX超过允许值时,即可进行由排气净化催化剂11的SOx释放作用。即,首先可使排气净化催化剂11的温度TC升高到SOx释放温度TX。该SOx释放温度TX当未在催化剂载体50中添加添加剂52时大致为500℃,当在催化剂载体50中添加了添加剂52时,根据添加剂52的不同添加量,温度大致在500℃到550℃之间。
当排气净化催化剂11的温度TC达到SOx释放温度TX时,则将流入排气净化催化剂11的废气的空燃比由稀切换为浓,从而开始从排气净化催化剂11释放SOx,在释放SOx的期间内,排气净化催化剂11的温度TC可保持在SOx释放温度TX之上,废气的空燃比维持在浓空燃比。接着,SOx的释放作用结束时,则停止排气净化催化剂11的升温作用,并将废气的空燃比恢复到稀薄。
如上所述,当需要从排气净化催化剂11释放SOx时,可使排气净化催化剂11的温度上升到SOx释放温度TX。下面参照图7说明使排气净化催化剂11的温度TC上升的方法。
使排气净化催化剂11的温度TC上升最为有效的方法之一为使燃料喷射时间角度滞后到压缩上止点以后。即,通常情况下,主燃料Qm在图7中如(I)所示,在压缩上止点附近喷射。而在此情况下,如图7(II)所示,若将主燃料Qm的喷射时间角度滞后,则后燃烧期间延长,这样即可使废气的温度上升。废气的温度升高时,排气净化催化剂11的温度TC随之上升。
此外,为了使排气净化催化剂11的温度TC上升,也可如图7(III)所示,除主燃料Qm之外,在进气上止点附近喷射辅助燃料Qv。这样由于当附加性地喷射辅助燃料Qv时,所燃烧的燃料中增加了该辅助燃料Qv部分,所以废气的温度上升,于是排气净化催化剂11的温度TC上升。
此外,如上所述,若在进气上止点附近喷射辅助燃料Qv,则在压缩冲程中由于压缩热可由该辅料Qv生成乙醛、酮、过氧化物、一氧化碳等中间产物,主燃料Qm的反应可因上述中间产物而加速。因此,在此情况下,如图7(III)所示,即使大大延迟主燃料Qm的喷射时间也可获得很好的燃烧,而不会产生熄火。即,由于可使主燃料Qm的喷射时间大大延迟,因而可使废气温度上升得相当高,从而使排气净化催化剂11的温度TC迅速上升。
此外,为使排气净化催化剂11的温度TC上升,如图7(IV)所示,还可在主燃料Qm之外,在膨胀冲程期间或排气冲程期间喷射辅助燃料Qp。即,在此情况下,大部分辅助燃料Qp并不燃烧,而是以未燃烧HC的形态排到排气通路之内。该未燃烧HC在排气净化催化剂11上被过剩氧氧化,利用此时产生的氧化反应热使排气净化催化剂11的温度TC上升。
图8表示可消除铂51的氧中毒的中毒消除标志与可释放SOx的SOx释放标志的控制程序,该程序通过每隔一定时间的插入来实行。
从图8可知,首先在步骤100中,根据图5c所示的映像,计算出单位时间内的氧中毒量W。接着在步骤101中,通过在∑W上累加氧中毒量W,计算出氧中毒量的积分值∑W。接着在步骤102中,判断氧中毒量的积分值∑W是否超过允许值WX,即,判断铂51的整个表面是否很快要被氧中毒。当∑W≤WX时,跳到步骤104。与之相反,当∑W>WX时,进入步骤103,设定中毒消除标志,继而进入步骤104。
在步骤104中,将燃料喷射量Q乘以常数k的值k·Q加到∑SOX之上。燃料中含有一定量的硫,因此每单位时间内可保持在排气净化催化剂11上的SOx量可用k·Q表示。因此,通过在k·Q上累加∑SOX获得的∑SOX表示保持在排气净化催化剂11上的SOx量的积分值。接着在步骤105中判断SOx量的积分值∑SOX是否超过允许值SX。当∑SOX≤SX时结束该处理循环,若∑SOX>SX,则进入步骤106设定释放标志。
下面参照图9对还原剂的供应控制程序加以说明。
从图9可知,首先在步骤200中判断是否已设定中毒消除标志。当未设定中毒消除标志时,跳到步骤208。与之相对,当已设定中毒消除标志时,进入步骤201,判断排气净化催化剂11的温度是否低于允许温度TL。该允许温度TL可以是NOx净化率为30%时的排气净化催化剂11的温度TC,当由氧化铝构成的催化剂载体50上仅载持铂51时,该允许温度TL大约是400℃。TC≥TL时,即,即使周期性使废气的空燃比变浓,也无法获得高的NOx净化率时,跳到步骤208。即,当排气净化催化剂11的温度TC大致超过400℃时,空燃比的由稀到浓的切换被禁止。与之相反,当TC<TL时,即,若周期性使废气的空燃比变浓,则可获得高的NOx净化率时,进入步骤202。
在步骤202中,计算出例如将废气的空燃比设定为13左右的浓空燃比时所需的还原剂的供应量。接着在步骤203中计算出还原剂的供应时间。该还原剂的供应时间通常为10秒以下。接着在步骤204中开始从还原剂供应阀13供应还原剂。继而在步骤205中判断是否已经过步骤203中计算出的还原剂供应时间。当判断为尚未经过还原剂的供应时间时,跳到步骤208,此时继续供应还原剂,将废气的空燃比保持为13左右的浓空燃比。与之相反,当判断为经过还原剂的供应时间时,即铂的氧中毒已被消除时,进入步骤206,停止供应还原剂,接着进入步骤207,清除∑W及中毒消除标志。然后进入步骤208。
在步骤208中,判断是否设定了释放标志。当未设定SOx释放标志时,结束处理循环。与之相反,当设定SOx释放标志时,进入步骤209,进行排气净化催化剂11的升温控制。即把燃料喷射阀3的燃料喷射模式变为图7(II)~(IV)中所示的任意一种喷射模式。若将燃料喷射模式变换为图7的(II)~(IV)中的任意一种,则排气温度上升,从而使排气净化催化剂11的温度亦上升。继而进入步骤210。
在步骤210中,判断由温度传感器20检测的排气净化催化剂11的温度TC是否已达到SOx释放温度TX以上。当TC<TX时,结束处理循环。与之相反,当TC≥TX时,进入步骤211,计算出将废气的空燃比设定为14左右的浓空燃比所需的还原剂的供应量。继而在步骤212中计算出还原剂的供应时间。该还原剂的供应时间为几分钟左右。接着在步骤213中,开始从还原剂供应阀13供应还原剂。继而在步骤214中,判断是否经过了步骤212中计算出的还原剂供应时间。当判断为尚未经过还原剂的供应时间时,结束处理循环,此时继续供应还原剂将废气的空燃比维持在14左右的浓空燃比。与之相反,当判断为经过还原剂的供应时间时,即,保持在排气净化催化剂11上的SOx已释放完毕时,进入步骤215,停止供应还原剂。接着在步骤216中停止排气净化催化剂11的升温作用,继而进入步骤217清除∑W及SOx释放标志。
图11A、图11B以及图12表示另一实施例。在该实施例中,作为配置在排气管21内的传感器22,采用可检测排气中的NOx浓度的NOx浓度传感器。该NOx浓度传感器22如图11B所示,产生与NOx浓度成比例的输出电压V。
随着铂51的氧中毒的进行,NOx的净化率逐渐下降,其结果是废气的NOx浓度逐渐增加。因此,贵金属催化剂,例如铂51的氧中毒量可根据废气中的NOx浓度进行推测。在该实施例中,当根据废气中的NOx浓度推测出的中毒量超过预设的值时,即,如图11A中所示,当NOx浓度传感器22的输出电压V超过设定值VX时,可将废气的空燃比由稀切换为浓。
图12表示该实施例中的还原剂的供应控制程序。
从图12可知,首先,在步骤300中NOx判断浓度传感器22的输出电压V是否已超过设定值VX。当V≤VX时跳到图10的步骤208。与之相反,当V>VX时,进入步骤301,计算出将废气的空燃比设定为13左右的浓空燃比时所需的还原剂的供应量。接着,在步骤302中计算出还原剂的供应时间。该还原剂的供应时间通常在10秒以下。继而在步骤303中开始从还原剂供应阀13供应还原剂。接着,在步骤304中判断是否经过步骤302中计算出的还原剂供应时间。当尚未经过还原剂供应时间时,跳到图10的步骤208,此时继续供应还原剂,将废气的空燃比维持在13左右的浓空燃比。与之相反,当已经过原剂的供应时间时,即铂51的氧中毒已被消除时,进入步骤305,停止供应还原剂,然后进入图10的步骤208。
而在该实施例中,虽然在使用图8所示的标志控制程序的该实施例中,由于不需要计算氧中毒量,因而在图8所示的标志控制程序中,只实施步骤104到步骤106。此外,在该实施例中如上所述,虽然在图12所示的程序之后实施图10所示的程序,但在图10所示的程序中的步骤217中,仅清除∑SOX及SOx释放标志。
图13及图14表示另一实施例。在该实施例中,当为了消除贵金属催化剂,例如铂51的氧中毒而将废气的空燃比设为浓空燃比时,判断铂51的氧中毒是否已被消除,当判断为铂51的氧中毒已被消除时,可将废气的空燃比由浓切换为稀。
具体而言,在该实施例中,作为配置在排气管21内的传感器22,采用用于检测从排气净化催化剂11流出的废气的空燃比的空燃比传感器。如图13所示,若将流入排气净化催化剂11的废气的空燃比(A/F)in由稀切换为浓,即,当从还原剂供应阀13供应还原剂时,该还原剂、即碳氢化合物被铂51上的氧氧化,在氧存在于铂51上的期间内,从排气净化催化剂11排出的废气的空燃比(A/F)out可大致维持在理论空燃比。接着,当铂51上的氧消失时,由于碳氢化合物穿过排气净化催化剂11,因而从排气净化催化剂11排出的废气的空燃比(A/F)out为浓空燃比。因此当流入排气净化催化剂11的废气的空燃比(A/F)in由稀切换为浓后,从排气净化催化剂11排出的废气的空燃比(A/F)out变浓时,可以判断出铂51的氧中毒已被消除。
图14表示该实施例中的还原剂的供应控制程序。
从图14可知,首先在步骤400中判断是否设定了中毒消除标志。当尚未设定中毒消除标志时,跳到图10的步骤208。与之相反,当判断为设定了中毒消除标志时,进入步骤401,计算出例如将废气的空燃比设定为13左右的浓空燃比时所需的还原剂的供应量。接着进入步骤402,开始从还原剂供应阀13供应还原剂。然后在步骤403中,判断由空燃比传感器22检测出的废气的空燃比(A/F)out是否为浓空燃比。当空燃比(A/F)out并非浓空燃比时,跳到图10的步骤208。与之相反,当判断出空燃比(A/F)out为浓空燃比时,即,铂51的氧中毒被消除时,则进入步骤404,停止供应还原剂,然后进入步骤405,清除∑W及中毒消除标志。继而进入图10的步骤208。
下面说明取代排气净化催化剂11而采用微粒过滤器的实施例。
图15A及图15B表示此种微粒过滤器11的结构。图15A表示微粒过滤器11的正面图,图15B所示的则是该微粒过滤器11的侧面剖视图。如图15A、图15B所示,微粒过滤器11具有蜂窝式结构,具有彼此平行延伸的多个排气通路60、61。这些排气通路由下游端被栓塞62关闭废气流入通路60和上游端被栓塞63封闭的废气流出通路61构成。而在图15A中,标有剖面线的部分表示栓塞63。因此废气流入通路60以及废气流出通路61通过薄薄的隔板64彼此交替配置。换言之,废气流入通路60及废气流出通路61配置为各废气流入通路60被4个废气流出通路包围,各废气流出通路61被4个废气流入通路60包围。
微粒过滤器11例如可由堇青石之类的多孔质材料构成,因此流入废气流入通路60内的废气如图15B中的箭头所示,通过四周的隔板64后流出到相邻的废气流出通路61内。
在该实施例中,各废气流入通路60和各废气流出通路61的周围壁面,即各个隔板64的两侧表面上及隔板64内的细孔内壁面上形成由氧化铝构成的催化剂载体层,在该催化剂载体上载持贵金属催化剂。而在该实施例中,作为贵金属催化剂采用的是铂Pt。
在该实施例中,同样是在由氧化铝构成的催化剂载体上载持铂,可进行图6所示的还原剂的供应控制。因而在该实施例中也可获得图4所示的NOx净化率。
此外,在该实施例中,包含在废气中的微粒被微粒过滤器11过滤,该被过滤的微粒可利用废气的热量依次被燃烧。当大量微粒堆积于微粒过滤器11上时,可将喷射模式变换为图7的图形(II)~(IV)中的任意一种喷射模式,使废气温度上升。这样可使堆积的微粒着火燃烧。
图16及图17分别表示压燃式内燃机各不相同的实施例。
在图16所示的实施例中,在排气净化催化剂11上游的排气通路内配置与排气净化催化剂11相同的排气净化催化剂或微粒过滤器、或具有NOx选择还原功能而不具有吸收NOx功能的NOx选择还原催化剂23,在图17所示的实施例中,在排气净化催化剂11下游的排气通路内配置了微粒过滤器、或具有选择性地还原NOx的功能而不具有吸收NOx的功能的NOx选择还原催化剂23。
若在排气净催化剂11上游的排气通路内配置与排气净化催化剂11相同的排气净化催化剂23,则由于下游侧的排气净化催化剂11的温度低于上游侧的排气净化催化剂23,所以当因上游侧的排气净化催化剂23的温度升高而使NOx净化率下降时,仍可在下游侧的排气净化催化剂11中获得高的NOx净化率。此外,微粒过滤器23可以不具备也可以具备贵金属催化剂及催化剂载体,也可以具备贵金属催化剂及催化剂载体。此外,作为选择还原催化剂23可采用Cu-沸石催化剂。但由于Cu-沸石催化剂23的耐热性低,所以当使用Cu-沸石催化剂23时,如图17所示,最好将Cu-沸石催化剂23配置在排气净化催化剂11的下游侧。而在图16及图17所示的实施例中,也可用与图6所示的方法相同的方法进行还原剂的供应控制。
图18是压燃式内燃机的另一实施例。
在该实施例中,在排气净化催化剂11下游的排气通路内配置了具有选择性地还原NOx的功能而不具有吸收NOx的功能的NOx选择还原催化剂24。作为该NOx选择还原催化剂24,采用以二氧化钛为载体,在该载体上载持氧化钒的催化剂V2O5/TiO2(下面称之为钒·钛催化剂)或以沸石为载体,在该载体上载持铜的催化剂Cu/ZSM5(下面称之为铜沸石催化剂)。
此外,在NOx选择还原催化剂24与排气净化催化剂11之间的排气通路内配置了用于供应尿素水溶液的尿素供应阀25,可利用供应泵26将尿素水溶液供应给该尿素供应阀25。此外,在进气通路内配置了进气量检测器27,作为配置在排气管21内的传感器22,采用了NOx浓度传感器。
当废气的空燃比处于稀薄时,当从尿素供应阀25将尿素水溶液供应到废气中时,则废气中所含的NO在NOx选择还原催化化剂24上被尿素CO(NH2)2产生的氨NH3还原(例如)。在此情况下,为通过还原废气中所含的NOx而完全去除废气中的NOx,需要有一定量的尿素,下面,将为了通过还原完全去除废气中的NOx所需的尿素量称为尿素/NOx的当量比为1的尿素量。并且,在下文中将尿素/NOx的当量比为1简称为当量比=1。
图19中的实线与图4所示的值相同,表示采用排气净化催化剂11的NOx净化率与排气净化催化剂11的温度TC间的关系,图19中的虚线则表示相对于废气中的NOx为使尿素量当量比=1而供应尿素水溶液时的NOx净化率与NOx选择还原催化剂24的温度TC之间的关系。从图19可知,当相对于废气中的NOx量为使尿素量比=1而供应尿素水溶液时,若NOx选择还原催化剂24的温度TC大致在300℃以上,则NOx净化率大致为100%,NOx净化率随着选择还原催化剂24的温度TC下降而下降。
在该实施例中,在图19中的排气净催化剂11的温度TC低于设定温度TL,例如300℃的区域I内,通过实施图8所示的标志控制程序以及图9及图10所示的还原剂的供应控制程序,进行还原剂供应阀13的还原剂供应控制。因此在区域I内可通过排气净化催化剂11获得高NOx净化率。而在此情况下,从图19可知,图9的步骤201中的TL为300℃。
另一方面,在图19中,在NOx选择还原催化剂24的温度TC高于设定温度TN(<TL)的区域内,可通过图20所示的尿素水溶液的供应控制程序供应尿素水溶液,并以此进行采用NOx选择还原催化剂24的NOx的净化。
即,从图20可知,首先在步骤500中判断NOx选择还原催化剂24的温度TC是否高于设定温度TN,例如250℃。当TC≤TN时,结束处理循环。与之相反,当TC>TN时,进入步骤501,根据由浓度传感器22检测的NOx浓度和进气量检测器27检测出的进气量求出每单位时间内从燃烧室2排出的NOx量,并根据该NOx量计算出相对于NOx量,其当量比=1的每单位时间内的尿素量。接着在步骤502中,根据计算出的尿素量计算出尿素水溶液的供应量,继而在步骤503中由尿素供应阀13供应在步骤502中计算出的量的水溶液。因此在区域II中,可通过NOx选择还原催化剂24获得高的NOx净化率。
从图19可知,在区域I与区域II重叠的区域内,既具有依靠排气净化催化剂11进行的NOx净化作用,又具有依靠NOx选择还原催化剂24进行的NOx净化作用,因而该区域内的NOx净化率基本可达100%。因此,可在宽的温度范围内获得高的NOx净化率。
下面对可在宽的温度范围内获得高的NOx净化率的另一种实施例加以说明。
如图21所示,该实施例在排气净化催化剂11的上游配置收容在套管28内的NOx吸藏催化剂29。即,在该实施例中,在排气涡轮增压器7的排气涡轮7b的出口上连接收容吸藏催化剂29的套管28,套管28的出口经由排气管43与收容排气净化催化剂11的套管12相连。
此外,在该实施例中,除用于检测排气净化催化剂11的温度的温度传感器20之外,还在吸藏催化剂11上安装了用于检测吸藏催化剂29的温度的温度传感器48,并在连接NOx吸藏催化剂29的出口与排气净化催化剂11的入口的排气管43内配置用于检测在上述催化剂29、11内流动的废气温度的温度传感器49、而实际上安装上述温度传感器20、48、49中的至少一个。
图21所示的NOx吸藏催化剂29由整体型催化剂构成,在该NOx吸藏催化剂29基体上载持例如由氧化铝构成的催化剂载体。图22图解性地表示该催化剂载体45表面部分的剖面。如图22所示,在催化剂载体45的表面上分散载持贵金属催化剂46,进而在催化剂载体45的表面上形成NOx吸收剂47的层。
在该实施例中,作为贵金属催化剂46,采用了铂,而作为构成NOx吸收剂47的成分,则可从例如钾K、钠Na、铯Cs之类的碱金属,钡Ba、钙Ca之类的碱土类以及镧La钇Y之类的稀土类中至少选择一种使用。
将供应给内燃机进气通路、燃烧室2以及NOx吸藏催化剂29上游的排气通路内的空气及燃料(碳氢化合物)之比称为废气的空燃比,则NOx吸收剂47具有当废气的空燃比稀薄时吸收NOx而当废气中的氧浓度下降时又可将吸收的NOx释放出来的NOx吸收与释放作用。而在未向NOx吸藏催化剂29上游的排气通路内供应燃料(碳氢化合物)或空气的情况下,废气的空燃比与供应给燃烧室2内的混合气的空燃比一致,因而在此情况下,吸收剂47在供应给燃烧室2内的混合气体的空燃比稀薄时吸收NOx,而当供应给燃烧室2内的混合气体中的氧浓度下降时又将吸收的NOx释放出来。
即,以采用钡Ba作为构成NOx吸收剂47的成分时的情形为例加以说明,则如下述当废气的空燃比稀薄时,即废气中的氧浓度高时,废气中所含的NO如图22所示,在铂Pt46上被氧化后形成NO2,进而被吸收到NOx吸收剂47内,与氧化钡BaO结合,并以硝酸离子NO3-的形态向NOx吸收剂47内扩散。于是,NOx被吸收到NOx吸收剂47内。只要废气中的氧浓度高即可在铂Pt46表面生成NO2,只要吸收剂47的NOx吸收能力未饱和,NO2即可被吸收到NOx吸收剂47内而生成硝酸离子NO3-。
与之相反,当通过将燃烧室2内的空燃比设定为浓空燃比或理论空燃比,或从还原剂供应阀13供应还原剂,将废气的空燃比设为浓空燃比或理论空燃比时,由于废气中的氧浓度降低,因而反应朝逆向进行(),于是,NOx吸收剂47内的硝酸离子NO3-以NO2的形态从NOx吸收剂47中释放出来。进而所释放出的NOx被废气中所含的未燃HC、CO还原。
如上所述,当废气的空燃比稀薄时,即在稀空燃比状态下进行燃烧时,废气中的NOx被NOx吸收剂47吸收。但是如果在稀空燃比状态下持续燃烧,则其间NOx吸收剂47的NOx吸收能力饱和,从而无法通过吸收剂47吸收NOx。因此在该实施例中如图23所示,通过在吸收剂47的吸收能力饱和之前由还原剂供应阀13供应还原剂,暂时使废气的空燃比为浓空燃比,以此从吸收剂47中释放NOx。
不过铂Pt46本来就具有低温活性。然而NOx吸收剂47的碱性相当强,因此铂Pt46的低温活性,即氧化性被削弱。其结果是NOx吸藏催化剂11的温度TC降低时,则NO的氧化作用减弱,NOx净化率下降。图24的实线与图4所示的值相同,表示采用排气净化催化剂11时的NOx净化率和排气净化催化剂11的温度TC之间的关系,图24中的虚线表示采用NOx吸藏催化剂29时的NOx净化率与NOx吸藏催化剂29的温度TC之间的关系。从图24可知,在该实施例中,若NOx吸藏催化剂29的温度TC大致低于250℃,则其NOx净化率急剧下降。
此外,废气中也含有SO2,该SO2在铂Pt46上被氧化后形成SO3。进而该SO3被吸收到NOx吸收剂47内,与氧化钡BaO结合,并以硫酸离子SO42-的形态向NOx吸收剂47内扩散,生成稳定的硫酸盐BaSO4。然而由于NOx吸收剂47具有强碱性,因而该硫酸盐BaSO4非常稳定,很难分解,仅仅靠使废气的空燃比变浓并不能分解硫酸盐BaSO4,而是原样保留下来。因此在吸收剂47内,随着时间的推移硫酸盐BaSO4增多,随着时间推移NOx吸收剂47可吸收的NOx量下降。
不过,当在使NOx吸藏催化剂29的温度升高到600℃以上的状态下,使废气的空燃比变浓时,则可将SOx从NOx吸收剂47中释放出来。因此,在该实施例中,设定为当NOx吸收剂47中吸收的SOx量增大时。使NOx吸藏催化剂29的温度升高到600℃以上并使废气的空燃比变浓。
从以上的说明可知,在该实施例中使用表面存在碱基点的载体50的同时,在载体50的表面上不形成可在稀空燃比状态下吸收NOx的NOx吸收剂层,而是在分散载持贵金属催化剂51的排气净化催化剂11与载体45的表面上形成可在稀空燃比状态下吸收NOx的NOx吸收剂47层,并且与分散载持贵金属催化剂46的NOx吸藏催化剂29串连配置在内燃机的排气通路内,当主要靠排气净化催化剂11净化废气中的NOx时,在排气净化催化剂11的载体50的表面载持的贵金属催化剂51的整个表面氧中毒之前,暂时将流入排气净化催化剂11中的废气的空燃比由稀切换为浓,当主要靠NOx吸藏催化剂29净化废气中的NOx时,在NOx吸藏催化剂29的NOx吸收能力饱和之前,暂时将流入吸藏催化剂29的废气的空燃比由稀切换为浓。
而在此情况下,如图24所示,当排气净化催化剂11的温度处在低于设定温度TS的第1温度区域内时,主要靠排气净化催化剂11净化废气中的NOx,当NOx吸藏催化剂29的温度处在高于第1温度区域的高温侧,即处在高于设定温度TS的第2温度区域内时,废气中的NOx主要靠NOx吸藏催化剂29净化。在图24所示的例子中,该设定温度TS基本在250℃左右。
此外,作为图24中的催化剂温度TC,使用了代表排气净化催化剂11的温度及NOx吸藏催化剂29的温度的代表温度,可使用温度传感器48检测出的NOx吸藏催化剂29的温度或温度传感器20检测出的排气净化催化剂11的温度或温度传感器49检测出的废气温度。在此情况下,当代表温度TC低于预设的设定温度TS,例如250℃时,则判断为排气净化催化剂11的温度处于第1温度区域,当代表温度TC高于预设的设定温度TS,例如250℃时,则判断为吸藏催化剂29的温度处于第2温度区域。
下面就NOx以及SOx的处理加以说明。
在该实施例中,当主要在排气净化催化剂11中净化NOx时,同样可用图5C所示的映像计算出排气净化催化剂11的贵金属催化剂、例如铂Pt51的氧中毒量,当计算出的氧中毒量超过预定的允许值时,将废气的空燃比由稀切换为浓,由此消除铂Pt51的氧中毒。
图25表示氧中毒的消除控制以及SOx的释放控制的时间曲线图。该图25中所示的控制本质上与图6所示的控制相同。即如图25所示,每当氧中毒量W的积分值∑W超过允许值WX时,则由还原剂供应阀13供应还原剂,暂时将流入排气净化催化剂11的废气的空燃比(A/F)由稀切换为浓。此时,铂Pt51的氧中毒已被消除,催化剂载体50上吸附或保持的NOx从催化剂载体50中释放还原。
此外,还计算出保持在排气净催化剂11上的SOx量的积分值∑SOX1,该SOx量的积分值∑SOX1一超出允许值SX1,即进行排气净化催化剂11的SOx释放作用。即,首先通过图7(II)~(IV)所示的方法使排气净化催化剂11的温度TC上升,达到SOx释放温度TX1。如上所述,该SOx释放温度TX1当未在催化剂载体50中添加添加剂52时大致为500℃左右,当在催化剂载体50中添加了添加剂52时,根据添加剂52的添加量,温度大约在500℃~550℃之间。
排气净化催化剂11的温度TC达到SOx释放温度TX1时,则将流入排气净化催化剂11的废气的空燃比由稀切换为浓,开始从排气净化催化剂11中释放SOx。在释放SOx的期间内,排气净化催化剂11的温度TC保持在SOx释放温度TX1以上,废气的空燃比维持在浓空燃比。接着,SOx的释放作用一结束,则停止排气净化催化剂11的升温作用,废气的空燃比恢复稀薄。
此外,在该实施例中,当主要在吸藏催化剂29中进行NOx的净化时,计算出NOx吸藏催化剂29的NOx吸收剂47中所吸收的NOx量,当计算出的吸收NOx量超过预设的允许值时,将废气的空燃比由稀切换为浓,由此从NOx吸收剂47释放出NOx。
每单位时间内由内燃机排出的NOx量是燃料喷射量Q与内燃机转速N的函数,因此每单位时间内被NOx吸收剂47吸收的NOx吸收量NOXA成为燃料喷射量Q与内燃机转速N的函数。在该实施例中,预先通过试验求出与燃料喷射量Q和内燃机转速N相对应的每单位时间内的NOx吸收量NOXA,并将该NOx吸收量NOXA作为燃料喷射量Q和内燃机转速N的函数,如图26A所示以映像的形式预先存储在ROM32中。
此外,图26B表示NOx吸收剂47的NOx吸收率KN与NOx吸藏催化剂29的温度TC之间的关系。该NOx吸收率KN相对于吸藏催化剂29的温度TC,具有与图24的虚线所示的NOx吸收率相同的趋势,NOx吸收剂45的实际的NOx吸收量可用NOXA与KN的乘积表示。
图27表示NOx以及SOx的释放控制的时间曲线图。如图27所示,每当NOx吸收量NOXA·KN的积分值∑NOX超过允许值NX时则从还原剂供应阀13供应还原剂,暂时将流入NOx吸藏催化剂29中的废气的空燃比A/F由稀切换为浓。这时,NOx从NOx吸收剂47中释放还原。
此外,也已计算出被吸收到NOx吸收剂47中的SOx量的积分值∑SOX2,当该SOx量的积分值∑SOX2超过允许值SX2时,则NOx吸收剂47开始实行SOx释放作用。即,首先用图7的(II)~(IV)所示的方法使NOx吸藏催化剂29的温度TC上升到SOx释放温度TX2。该SOx释放温度TX2为600℃以上。
当NOx吸藏催化剂29的温度TC达到SOx释放温度TX2时,则将流入吸藏催化剂29的废气的空燃比由稀切换为浓,开始从NOx吸收剂47中释放SOx,在释放SOx的期间内,NOx吸藏催化剂29的温度TC保持在SOx释放温度TX2以上,废气的空燃比维持在浓空燃比,接着,SOx释放作用一结束,则停止吸藏催化剂29的升温作用,使废气的空燃比恢复稀薄。
而图27中所示的to与图25所示的to表示同一时间,因此由NOx吸收剂47释放NOx时的浓空燃比间隔以及由NOx吸收剂47释放SOx时的浓空燃比时间,与排气净化催化剂11中的消除氧中毒的浓空燃比间隔以及用于释放SOx的浓空燃比时间相比,都要长得多。
图28表示由还原剂供应阀13供应还原剂时的供应控制程序,该程序通过每隔一定时间的插入实施。
从图28可知,首先在步骤600中判断代表NOx吸藏催化剂29以及排气净化催化剂11的代表温度TC是否低于设定温度TS、例如250℃。当TC<TS时,进入步骤601,根据图5(C)中所示的映像计算出每单位时间内的氧中毒量W。接着在步骤602中通过将氧中毒量W累加到∑W上,计算出氧中毒量的积分值∑W。继而在步骤603中判断氧中毒量的积分值∑W是否超过了允许值WX,即铂51的整个表面是否即将受到氧中毒。当∑W≤WX时,跳到步骤605。与之相反,当∑W>WX时,进入步骤604进行中毒消除处理,然后进入步骤605。
在步骤605中,将燃料喷射量Q与常数k1的乘积k1·Q加到∑SOX1上。该∑SOX1表示保持在排气净化催化剂11上的SOx量的积分值。接着在步骤606中判断SOx量的积分值∑SOX1是否超过了允许值SX1。当∑SOX1≤SX1时,结束处理循环,当∑SOX1>SX1时,进入步骤607进行SOx释放处理。
另外,当在步骤600中判断为TC≥TS时,进入步骤608,根据图26A所示的图计算出每单位时间内的NOx吸收量NOXA和图26B所示的NOx吸收率KN。接着在步骤609中,通过将实际的NOx吸收量KN·NOXA累加到∑NOX之上,计算出NOx吸收量的积分值∑NOX。进而在步骤610中判断NOx吸收量的积分值∑NOX是否已超过允许值NX。当∑NOX≤NX时,跳到步骤612。与之相反,当∑NOX>NX时,进入步骤611,进行NOx释放处理,然后进入步骤612。
在步骤612中,将燃料喷射量Q乘以常数K2的值K2·Q累加到∑SOX2上。该∑SOX2表示吸收到NOx吸收剂47中的SOx量的积分值。接着在步骤613中判断SOx量的积分值∑SOX2是否已超过允许值SX2。当∑SOX2≤SX2时,结束处理循环,当∑SOX2>SX2时,进入步骤614,进行SOx释放处理。
图29表示图28的步骤604中进行的中毒消除处理程序。
从图29可知,首先在步骤620中计算出将废气的空燃比设定为13左右的浓空燃比时所需的还原剂的的供应量。接着步骤621中计算出还原剂的供应时间。该还原剂的供应时间通常在10秒以下。继而在步骤622中开始由还原剂供应阀13供应还原剂。接着在步骤623中判断是否已经过步骤621中计算出的还原剂供应时间。当尚未经过还原剂供应时间时,返回到步骤623。此时还原剂的供应仍在继续,废气的空燃比维持在13左右的浓空燃比。与之相反,当经过原剂供应时间时,即铂51的氧中毒已被消除时,进入步骤624,停止供应还原剂,然后进入步骤625,清除∑W。接着进入图28中的步骤605。
图30表示图28的步骤607中实行的SOx释放处理I的处理程序。
从图30可知,首先在步骤630中进行排气净化催化剂11的升温控制。即,当把燃料喷射阀3的燃料喷射模式变为图7的(II)~(IV)中的任意一种时,废气的温度上升,排气净化催化剂11的温度也随之上升。接着进入步骤631,判断代表排气净化催化剂11的代表温度TC是否已上升到SOx释放温度TX1以上。当TC<TX1时,返回到步骤631。与之相反,当TC≥TX1时,进入步骤632,计算出将废气的空燃比设定为14左右的浓空燃比时所需的还原剂的供应量。接着在步骤633中计算出还原剂的供应时间。该还原剂供应时间为几分钟左右。进而在步骤634中开始由还原剂供应阀13供应还原剂。接着在步骤635中判断是否经过步骤633中计算出的还原剂供应时间。当尚未经过还原剂供应时间时,返回到步骤635。此时还原剂的供应继续进行,废气的空燃比维持在14左右的浓空燃比。与之相反,当经过还原剂供应时间时,即保持在排气净化催化剂11上的SOx已释放完毕时,进入步骤636,停止供应还原剂。进而在步骤637中停止排气净化催化剂的升温作用,并进入步骤638,清除∑SOX1以及∑W。
图31表示图28的步骤611中实行的NOx释放处理程序。
从图31可知,首先在步骤640中计算出将废气的空燃比设定为13左右的浓空燃比时所需的还原剂的供应量。接着在步骤641中计算出还原剂的供应时间。该还原剂的供应时间通常在10秒以下。进而在步骤642中开始由还原剂供应阀13供应还原剂。接着在步骤643中判断是否已经过步骤641中计算出的还原剂供应时间。当尚未经过还原剂供应时间时,返回到步骤643。此时还原剂的供应继续进行,废气的空燃比维持在13左右的浓空燃比。与之相反,当已经过还原剂供应时间时,即吸收剂47的NOx释放作用已结束时,进入步骤644,停止供应还原剂,进而进入步骤645后清除∑NOX。然后进入图28的步骤612。
图32表示图28的步骤614中实行的SOx释放处理II的处理程序。
从图32可知,首先在步骤650中进行NOx吸藏催化剂29的升温控制。即把燃料喷射阀3的燃料喷射模式变更为图7的(II)~(IV)中的任意一种。当将燃料喷射模式变为图7的(II)~(IV)中的任意一种时,则废气温度上升,NOx吸藏催化剂29的温度也随之上升。接着进入步骤651,判断代表NOx吸藏催化剂29的代表温度TC是否已达到SOx释放温度TX2以上。当TC<TX2时,返回到步骤651。与之相反,当TC≥TX2时,进入步骤653,计算出将废气的空燃比设定为14左右的浓空燃比时所需的还原剂的供应量。接着在步骤652中计算出还原剂的供应时间。该还原剂的供应时间为10分钟左右。接着在步骤654中开始由还原剂供应阀13供应还原剂。进而在步骤655中判断是否已经过步骤653中计算出的还原剂供应时间。当尚未经过还原剂的供应时间时,返回到步骤655。此时,还原剂的供应继续进行,废气的空燃比维持在14左右的浓空燃比。与之相反,当已经过还原剂供应时间时,即吸收剂47吸收的SOx已释放完毕时,进入步骤656,停止供应还原剂。接着在步骤657中停止NOx吸藏催化剂29的升温作用,进而进入步骤658,清除∑SOX2以及∑NOX。
图33表示另一实施例。在该实施例中,作为配置在排气管21内的传感器22,采用可检测废气中的NOx浓度的NOx浓度传感器。该NOx浓度传感器22产生与NOx浓度成比例的输出电压V。在排气净化催化剂11中,随着铂Pt51的氧中毒加重,NOx的净化率逐渐下降,其结果是废气中的NOx浓度逐渐增加。因此,在该实施例中,当根据废气中的NOx浓度推测出的氧中毒量超过预设的允许值时,即NOx浓度传感器22的输出电压V超过设定值VX1时,可将废气的空燃比由稀切换为浓。
此外,在NOx吸藏催化剂29中,当NOx吸收剂47的NOx吸收量接近饱和时,则NOx的净化率逐渐下降,其结果是废气中的NOx浓度逐渐增大。因此,NOx吸收剂47的吸收NOx量可根据废气中的NOx浓度推测出。在该实施例中,当根据废气中的NOx浓度推测出的吸收NOx量超过预设的允许值时,即浓度传感器22的输出电压V超过设定值VX2时,可将废气的空燃比由稀切换为浓。
图33表示由该实施例中的还原剂供应阀13供应还原剂时的控制程序,该程序通过每隔一定时间的插入来实施。
从图33可知,首先在步骤700中判断代表吸藏催化剂29以及排气净化催化剂11的代表温度TC是否低于设定温度TS,例如250℃。当TC<TS时,进入步骤701,判断NOx浓度传感器22的输出电压V是否已超过设定值VX1。当V≤VX1时,跳到步骤703。与之相反,当V>VX1时,则进入步骤702,实行图29所示的消除中毒的处理程序。然后进入步骤703。
在步骤703中,将燃料喷射量Q乘以k1的值k1·Q加到∑SOX1上。该∑SOX1表示保持在排气净化催化剂11上的SOx量的积分值。接着在步骤704中判断SOx量的积分值∑SOX1是否已超过允许值SX1当∑SOX1≤SX1时,结束处理循环,当∑SOX1>SX1时,进入步骤705,实行图30中所示的SOx释放处理I。
此外,当在步骤700中判断为TC≥TS时,前时到步骤706,判断NOx浓度传感器22的输出电压V是否已超过设定值VX2。当V≤VX2时,跳到步骤708。与之相反,当V>VX2时,进入步骤707,实行图31中所示的NOx释放处理。然后进入步骤708。
在步骤708中,将燃料喷射量Q乘以常数k2的值k2·Q加到∑SOX2上。该∑SOX2表示吸收到NOx吸收剂47中的SOx量的积分值。接着在步骤709中判断SOx量的积分值∑SOX2是否已超过允许值SX2。当∑SOX2≤SX2时,结束处理循环,当∑SOX2>SX2时,进入步骤710,实行图32中所示的SOx释放处理II。
图34以及图35表示另一实施例。在该实施例中,作为配置在排气管21内的传感器22,采用用于检测废气的空燃比的空燃比传感器,如图13所示,流入排气净化催化剂11中的废气的空燃比(A/F)in由稀切换为浓后,当从排气净化催化剂11中流出的废气的空燃比(A/F)out处于浓空燃比时,则判断铂Pt51的氧中毒已被消除,此时可将废气的空燃比由浓空燃比切换为稀薄。
此外,在该实施例中,当为了从吸藏催化剂29的NOx吸收剂47中释放出NOx而将废气的空燃比设于浓空燃比时,可根据空燃比传感器22的输出变化判断NOx吸收剂47的NOx释放作用是否已结束,当判断为NOx吸收剂47的NOx释放作用已结束时,可将废气的空燃比由高切换为低。
具体而言,此时也如图13所示,当将流入NOx吸藏催化剂29的废气的空燃比(A/F)in由稀切换为浓时,即当从还原剂供应阀13供应还原剂时,则该还原剂,即碳氢化合物被用于将NOx吸收剂47释放出的NOx还原,在NOx吸收剂47释放NOx的期间内,从NOx吸藏催化剂29中流出的废气的空燃比(A/F)out可大致维持在理论空燃比或略稀的空燃比上。接着,一旦NOx吸收剂47不再释放NOx,则由于碳氢化合物穿过NOx吸藏催化剂29,因而从NOx吸藏催化剂29中流出的废气的空燃比(A/F)out变为浓空燃比。因此在将流入NOx吸藏催化剂29的废气的空燃比(A/F)in由稀切换为浓之后,当从NOx吸藏催化剂29流出的废气的空燃比(A/F)out变为浓空燃比时即可判断NOx吸收剂47的NOx释放作用已结束。
该实施例中的还原剂的供应控制采用图28中所示的程序进行。但图28的步骤604中的中毒消除处理使用图34中所示的程序,图28中的步骤611中的NOx释放处理使用图35中所示的程序。
从图34中所示的中毒消除处理程序可知,首先在步骤800中计算出将废气的空燃比设定为13左右的浓空燃比时所需的还原剂的供应量。接着进入步骤801,开始从还原剂供应阀13供应还原剂。进而在步骤802中判断空燃比传感器22检测的废气的空燃比(A/F)out是否处于浓空燃比。当空燃比(A/F)out并非浓空燃比时,返回到步骤802。与之相反,当空燃比(A/F)out为浓空燃比,即,铂51的氧中毒被消除,则进入步骤803,停止供应还原剂,然后进入步骤804清除∑W。进而进入图28的步骤605。
此外,从图35所示的NOx释放处理程序可知,首先在步骤810中计算出将废气的空燃比设定为13左右的浓空燃比时所需的还原剂的供应量。接着进入步骤811,开始由还原剂供应阀13供应还原剂。进而在步骤812中判断空燃比传感器22检测出的废气的空燃比(A/F)out是否为浓空燃比。当(A/F)out并非处于浓空燃比时,返回到步骤812。与之相反,当空燃比(A/F)out为浓空燃比,即,NOx吸收剂47的NOx释放作用结束,则进入步骤813,停止供应还原剂,然后进入步骤814清除∑NOX。接着进入图28的步骤612。
图36以及图37表示另一实施方式。
如图36所示,该实施例也与图21所示的实施例相同,在内燃机排气通路的上游侧配置NOx吸藏催化剂29,在内燃机排气通路的下游侧配置排气净化催化剂11。但在该实施例中的NOx吸藏催化剂29的上游侧还配置氧化催化剂之类的酸性催化剂70。此外,图36还表示进行使SOx从NOx吸藏催化剂29或排气净化催化剂11中释放出来的升温控制时的废气的温度变化以及各种催化剂70、29、11的碱性强度即碱度。
如上所述,吸藏催化剂29的NOx吸收剂47的碱性相当强,而排气净化催化剂11的碱性较弱。换言之,NOx吸藏催化剂29的碱度比排气净化催化剂11的碱度高得多。在此情况下,如上所述,催化剂的碱度越高其SOx的保持力也随之增加,SOx的保持力变大时,即使催化剂的温度升高,SOx也不容易释放出来。即,如图37所示,SOx的释放温度随着催化剂的碱度增加而升高。
另外,当为释放SOx而进行升温控制时的废气温度,位于上游侧的催化剂的温度要比位于下游侧的催化剂高。因此,从释放SOx的角度而言,最好将碱度高的催化剂配置在上游侧。即,从释放SOx的角度而言,在升温控制时最好设为催化剂床温越高催化剂碱度越高。在图21及图36所示的例子中,以上述观点来看,排气净化催化剂11和NOx吸藏催化剂29的排列顺序正是根据其碱性强度而决定的,碱性强的催化剂,即NOx吸藏催化剂29配置在碱性弱的催化剂,即排气净化催化剂11的上游侧。
而废气的升温作用以废气中的未燃烧HC的氧化反应热最强。因此在图36所示的例子中,在NOx吸藏催化剂29的上游侧配置酸性催化剂70。
不过图21以及图36中所示的NOx吸藏催化剂29也可由图15A以及图15B中所示的微粒过滤器构成。
这样,在用微粒过滤器构成吸藏催化剂29的情况下,各废气流入通路60以及各废气流出通路61的周围壁面,即各个隔板64的两侧表面及隔板64内的细孔内壁面上均形成由氧化铝构成的催化剂载体层,如图22所示,在该催化剂载体45上载持贵金属催化剂46与NOx吸收剂47。而在此情况下,作为贵金属催化剂使用了铂Pt。这样一来,即使在由微粒过滤器构成NOx吸藏催化剂29的情况下,废气的空燃比稀薄时,NOx及SOx仍可被NOx吸收剂47吸收,因而在此情况下同样可进行与图27所示的相对于NOx吸藏催化剂29的NOx及SOx的释放控制相同的NOx及SOx的释放控制。
此外,在用微粒过滤器构成NOx吸藏催化剂29的情况下,废气中所含的微粒被微粒过滤器过滤,被过滤的微粒可利用废气热量依次燃烧。若有大量微粒堆积于微粒过滤器上时,可将喷射模式切换为图7的喷射模式(II)~(IV)中的任意一种,或由还原剂供应阀13供应还原剂,以此使废气的温度上升,从而使堆积的微粒着火燃烧。
图38~图41表示NOx吸藏催化剂29与排气净化催化剂11的各种排列示例。
在图38所示例中,排气净化催化剂11配置在NOx吸藏催化剂29的上游侧。在此情况下,即使废气的温度低也可用排气净化催化剂11净化NOx。此外,当废气处于稀薄时,废气中含有的一部分NO在排气净化催化剂11中变换为NO2,该NO2很容易被NOx吸藏催化剂29吸收。另外,为了提高废气的空燃比而由还原剂供应阀13供应还原剂时,该还原剂可在排气净化催化剂11中转变为低分子量的碳氢化合物。因此,可将由NOx吸藏催化剂29的NOx吸收剂47释放出的NOx高效还原。
另外,在图38的示例中,也可以用微粒过滤器构成NOx吸藏催化剂29。在此情况下,可利用排气净化催化剂11中生成的NO2促进堆积在微粒过滤器上的微粒氧化()。
在图39所示的例中,在NOx吸藏催化剂29的上游与下游分别配置了排气净化催化剂11。在此情况下,可用微粒过滤器构成NOx吸藏催化剂29。
在图40所示的例中,排气净化催化剂11配置在NOx吸藏催化剂29的下游,而在NOx吸藏催化剂29的上游则配置了整体型催化剂71。该整体型催化剂71的上游侧的半部由排气净化催化剂11构成,而下游侧的半部由NOx吸藏催化剂29构成。在该实施例中也可用微粒过滤器构成NOx吸藏催化剂29。
在图41所示例中,整体型催化剂72配置在内燃机的排气通路内。该整体型催化剂72的中央部分由NOx吸藏催化剂29构成,上游部分及下游部分由排气净化催化剂11构成。在该实施例中同样可用微粒过滤器构成NOx吸藏催化剂29。
下面对将排气净化催化剂11等升温,将废气的空燃比设为浓空燃比时适用的低温燃烧方法加以说明。
在图1等所示的压燃式内燃机中,随着EGR率(EGR气体量/(EGR气体量+进气量))的增加烟雾的产生量也随之增加,并达到峰值,若进一步提高EGR率,则烟雾的发生量会急剧下降。下面参照表示改变EGR气体的冷却程度时的EGR率和烟雾之间的关系的图42,对此进行说明。而在图42中,曲线A表示将EGR气体强力冷却后使其温度维持在90℃左右时的情况,曲线B则表示用小型冷却装置冷却EGR气体时的情况,曲线C表示未强制性冷却EGR气体时的情况。
如图42的曲线A所示,在强力冷却EGR气体的情况下,在EGR率稍低于50%的位置上烟雾产生量达到峰值,在此情况下,若将EGR率提高到55%以上,则几乎不再产生烟雾。另外,如图42的曲线B所示,在轻微冷却EGR气体的情况下,在EGR率稍高于50%的位置上烟雾发生量达到峰值,在此情况下,若将EGR率提高到65%以上,则几乎不再发生烟雾。此外,如图42的曲线C所示,在未强制冷却EGR气体的情况下,在EGR率55%左右烟雾发生量达到峰值,在此情况下若将EGR率提高到70%以上,则几乎不再发生烟雾。
如上所述,若将EGR率设定为55%以上则不再产生烟雾,其原因在于由于EGR气体的吸热作用,燃烧时的燃料及周围的气温并不太高,即可进行低温燃烧,其结果是碳氢化合物不产生煤烟。
该低温燃烧与空燃比无关,具有可抑制烟雾产生并可减少NOx产生量的特性。即,虽然当使空燃比变浓时燃料过剩,但由于可将燃烧温度抑制在低温,因而过剩的燃料并不生成煤烟,这样也就不会产生烟雾。此外,此时也仅产生极少量的NOx。另外,即使在平均空燃比稀薄时,或空燃比为理论空燃比时,若提高燃烧温度必然会生成少量的煤烟,但在低温燃烧下。由于可将燃烧温度抑制在低温,因而完全不产生烟雾,而且也只产生极少量的NOx。
另外,若实行该低温燃烧,虽然燃料及周围的气体温度变低,但废气的气温却会上升。下面参照图43A及图43B就此问题加以说明。
图43A的实线表示进行低温燃烧时的燃烧室5内的平均气温Tg与曲柄转角之间的关系,图43A的虚线则表示进行通常燃烧时的燃烧室5内的平均气温Tg与曲柄转角之间的关系。此外,图43B的实线表示进行低温燃烧时的燃料及其周围气温Tf与曲柄转角之间的关系,图43B的虚线则表示进行通常燃烧时的燃料及其周围气温Tf与曲柄转角之间的关系。
进行低温燃烧时,与通常燃烧时相比,EGR气体量多,因此如图43A所示,压缩上止点之前,即压缩冲程中,以实线表示的低温燃烧时的平均气温Tg高于以虚线表示的通常燃烧时的平均气温Tg。而此时如图43B所示,燃料及其周围的气温Tf则与平均气温Tg大致相同。
接着,虽然在压缩上止点附近开始燃烧,但在此情况下进行低温燃烧时,如图43B的实线所示,由于EGR气体的吸热作用,燃料及其周围气体的温度Tf并不太高。与之相反,当进行通常燃烧时,由于燃料周围存在大量氧,所以如图43B的虚线所示,燃料及其周围的气体温度Tf极高。这样,在通常燃烧时燃料及其周围的气温Tf与低温燃烧时相比要高出许多,但占大部分的其余气体的温度与低温燃烧时相比,通常燃烧时反而低,因此如图43A所示,压缩上止点附近的燃烧室2内的平均气温Tg低温燃烧时反而比通常燃烧时高。其结果如图43A所示,燃烧结束后的燃烧室2内已燃气体温度,在低温燃烧时比在通常燃烧时高,因而当进行低温燃烧时,废气的温度升高。
不过由于内燃机的要求转矩TQ升高时,即,燃料喷射量增加时,燃烧时的燃料及周围的气温也会变高,因而很难进行低温燃烧,即,低温燃烧仅局限于由燃烧所产生的发热量较少的内燃机低负载运转期间。在图44中,区域I表示与煤烟的发生量形成峰值的非活性气体量相比,燃烧室5的非活性气体量更多的第1种燃烧,也就是可使之进行低温燃烧的运转区域,区域II则表示与煤烟的产生量达到峰值的非活性气体量相比,燃烧室内的非活性气体量更少的第2燃烧,即只能进行通常燃烧的运转区域。
图45表示在运转区域II中进行低温燃烧时的目标空燃比A/F,图46则表示在运转区域II中与进行低温燃烧时的要求转矩TQ相对应的节气门9的开度、EGR控制阀的打开程序、EGR率、空燃比、喷射开始时期θS、喷射结束时期θE、喷射量。而图46中还一并表示在运转区域II中进行的通常燃烧时的节气门8的开度等。
从图45以及图46可知,在运转区域I中进行低温燃烧时EGR率定为55%以上,空燃比A/F设定为15.5~18左右的稀空燃比。而如上所述,在运转区域I中进行低温燃烧时,即使将空燃比设定为浓空燃比也几乎不产生烟雾。
于是,在进行低温燃烧时,将空燃比设为浓空燃比,而且几乎不会产生烟雾。因此,当为了消除氧中毒或释放SOx而要将废气的空燃比设为浓空燃比时可进行低温燃烧,在低温燃烧状态下也可将空燃比设于浓空燃比。
此外如上所述,若进行低温燃烧则废气温度上升。因此为了释放SOx或为了使堆积的微粒着火燃烧而要使废气升温时也可进行低温燃烧。
如上所述,若采用本发明,可获得很高的净化率。
权利要求
1.一种内燃机的排气净化装置,通过配置在排气通路内的排气净化催化剂净化在稀空燃比状态下进行燃烧时所产生的NOx,其中作为所述排气净化催化剂的催化剂载体,使用载体表面上存在碱基点的载体,在该载体表面上并不形成可吸收NOx的NOx吸收剂层,而是分散载持贵金属催化剂,在贵金属催化剂的整个表面受到氧中毒之前,暂时将流入排气净化催化剂的废气的空燃比由稀切换为浓。
2.如权利要求1所述的内燃机的排气净化装置,其中所述催化剂载体由氧化铝构成。
3.如权利要求2所述的内燃机的排气净化装置,其中使所述催化剂载体的内部含有碱金属、碱土类金属或稀土类,以此增加催化剂载体表面上的碱基点量或加强碱基点上的碱性。
4.如权利要求1所述的内燃机的排气净化装置,其中所述贵金属催化剂由铂构成。
5.如权利要求1所述的内燃机的排气净化装置,其中为了持续消除贵金属催化剂的氧中毒,反复将废气的空燃比由稀切换为浓,将此时的浓厚时间相对于稀薄时间的比例设定为,排气净化催化剂的温度为200℃到250℃时NOx净化率达到90%以上的比例。
6.如权利要求1所述的内燃机的排气净化装置,其中为了持续消除贵金属催化剂的氧中毒,反复将废气的空燃比由稀切换为浓,当排气净化催化剂的温度在允许温度以上时禁止该空燃比的由稀到浓的切换作用。
7.如权利要求1所述的内燃机的排气净化装置,其中具有用于计算出贵金属催化剂的氧中毒量的装置,当计算出的氧中毒量超过预设的允许值时,将废气的空燃比由稀切换为浓。
8.如权利要求1所述的内燃机的排气净化装置,其中具有用于推测贵金属催化剂的氧中毒量的装置,当推测出的氧中毒量超过预设的允许值时,将废气的空燃比由稀切换为浓。
9.如权利要求8所述的内燃机的排气净化装置,其中具有用于检测从排气净化催化剂流出的废气中的NOx浓度的NOx浓度传感器,当由NOx浓度传感器检测出的NOx浓度超过设定值时,判断为贵金属催化剂的氧中毒量超过允许值。
10.如权利要求1所述的内燃机的排气净化装置,其中具有判断贵金属催化剂的氧中毒是否已被消除的装置,当判断为贵金属催化剂的氧中毒已被消除时,将废气的空燃比由浓切换为稀。
11.如权利要求10所述的内燃机的排气净化装置,其中具有用于检测从排气净化催化剂流出的废气的空燃比的空燃比传感器,将流入排气净化催化剂的废气的空燃比由稀切换为浓之后,当从排气净化催化剂流出的废气的空燃比浓厚时,判断为贵金属催化剂的氧中毒已被消除。
12.如权利要求1所述的内燃机的排气净化装置,其中废气中含有的NOx以及SOx在排气净化催化剂中被贵金属催化剂氧化之后保持在催化剂载体上。
13.如权利要求12所述的内燃机的排气净化装置,其中当为了消除贵金属催化剂的氧中毒而暂时将流入排气净化催化剂中的废气的空燃比由稀切换为浓时,从催化剂载体上释放并还原保持在催化剂载体上的NOx。
14.如权利要求12所述的内燃机的排气净化装置,其中将催化剂载体表面的碱性强度设定为能以硫酸离子的形态将SOx保持在催化剂载体表面上的强度。
15.如权利要求14所述的内燃机的排气净化装置,其中当从催化剂载体表面释放保持在催化剂载体表面上的SOx时,使排气净化催化剂的温度上升到SOx释放温度之后,将排气净化催化剂的温度维持在SOx释放温度并使废气的空燃比变浓,该SOx释放温度大致为500℃~550℃。
16.如权利要求1所述的内燃机的排气净化装置,其中取代所述排气净化催化剂,将微粒过滤器配置在内燃机的排气通路内,将所述催化剂载体涂敷在微粒过滤器上。
17.如权利要求1所述的内燃机的排气净化装置,其中在内燃机排气通路内配置微粒过滤器,在微粒过滤器的上游或下游的排气通路内配置所述排气净化催化剂。
18.如权利要求1所述的内燃机的排气净化装置,其中在内燃机的排气通路内配置具有选择性地还原NOx的功能,但不具有吸收NOx的功能的NOx选择还原催化剂,在该NOx选择还原催化剂的上游或下游的排气通路内配置所述排气净化催化剂。
19.如权利要求18所述的内燃机的排气净化装置,其中在NOx选择还原催化剂上游的排气通路内配置排气净化催化剂,并且在NOx选择还原催化剂与排气净化催化剂之间的排气通路内配置用于供应尿素水溶液的尿素供应阀,当利用排气净化催化剂可获得高的NOx净化率时,反复将废气的空燃比由稀切换为浓,当利用NOx选择还原催化剂可获得高的NOx净化率时,由尿素供应阀供应尿素水溶液。
20.如权利要求1所述的内燃机的排气净化装置,其中在载体表面上形成可在稀空燃比状态下吸收NOx的NOx吸收剂层,并且将分散载持贵金属催化剂的NOx吸藏催化剂与所述排气净化催化剂串联配置在内燃机的排气通路内,当主要通过排气净化催化剂净化废气中的NOx时,在排气净化催化剂的载体表面上所载持的贵金属催化剂的整个表面受到氧中毒之前,暂时将流入排气净化催化剂的废气的空燃比由稀切换为浓,当主要通过NOx吸藏催化剂净化废气中的NOx时,在NOx吸藏催化剂的NOx吸藏能力饱和之前,暂时将流入NOx吸藏催化剂的废气的空燃比由稀切换为浓。
21.如权利要求20所述的内燃机的排气净化装置,其中当排气净化催化剂的温度处于第1温度区域时,主要通过排气净化催化剂净化废气中的NOx;当NOx吸藏催化剂的温度处于高于该第1温度区域的高温一侧的第2温度区域时,主要通过NOx吸藏催化剂净化废气中的NOx。
22.如权利要求21所述的内燃机的排气净化装置,其中当代表排气净化催化剂的温度和NOx吸藏催化剂的温度的代表温度低于预设的设定温度时,判断为排气净化催化剂的温度处于第1温度区域,同时,当该代表温度高于预设的设定温度时,判断为NOx吸藏催化剂的温度处于第2温度区域;当判断为排气净化催化剂的温度处于第1温度区域时,在排气净化催化剂的载体表面上所载持的贵金属催化剂的整个表面氧中毒之前,暂时将流入排气净化催化剂的废气的空燃比由稀切换为浓,当判断为NOx吸藏催化剂的温度处于第2温度区域时,在NOx吸藏催化剂的NOx吸藏能力饱和之前,暂时使流入NOx吸藏催化剂的废气的空燃比由稀切换为浓。
23.如权利要求20所述的内燃机的排气净化装置,其中NOx吸藏催化剂的载体表面上载持的NOx吸收剂由碱金属、碱土类金属或稀土类构成。
24.如权利要求20所述的内燃机的排气净化装置,其中废气中含有的NOx和SOx在稀空燃比状态下可被NOx吸藏催化剂的载体表面上载持的NOx吸收剂吸收。
25.如权利要求24所述的内燃机的排气净化装置,其中具有用于计算出NOx吸收剂所吸收的NOx吸收量的装置,当计算出的NOx吸收量超过预设的允许值时,将废气的空燃比由稀切换为浓。
26.如权利要求24所述的内燃机的排气净化装置,其中具有用于推测NOx吸收剂所吸收的NOx吸收量的装置,当推测出的NOx吸收量超过预设的允许值时,将废气的空燃比由稀切换为浓。
27.如权利要求24所述的内燃机的排气净化装置,其中具有用于检测从NOx吸藏催化剂流出的废气中的NOx浓度的NOx浓度传感器,当由NOx浓度传感器检测的NOx浓度超过设定值时,判断为NOx吸收剂的NOx吸收量超过允许值。
28.如权利要求24所述的内燃机的排气净化装置,其中当从NOx吸收剂中释放NOx吸藏催化剂的NOx吸收剂所吸收的SOx时,使NOx吸藏催化剂的温度上升到SOx释放温度后,将NOx吸藏催化剂的温度维持在SOx释放温度并且使废气的空燃比变浓,该SOx释放温度大致在600℃以上。
29.如权利要求20所述的内燃机的排气净化装置,其中根据催化剂的碱性强度来决定排气净化催化剂和NOx吸藏催化剂的排列顺序,将碱性强的催化剂配置在碱性弱的催化剂的上游侧。
30.如权利要求29所述的内燃机的排气净化装置,其中将NOx吸藏催化剂配置在排气净化催化剂的上游侧。
31.如权利要求30所述的内燃机的排气净化装置,其中在NOx吸藏催化剂的上游侧配置酸性催化剂。
32.如权利要求20所述的内燃机的排气净化装置,其中在排气净化催化剂的上游侧配置NOx吸藏催化剂。
33.如权利要求32所述的内燃机的排气净化装置,其中NOx吸藏催化剂由微粒过滤器构成。
34.如权利要求20所述的内燃机的排气净化装置,其中在排气净化催化剂的下游侧配置NOx吸藏催化剂。
35.如权利要求34所述的内燃机的排气净化装置,其中NOx吸藏催化剂由微粒过滤器构成。
36.如权利要求20所述的内燃机的排气净化装置,其中分别在NOx吸藏催化剂的上游和下游配置排气净化催化剂。
37.如权利要求36所述的内燃机的排气净化装置,其中NOx吸藏催化剂由微粒过滤器构成。
38.如权利要求1所述的内燃机的排气净化装置,其中通过将还原剂供应到内燃机排气通路内,使废气的空燃比变浓。
39.如权利要求1所述的内燃机的排气净化装置,其中内燃机,随着再循环废气量的增加煤烟的产生量也逐渐增加并达到峰值,若继续增加再循环废气量则几乎不再产生煤烟而构成;在再循环排气量增加到煤烟产生量达到峰值以上的量的状态下,使燃烧室内的空燃比变浓,从而使废气的空燃比变浓。
40.如权利要求1所述的内燃机的排气净化装置,其中内燃机,随着再循环废气量的增加煤烟的产生量也逐渐增加并达到峰值,若继续增加再循环废气量则几乎不产生煤烟而构成;当应使排气净化催化剂的温度上升时,使再循环排气量超过煤烟产生量达到峰值的量。
全文摘要
在内燃机的排气通路内配置用于在稀空燃比的状态下净化NO
文档编号F01N13/02GK1682017SQ03821478
公开日2005年10月12日 申请日期2003年9月8日 优先权日2002年9月10日
发明者仲野泰彰, 广田信也, 田中俊明, 见上晃 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1