喷射器的制作方法

文档序号:5168316阅读:190来源:国知局
专利名称:喷射器的制作方法
技术领域
本发明涉及一种喷射燃料的喷射器。
背景技术
现有的普通喷射器具有阀件和阀体,阀体支撑着阀件,以使得阀件可 在阀体中沿轴向方向移动。阀体的内壁面与阀件的外壁面之间围成了燃料 通道。阀体被制成具有位于内壁面上的阀座区段以及位于阀座区段下游的 凹陷部分。在凹陷部分上制有喷射孔。阀件具有承座区段。承座区段座压 在阀座区段上,以此来停止喷射孔喷射燃料的操作。承座区段离开阀座区
段就允许喷射孔对燃料执行喷射(例如在专利文件l: JP-A-2000-314359) 中就公开了这样的内容)。在这种类型的喷射器中,阀件上承座区段的端面 被布置成面对着阀体的凹陷部分,由此在凹陷办法与承座区段的端面之间 形成了燃料腔(该燃料腔也被称为囊腔区段)。
专利文件1中所描述的装置是一种这样的喷射器其具有缝隙形的单 个喷射孔,也就是说,该喷射孔为平面扇形。喷射器形成了燃料喷雾,燃 料喷雾被从喷射孔中喷出,其以液态薄膜的形式在扇形结构的横向方向上 扩展开。这种技术使用了很高的贯透力(即将燃料的喷射速度提高)来形 成平面扇形的、液态薄膜形式的燃料喷雾,由此来增大液态薄膜与周围空 气之间的接触面积。最终地,利用液态薄膜与周围空气之间的摩擦作用实 现燃料的雾化。
专利文件2 (JP-A-H11-70347)中所公开的装置是另一种类型的喷射 器在该喷射器阀体的顶端一侧一即凹陷部分上制有多个喷射孔。这一技 术通过将燃料从多个喷射孔中喷出而提高了燃料喷雾形状的成型自由度。 例如,该技术能形成如上所述的平面扇形燃料喷雾,或者也可形成圆锥形 的燃料喷雾。
对于专利文件1和2中的现有技术而言,当将燃料直接喷射到内燃机 气缸的燃烧室中(下文将简称为气缸内部)时,希望在将燃料喷雾扩散到气缸中的同时实现燃料的雾化。如果希望达到很高的雾化程度,则就必须 要进一步地增大从喷射孔执行喷射的喷射速度一即增大喷射的贯透力。在 此情况下,需要关注的问题是喷射入的燃料(即燃料喷雾)会粘附到气 缸内部的壁面一例如缸壁表面上。本发明人考虑到由于喷雾的前端保持 着内能而不会散分开,因而,对于专利文件1和2所公开的技术而言,喷 雾前端的速度不易于下降。
在从冷车状态进行起动的过程中,如果喷射入的燃料粘附到缸壁表面 上,则燃料就会变为诸如HC等的未完全燃烧气体,并能造成排烟的增加, 或者,粘附到缸壁表面上的燃料会将在活塞与缸壁表面之间形成润滑的机 油稀释。

发明内容
本发明的目的是提供一种喷射器,其既能允许使用低的贯透力,也能 实现高度的雾化。
由于进行了早期的研究,本发明人获得了如下的认识。也就是说,通 过形成大的速度梯度一或更具体而言通过在喷射孔的出口部分处使得燃料 的流速出现大的速度梯度,可促进所喷射燃料的散分,最终就能在无需增 大燃料喷射贯透力的前提下促进燃料的雾化。在下文中,喷射孔出口部分 处燃料流速的梯度被简称为速度梯度,而燃料孔出口部分处燃料的平均流 速被称为喷射速度。
如果形成了上述的速度梯度,则最终就会在流经喷射孔内部的燃料中 造成扰动。因而,需要关注的问题是与采用现有技术的情况相比,喷射 速度下降了。换言之,本发明人考虑的问题是必须要有效地增大速度梯 度,且必须要防止喷射速度随着速度梯度的形成而出现下降。
本发明采用了如下的技术措施来实现上述目的。
根据本发明的一个方面(第一项发明),喷射器具有阀体和阀件。阀体 具有内周表面,该内周表面围成了燃料通道,而且,在燃料进行流动的下 游方向上,该内周表面的直径是减小的。阀体还具有制在内周表面上的阀 座区段、设置在阀座区段下游的凹陷部分、以及制在凹陷部分上的喷射孔, 其中,所述的下游是相对于燃料的流动方向而言的。阀件被设置在阀体中, 以使得阀件可在轴向方向上往复移动,阀件具有外周表面,其与阀体的内周表面一起形成了燃料的通道。阀件具有制在外周表面上的承座区段,以 使得承座区段可座压到阀座区段上,且该承座区段可与阀座区段分离开, 阀件还具有顶端区段,其相对于燃料的流动方向位于承座区段的下游,并 面对着凹陷部分。当承座区段与阀座区段分离开时,喷射器对燃料进行喷 射,燃料经喷射孔流入到由凹陷部分与顶端区段所围成的燃料腔中。
阀体的结构被设计成这样存在有一条虚拟的延伸线,其从内周表面 上形成了阀座区段的内周面部分处延伸出,延伸的方向是内周面部分的直 径縮小方向,在该方向上,内周面部分的直径是缩小的,该延伸线位于喷 射孔的入口部分处,且在包含着喷射孔中心轴线的虚拟平面内与喷射孔的 喷射孔内周面相交。
阀件的顶端区段具有斜面,其从承座区段的下游端以环形的形状向内 侧扩展。斜面向径向内侧的扩展超过了喷射孔中心轴线与顶端区段相交处 的位置。
在上述的构造中,当燃料被从喷射孔喷射出时,由于承座区段与阀座 区段分离开,燃料将流出向燃料腔中。流出向燃料腔的燃料的主体流方向 主要是由形成了阀座区段的内周面部分的直径缩小方向决定的。
按照上述的结构设计,阀体上阀座区段的结构被设计成这样使得沿 内周面部分的直径縮小方向延伸的虚拟延伸线位于喷射孔的入口部分处, 并与喷射孔内周面相交。因而,燃料的主体流方向可被控制到这样的流动 方向上一其直线性地流入到喷射孔的入口部分中。换言之,即使在燃料的 主体流流过了阀座区段之后,燃料流的流向转向损耗也受到了抑制,由此 能在防止燃料流动能降低的同时使燃料流入到喷射孔中。
此外,阀件的顶端区段具有从承座区段下游端以环形形式向内侧扩展 的斜面,以使得该斜面向径向内侧的扩展超过了喷射孔中心轴线与顶端区 段相交处的位置。因而,即使燃料的主体流流过了承座区段,也能在防止 燃料流动能降低的同时使燃料流入到喷射孔中。
由阀座区段与顶端区段的这种构造所限定的燃料主体流能防止燃料流 动能的降低,并促使燃料流入到喷射孔中。
另外,当燃料的主体流流入到喷射孔的入口部分时,其与喷射孔内周 面相碰撞。因而,在燃料沿着喷射孔内周面从入口部分一侧移动向出口部 分一侧时,可在燃料中造成扰动,其中,燃料的主体流与喷射孔内周面发生碰撞。结果就是,可在喷射孔的出口部分处形成很大的速度梯度。
对于根据本发明上述方面所设计的结构而言,利用两方面因素的组合 而促进了雾化,这两方面因素是在喷射孔的出口部分处形成了速度梯度; 且喷射速度不同于现有技术中的情况,在现有技术中,是利用高的贯透力一 即通过增大喷射速度来促进雾化。因而,本发明在同时实现了低的贯透力 和高的雾化度。另外,由于采用了防止喷射速度由于形成了速度梯度而被 降低的措施,使得燃料在防止流动能降低的同时流入到喷射孔中。因此, 可在防止喷射速度出现过度下降的前提下,同时实现了低的贯透力和高的 雾化度。
根据本发明的另一方面,顶端区段向径向内侧的扩展超过了喷射孔入 口部分的位置。
利用上述的结构设计,燃料的主体流即使从承座区段流过,燃料流的 转向损耗也可被抑制为最小,直到燃料流向位于喷射孔入口部分径向内侧 的位置处为止。因此,燃料可在保持着流动能的流动能无减小状态下流入 到喷射孔中。
根据本发明的又一方面,顶端区段的斜面被制成截顶锥形。 利用上述的结构设计,可防止相互面对着的凹陷部分与顶端区段之间
的轴向间隙过度地减小。也就是说,当承座区段座压在阀座区段上时,可
确保顶端区段与凹陷部分之间具有合适的轴向间隙。
根据本发明的另一方面,承座区段具有承座表面,其被布置成面对着
阀座区段的内周面部分。斜面被设置在承座区段上,且在远离内周面部分
的方向上倾斜。承座表面与斜面之间所形成的夹角e满足如下的不等式
18。幼,。
利用上述的结构,使得承座区段上承座表面与斜面之间的夹角e满足不 等式18^e^27°,其中,承座表面被布置成面对着阀座区段的内周面部分, 斜面是在远离内周面部分的方向上倾斜。因而,位于承座表面上的燃料通 道部分、以及位于燃料通道中的斜面可被制成有利于燃料流入到喷射孔中 的通道形状。换言之,在上述的燃料通道部分中,可确保达到等于或大于 预定数值的流量系数。
根据本发明的再一方面(第二项发明),喷射器具有阀体和阀件。阀体 具有内周表面,该内周表面围成了燃料通道,而且,在燃料进行流动的下游方向上,该内周表面的直径是减小的。阀体还具有制在内周表面上的阀 座区段、相对于燃料的流动方向设置在阀座区段下游的凹陷部分、以及制 在凹陷部分上的多个喷射孔。阀件被设置在阀体中,以使得阀件可在轴向 方向上往复移动,阀件具有外周表面,其与阀体的内周表面一起形成了燃 料的通道。阀件具有制在外周表面上的承座区段,以使得承座区段可座压 到阀座区段上,且该承座区段可与阀座区段分离开,阀件还具有顶端区段, 其相对于燃料的流动方向位于承座区段的下游,并面对着凹陷部分。凹陷 部分与顶端区段形成了基本上为圆筒形的燃料腔。当承座区段与阀座区段 分离开吋,喷射器对燃料进行喷射,燃料经喷射孔流入到燃料腔中。
座压在阀座区段上的承座区段的承座直径Ds、轴向距离A、以及轴向 距离B满足下列不等式0.048^A/Ds幼.18,以及B/Ds幼.18,其中,轴向 距离A是指喷射孔入口部分与面对着燃料腔中入口部分的顶端区段之间的 轴向距离,距离B是指凹陷部分上内侧区域与面对着内侧区域的顶端区段 之间的轴向距离,其中的内侧区域在燃料腔中位于喷射孔入口部分的径向 内侧。
对于上述的结构,当燃料被从喷射孔喷射出时,由于承座区段与阀座 区段分离开,燃料将流出向燃料腔。流出向燃料腔的燃料的主体流方向主 要是由内周表面上阀座区段的直径縮小方向决定的,其中,在相对于燃料 流动方向的阀体下游侧方向上,阀座区段的直径是縮小的。通过在燃料的 主体流流入到喷射孔入口部分中时使得主体流与喷射孔的内周面相碰撞, 可将主体流的流动方向转向为沿着喷射孔内周面的喷射孔轴向方向,其中, 主体流冲击撞压到喷射孔内周面上。
当包含该主体流的燃料流入到燃料腔中时,需要关注的是,主体流的 流动方向改变为这样的方向在该方向上,到达喷射孔入口部分的流体动 力学距离最短,该距离取决于燃料腔的尺寸,其例如是阀件顶端区段与制 有喷射孔的凹陷部分之间的对置距离。如果主体流的流动方向改变了,则 需要关注的问题是在喷射孔的出口部分处,速度的梯度不会有效地增大。
由于对具有上述构造的喷射器进行了早期的研究,所以,本发明人获
得了下列的知识。也就是说,利用满足了不等式0.048^A/D"0.18的结构, 能有效地增大速度梯度,其中,A/Ds是涉及喷射孔入口部分与上述燃料腔 顶端区段之间轴向距离A的尺寸的指数值。因而,喷射速度可被减小到这样的程度能防止喷射入的燃料粘附到缸壁表面上,也即是,降低了燃料 喷射的贯透力。与此同时,利用有效增大的速度梯度,可进一步地促进燃 料的雾化。
如果违反了 0. 048SA/Ds幼.18的关系而使A/Ds>0. 18,则主体流朝向 喷射孔入口部分的流动方向就将改变。在此情况下,喷射孔内周面与主体 流之间的干涉度将发生改变,最终使得喷射孔入口部分处的速度梯度显著 地变小。也就是说,未能有效地增大速度梯度。
本发明人进行的实验和数值分析集中在燃料的颗粒直径(下文将简称 为颗粒直径)上,实验和数值分析表明如果A/Ds〉0. 18或A/Ds〈0.048, 则颗粒直径就会显著变大,也就是说,促进燃料雾化的功能受到了影响。 换言之,使得喷射速度降低的限值是A/Ds二0.048,使得速度梯度减小的限 值是A/Ds-0. 18。
另外,燃料腔被设计成这样:使得指数值B/Ds满足不等式:B/Ds幼.18, 该指数值和位于喷射孔入口部分径向内侧的内侧区域与顶端区段之间的轴 向距离B相关。因而,能有效且择优地增大速度的梯度。例如,通过将数 值A/Ds固定在预定的量值上、且通过将数值B/Ds减小,则不论喷射速度 有多大,都能优选而有效地增大速度梯度。
由于根据本发明上述方面的结构满足不等式0.048SA/Ds幼.18,且 B/Ds幼.18,所以能有效地实现速度梯度的增大。因而,可促进燃料的雾化, 且不会像现有技术那样增大贯透力。因此,喷射器能实现两方面的优点 既能达到低的贯透力,也能实现高的雾化度。
在喷射过程的初始阶段,以这种方式增大了速度梯度的喷入燃料能促 进燃料液团的散分,由此消耗掉了喷雾的内能。结果就是,可显著地降低 靠近缸壁表面的喷雾前端的喷射速度。
根据本发明的另一方面,阀件的顶端区段被制成斜面形状或球面形状, 其从承座区段的下端以环形的形状向内侧扩展,并满足不等式B〈A。因而, 当包含主体流的燃料流流入到燃料腔中时,顶端区段可使得除主体流之外 的其它液流沿着从承座区段下端以环形形状向内侧扩展的斜面或球面流 动。此外,由于由顶端区段的斜面或球面所形成的燃料腔被制成满足不等 式B〈A,所有可将主体流之外的其它液流修正向主体流一侧。因而,主体 流之外的其它液流能融合到主体流中,从而增强了主体流的流量。因此,可有效而优选地增大了速度梯度。
本发明并不限于顶端区段所形成的燃料腔满足不等式B〈A的结构。例 如,作为备选方案,根据本发明的另一方面,可在凹陷部分的内侧区域上 制有阶梯形部分,其在朝向顶端区段的轴向上延伸,且燃料腔可被制成满 足不等式B〈A。
根据本发明的另一方面,作为有效增大速度梯度的一种方法,喷射孔 的入口部分被沿着单一环形构造进行布置,且各个喷射孔入口部分之间的 间距满足不等式1.5《Ds/DpS3。根据本发明的再一方面,各个喷射孔的入 口部分被布置在同一个虚拟的圆上,该圆的圆心与阀体的中心轴线重合, 且虚拟圆的直径Dp满足不等式1. 5幼s/DpS3。
本发明的发明人由于对具有上述结构设计的喷射器进行了早期的研 究,所以获得了下列的认识。
也就是说,在某些情况下,朝向喷射孔入口部分的主体流流动方向随 着承座区段与燃料腔中喷射孔之间距离(Ds-Dp)的大小而改变、或者随着 承座区段承座直径Ds与上述虚拟圆直径Dp或间距Dp比值(Ds/Dp)的大 小而改变。存在着这样的顾虑其流动方向以这样形式进行改变的主体流 未被喷撞到入口部分一侧的喷射孔内周面上,而是被喷撞到出口部分一侧 的喷射孔内周面上。也就是说,存在着这样的可能性未能在出口部分处
实现速度梯度的有效增大,而是仅在燃料流中造成一定程度的扰动,使得
出口部分不同位置点处的燃料速度存在速度差。出现了如下的可能性从 出口部分喷射出的燃料喷雾会对喷雾的喷射角造成干扰,并造成喷射角的 变动。
本发明人获得了如下的认识如果燃料腔被设计成使得涉及承座区段 与喷射孔之间距离(Ds-Dp)的指数值Ds/Dp满足不等式1.5^)s/DpS3,就 能有效地增大喷射孔出口部分处的速度梯度,同时还防止了从出口部分喷 射出的燃料喷雾的喷射角发生变动。
喷射角表明了从出口部分喷射出的喷射燃料(即燃料喷雾)主体流的 喷射方向相对于阀体中心轴线的偏斜度。
如果违反设定的数值范围1. 5《Ds/DpS3、而是使Ds/Dp<l. 5,则承座区 段与喷射孔入口部分之间的径向距离将非常短。在此情况下,存在着这样 的问题朝向该喷射孔入口部分的主体流并非撞击到入口部分一侧的喷射孔内周面上,而是撞击到出口部分一侧的喷射孔内周面上。如果主体流撞 击到位于出口部分一侧的喷射孔内周面上,则速度梯度会显著变小,最终 导致无法有效地增大速度梯度。结果就是,会造成喷雾的喷射角发生显著 的改变。
对于Ds/Dp〉3的情况,由于发明人进行了实验和数值分析,获得了如 下的认识。也就是说,如果Ds/Dp〉3,则等同于形成了燃料腔的凹陷部分内 侧区域的压力区域中的压力[P1]会变得远高于其它部分处的压力。如果在 内侧区域出现了这样的压力区域,则流向入口部分的主体流就将与压力区 域相干涉。最终的情况是出现了如下的可能性在从出口部分喷射出的燃 料喷雾中造成了扰动,并使得喷射角出现显著的改变。
根据本发明的再一方面,凹陷部分上制出喷射孔的部分的厚度t与喷 射孔直径d之间满足不等式1.25《t/d《3。
在根据本发明上述方面的结构中,当流入到燃料腔中的主体流流到喷 射孔的入口部分中时,希望主体流能撞击到喷射孔入口部分一侧的喷射孔 内周面上,并能在朝向出口部分的方向上有效地增大速度梯度。但是,在 主体流撞击到喷射孔内周面上之后,除主体流之外的其它液流也将被喷射
孔内周面所修正。因而,存在这样的可能性已有效增大的速度梯度的幅
值会随着喷射孔内周轴向长度的大小一即喷射孔的长度而明显地减小。
在这一点上,本发明的发明人由于对具有上述构造的喷射器进行了早 期的研究而获得了如下的认识。也就是说,如果涉及喷射孔长度的指数值
t/d满足不等式1.25^t/dS3,则已有效增大的速度梯度的幅值不会明显
地下降。利用有效增大的速度梯度能进一步促进燃料的雾化。
根据本发明的又一方面,喷射孔的轴向是倾斜的,以使得喷射孔出口 部分所处位置较喷射孔入口部分的位置离阀体的中心轴线更远。
对于上述的结构,当流入到燃料腔中的主体流流入到喷射孔的入口部 分中时,可有效地将主体流冲撞到位于喷射孔入口部分一侧的喷射孔内周 面中的喷射孔内周面部分上,该内周面部分位于靠近阀体中心轴线的那一 侧。因而,在位于靠近阀体中心轴线一侧的喷射孔内周面部分与位于远离 阀体中心轴线一侧的内周面部分之间,速度梯度有效地增大,从而可在出 口部分处获得增大的速度梯度。
根据本发明的另一方面,喷射孔的入口部分具有拐角,在该拐角处,喷射孔的喷射孔内周面与凹陷部分中所形成的内周面上的内周凹陷表面部 分相交,喷射孔的入口部分还具有位于拐角处的拐角部分,其位于靠近阀 座区段的一侧,该拐角部分具有曲面,其将内周凹陷表面部分与喷射孔内 周面平滑地连接起来。
对于上述的构造,主体流所流入的喷射孔入口部分的结构可设置得这 样使得拐角上位于主体流流入一侧的环周边缘部分可被制成光滑的球面 形状。
根据本发明的再一方面,燃料腔的结构被设计成这样使得座压在阀 座区段上的承座区段的承座直径Ds、喷射孔入口部分与面对着入口部分的 顶端区段之间的轴向距离A、以及凹陷部分上内侧区域与面对着内侧区域的
顶端区段之间的轴向距离B满足不等式0. 048^A/Ds幼.18 ,以及 B/D"0.18,其中,内侧区域位于喷射孔入口部分的径向内侧。
因而,燃料腔的结构被制得满足不等式0. 048SA/D"0. 18 、且 B/Ds幼.18。因此,当承座区段与阀座区段分离开时,在燃料流入到燃料腔 中的情况下,可有效地增大速度梯度,以促进燃料的雾化,且不像现有技 术那样增大贯透力。因而,更为适当地同时实现了两方面的优点低的贯 透力以及高的雾化度。
在喷射过程的初始阶段,速度梯度得以增大的喷入燃料(即喷雾)能 促进燃料液团的散分,由此消耗掉了喷雾的内能。结果就是,可显著地降 低靠近缸壁表面的喷雾前端的喷射速度。
根据本发明的另一方面,燃料腔满足不等式B〈A。
根据上述的方面,除了前序的结构设置之外,阀件上顶端区段的斜面 被设置成满足不等式B〈A,其中,在前序的结构设置中,阀件顶端区段的 斜面至少在喷射孔中心轴线与顶端区段相交位置处的内侧进行扩展。因而, 餘主体流之外的其它液流可融合到主体流中,从而增强了主体流。因而, 与位于入口部分一侧的喷射孔内周面相撞击的主体流的液流可被增强,从 而能有效而优选地增大速度梯度。
本发明并不限于上述的结构,在上述的结构中,至少顶端区段的斜面 被制成满足不等式B〈A。作为备选措施,根据本发明的另一方面,可在凹
陷部分的内侧区域处制出阶梯形部分,其沿轴向延伸向顶端区段,且燃料
腔满足不等式B〈A除了上述的结构设置之外,根据本发明的另一方面,作为有效增大速 度梯度的一种方法,在凹陷部分处制有多个喷射孔,并将各个喷射孔的入
口部分沿着单一环形构造进行布置,且各个喷射孔入口部分之间的间距Dp 满足不等式1.5SDs/DpS3。作为备选措施,根据本发明的又一方面,在凹 陷部分中制有多个喷射孔,且使得各个喷射孔的入口部分被布置在同一个 虚拟的圆上,该圆的圆心与阀体的中心轴线重合,且虚拟圆的直径Dp满足 不等式1.5《Ds/Dp《3。
根据本发明的另一方面,涉及喷射孔长度大小的指数值t/d满足不等 式1.25St/d〈,由此可防止已有效增大的速度梯度的幅值不会明显地下 降。因而,利用有效增大的速度梯度能进一步促进燃料的雾化。
根据本发明的另一方面,喷射孔的中心轴线是倾斜的,以使得喷射孔 的出口部分比喷射孔的入口部分更远离阀体的中心轴线。
按照上述的方面,除了前序的结构设置之外,喷射孔内周面形成了靠 近阀体中心轴线的喷射孔内周面部分,其中,在前序的结构设置中,阀体 的结构被设置成这样使得入口部分位于虚拟的延伸线上,该延伸线在阀 座区段内周面部分的縮径方向上延伸,且该虚拟延伸线与喷射孔内周面相 交。因而,在出口部分处能有效地增大速度的梯度。
根据本发明的另一方面,喷射孔的入口部分具有拐角,在该拐角处, 喷射孔的喷射孔内周面与凹陷部分中所形成的内周面上的内周凹陷表面部 分相交,喷射孔的入口部分还具有位于拐角处的拐角部分,其位于靠近阀 座区段的一侧,该拐角部分具有曲面,其将内周凹陷表面部分与喷射孔内 周面平滑地连接起来。
按照上述的方面,当承座区段与阀座区段分离开、且燃料流入到喷射 孔的入口部分中时,即使除主体流之外的其它液流至少流经靠近阀座区段 一侧的拐角部分,也能阻止流动能的降低。
根据本发明的再一方面,凹陷部分上制有喷射孔的部分被制成具有平 面和球面,平面作为喷射孔入口部分一侧的端面,球面作为喷射孔出口部 分一侧的另一端面。
燃料喷雾的喷射角是由安装该喷射器的发动机的所需性能或其它因素 决定的。因而,需要考虑的问题是制在凹陷部分处的喷射孔被设置在不 同的喷射角上。由于喷射孔的长度随定向喷射角的改变而变化,所以,各个具有不同喷射角的喷射孔的雾化度将是不同的。
与此相反,对于上述的结构,喷射孔入口部分一侧被制成平面,而喷 射孔出口部分一侧被制成球面。因而,可防止喷射孔的长度随着喷射孔角 度的不同而改变。因此,可防止具有不同喷射角的各个喷射孔的雾化度出 现不同。


通过理解下文的详细描述、附带的权利要求书、以及附图,可领会到 本发明各个实施方式的特征和优点、以及工作方法和相关部件的功能,详 细描述、权利要求书、以及附图都是本申请的组成部分。在附图中
图1中的剖面图表示了根据本发明第一实施方式的喷射器;
图2中的剖面图表示了在根据第一实施方式的喷射器上、喷射孔和燃 料腔附近的结构;
图3是沿着图2中的箭头III对燃料腔所作的俯视图4是沿图2中的箭头IV方向所作的图表,表示了燃料流在图2所示 喷射孔的出口部分处的速度梯度;
图5A是时序图表,表示了从根据第一实施方式喷射器的喷射孔出口部 分喷出的燃料喷雾的长度随时间变化的特性;
图5B是时序图表,表示了从根据第一实施方式喷射器的喷射孔出口部 分喷出的燃料喷雾的喷射速度随时间变化的特性;
图6A中的剖面图表示了安装有根据第一实施方式的喷射器的发动机 的燃烧室;
图6B是沿图6A中的箭头VIB对燃烧室所作的视图7A中的特性图表表示了按照第一实施方式的设计,数值A/Ds、速 度梯度、以及喷射速度之间的关系;
图7B中的特性图表表示了按照第一实施方式的设计,数值A/Ds与颗 粒直径之间的关系;
图7C中的特性图表表示了按照第一实施方式的设计,速度梯度与喷射 速度之间的关系;
图8A中的特性图表表示了按照第一实施方式的设计,数值B/Ds、速 度梯度、以及喷射速度之间的关系;图8B中的特性图表表示了按照第一实施方式的设计,数值B/Ds与颗 粒直径之间的关系;
图9A中的特性图表表示了按照第一实施方式的设计,数值Ds/Dp与速 度梯度之间的关系;
图犯中的特性图表表示了按照第一实施方式的设计,数值Ds/Dp与颗 粒直径之间的关系;
图9C中的特性图表表示了按照第一实施方式的设计,喷雾喷射角的变 动与数值Ds/Dp之间的关系;
图10A中的剖面图表示了按照第一实施方式的设计、当Ds/Dp = l. 5时 燃料流动速度的分布状况;
图10B是沿图10A中的箭头XB所作的剖面图,表示了该方向上的流速 分布;
图11A中的剖面图表示了按照第一实施方式的设计、当Ds/Dp二3时燃 料流动速度的另一种分布状况;
图11B是沿图11A中的箭头XIB所作的剖面图,表示了该方向上的流
速分布5
图12A中的剖面图解释了根据第一实施方式的设计,当Ds/Dp=3时数 值Ds/Dp与燃料腔中燃料压力之间的关系;
图12B中的剖面图解释了根据第一实施方式的设计,当Ds/Dp = l. 5时 数值Ds/Dp与燃料腔中燃料压力之间的关系;
图12C中的图表表示了在根据第一实施方式的燃料腔中燃料压力的等 级程度;
图13A中的特性图表表示了按照第一实施方式的设计,数值t/d与速 度梯度之间的关系;
图13B中的特性图表表示了按照第一实施方式的设计,数值t/d与颗 粒直径之间的关系;
图13C中的特性图表表示了按照第一实施方式的设计,喷雾收縮率与 数值t/d之间的关系;
图14A到14E中的特性图表解释了按照第一实施方式的设计,承座表 面与阀件顶端区段上斜面之间夹角、流量系数、速度梯度、以及喷射速度 之间的关系;图15中的剖面图表示了在根据本发明第二实施方式的喷射器上、喷射 孔和燃料腔附近的结构;
图16中的特性图表解释了按照第二实施方式的设计,数值Lt/d、喷 射角、以及颗粒直径变化程度之间的关系;
图17A到17L的剖面图表示了在根据本发明其它一些实施方式的喷射 器上、喷射孔和燃料腔附近的结构;
图18中的剖面图介绍了根据本发明另一种实施方式、喷射器与发动机 燃烧室之间的关系;以及
图19中的剖面图表示了根据本发明又一种实施方式、喷射孔和燃料腔 附近的结构。
具体实施例方式
下文将参照附图对本发明的一些实施方式进行描述。 (第一实施方式)
按照第一实施方式的结构特征包括与第一项发明相关的结构、以及与 第二项发明相关的结构。图1到图3、图6A和图6B表示了根据该实施方式 的喷射器10。图2和图3表示了该喷射器10的特征部分。图6A和图6B 示意性地表示了安装有根据该实施方式的喷射器10的燃料喷射装置的整体 构造。
如图6A所示,喷射器10被固定到缸盖61上。根据该实施方式的燃料 喷射装置是用于直喷式汽油机(下文称为发动机)的装置,其将燃料直接 喷射到由缸盖61的壁面、缸体62的内壁面(下文称为缸壁表面)、以及活 塞66顶面67所围成的燃烧室64中。燃料被燃料供应泵(图中未示出)加 压到等于燃料喷射压力的压力上,该燃料被供送给喷射器10。燃料的压力 被设定为1Mpa到40MPa范围内的预定压力值。喷射器10将燃料以上述范 围内的燃料喷射压力值喷射到燃烧室64中。
例如如图6A所示,喷射器10被安装在进气阀68与排气阀69之间。 也就是说,喷射器10在缸盖61上是采用中心安装方式的。点火装置(图 中未示出)被安装到缸盖61的特定位置上,在该位置上,从喷射器10喷 出的燃料不会直接粘附到点火装置上,且点火装置能将混合了燃料的可燃 空气引燃。从喷射器10喷出的燃料喷雾是锥形的喷雾。为了防止喷雾直接粘附到 缸壁表面65以及活塞66的顶面67上,从喷射器10 (在图6B所示的实例 中是从喷射器10的中心轴线Jl量起)到喷雾前端的长度(下文称为喷雾 长度)被设定为预定的喷雾长度Ll,以便于在喷雾的前端与缸壁表面65 以及顶面67之间留出一定的间隙。
上文对主要由喷射器10构成的燃料喷射装置的整体结构进行了介绍。 下面对喷射器10的基本结构进行描述。 (喷射器10的基础结构)
如图1所示,喷射器10的壳体11被制成圆筒形。壳体11具有第一磁 性区段12、非磁性区段13、以及第二磁性区段14。非磁性区段13阻止了 第一磁性区段12与第二磁性区段14之间发生磁性短路。第一磁性区段12、 非磁性区段13、以及第二磁性区段14被相互连接成一体,例如利用激光焊 接等方法进行焊接。
在壳体11的轴向端上设置了入口构件15。该入口构件15被固定到壳 体11的环周内侧上一例如利用压入配合的方式来进行固定。入口构件15 具有燃料入口 16。燃料(在该实施方式中是汽油燃料)被上述的燃料供应 泵供送到燃料入口 16中。供送到燃料入口 16的燃料经燃料过滤器17流入 到壳体ll的环周内侧中,过滤器滤去外来杂质。
在壳体11的另一端设置了喷嘴保持器20。喷嘴保持器20被制成圆筒 形,并在喷嘴保持器20中设置了作为阀体的喷嘴体21。喷嘴体21被制成 具有底部的圆筒形结构,且利用压入配合或焊接等工艺固定到喷嘴保持器 20上。具有底部的圆筒形喷嘴体21的内周面21b形成了锥形的内壁面22, 如图2所示,该内壁面的直径在朝向其顶端的方向上是縮小的。在内壁面 22上制出了阀座区段23。在阀座区段23的下端处制出了凹陷部分27。
在靠近喷嘴体21端部的位置处、在与壳体11相反的一侧上一即在凹 陷部分27上制出了多个(在该实施方式中是四个)喷射孔25。喷射孔25 贯通了喷嘴体21,并开口在内壁面22和外壁面24上。供送给燃料入口 16 的燃料被从喷射孔25喷射到发动机气缸的燃烧室64中(即喷射到气缸内 部中)。
图3是沿图2中的箭头III对喷嘴体21的单体所作的俯视图。例如如 图3所示,多个喷射孔25的入口部分25b被布置在同一个虚拟圆K (下文也称之为节圆)。也就是说,多个喷射孔的入口部分25b沿着位于虚拟圆K 上的单一环形构造进行布置。虚拟圆K的圆心与喷射器10的中心轴线重合。 虚拟圆K的圆心与壳体ll、喷嘴保持器20、以及喷嘴体21的中心轴线Jl 基本上重合。下文中,中心轴线Jl也被简称为喷嘴体21的中心轴线J1。
在虚拟圆K上,相邻喷射孔25的入口部分25b之间的间距被设定为基 本上相等的距离。
如图2所示,喷嘴体21的轴向顶端区段一即凹陷部分27具有被制成 平板形状的底部,其在与中心轴线Jl垂直的方向上扩展。喷射孔25被制 在底部的板状部分21a上,该部分具有统一的厚度t。与喷射孔25中心轴 线J2垂直的截面一即喷射孔25的横截面被制成圆形。喷射孔25的贯通方 向一即中心轴线J2的方向是倾斜的,从而使得喷射孔25出口部分25a比 喷射孔25的入口部分25b相对于中心轴线Jl更位于径向外侧。如图2所 示,凹陷部分27的底部与阀座区段23通过曲面平滑地连接起来。
在喷嘴体21的内周面21b上,在锥形的内壁面22与喷射孔25的入口 部分25b之间形成了向喷射孔25凹陷的凹陷部分27。因而,凹陷部分27 的燃料腔70将总是与多个喷射孔25的入口部分25b连通,由此有利于将 凹陷部分27中的燃料分配给多个喷射孔25。
壳体ll、喷嘴保持器20、以及喷嘴体21构成了阀体,其内部形成了 接纳腔。作为阀件的针阀30被容纳在该接纳腔中。在径向上,针阀30被 容纳在壳体ll、喷嘴保持器20、以及喷嘴体21的内部,从而,针阀30可 在轴向上往复运动。
针阀30被设置成与喷嘴体21基本上同轴。如图1和图2所示,针阀 30具有轴杆区段31、头部区段32、承座区段33、以及顶端区段34。头部 区段32位于燃料入口 16 —侧的轴杆区段31轴向端处。承座区段33位于 喷射孔25—侧的轴杆区段31端部处。如图2所示,承座区段33可座压在 喷嘴体21的阀座区段23上,并能与阀座区段23分离开。
顶端区段34的端面35、 36为截顶锥形,其从承座区段33的下端、以 环形的构造形式向内侧延伸。端面35、 36包括第一端面35 (下文称为斜面) 和第二端面36 (下文称为对置端面)。斜面35被制成锥形,其是沿着一定 的角度制出的,该角度不同于承座区段33的縮径角。承座区段33的縮径 角是指这样的角度承座区段33的直径以这样的角度向顶端方向縮细。对置端面36与凹陷部分27的底部基本上平行。
在针阀30的外周面30a与喷嘴体21的内周面21b之间形成了燃料通 道26,燃料流经该通道。该燃料通道26被设置成能与喷射孔25连通。燃 料通道26的结构被设置成这样当承座区段33座压在阀座区段23上时, 阻止了燃料向喷射孔25的流动,而当承座区段33与阀座区段23分离开时, 允许燃料流向喷射孔25。
如图1所示,喷射器10具有用于驱动针阀30的驱动区段40。该驱动 区段40具有线圈巻轴41、线圈42、固定芯43、壳板44、以及可动芯50。 线圈巻轴41被设置成围绕着壳体11的外周面。线圈巻轴41是由树脂材料 制成的圆筒形结构,线圈42被巻绕到该巻轴41的外周面上。所巻绕线圈 42的两端与连接器45的接线端46实现电路连接。固定芯43被设置在围绕 着壳体ll的线圈42的径向内侧。固定芯43是由诸如铁等的磁性材料制成 的圆筒形结构,例如用压装配合等方式将其固定到壳体11的内周面一侧。 壳板44是由磁性材料制成的,其遮盖着线圈42的外周侧。
可动芯50被布置成与固定磁性43同轴地面对着,使得可动芯50能在 壳体11的径向内部沿轴向往复移动。可动芯50是用铁等磁性材料制成的 圆筒形结构。可动芯50具有位于与固定芯43相反一侧的筒体区段51。针 阀30的头部区段32被压装配合到筒体区段51中。因而,例如利用焊接等 方式将针阀30与可动芯50相互连接成一个整体,以使得针阀30与可动芯 50能一起运动。
在位于固定芯43 —侧的可动芯50的端部上设置了用弹性材料制成的、 作为偏置构件的弹簧18。弹簧18施加着作用在轴向上的作用力(偏置力)。 弹簧18被布置成这样使得弹簧18的两端被保持在可动芯50与调节管19 之间。弹簧18对可动芯50和针阀30进行顶推的方向用于使得针阀30座 压在阀座区段23上。调节管19的结构被设置成利用压装配合等方式固定 在固定芯43上。通过对压装到固定芯43中的调节管19的压装配合量进行 调节,可调节弹簧18的偏置力(即载荷)。
当线圈42未得电时,可动芯50及与其集成到一起的针阀30被顶推向 阀座区段23—侧,承座区段33座压在阀座区段23上。因而,阻止从喷射 孔25喷射出燃料。如果线圈42得电,可动芯50受到固定芯43的吸引, 针阀30与阀座区段23分离开。因而,将燃料从喷射孔25中喷射出去。下文中,将针阀30与阀座区段23分离开的状态称为针阀30的抬起状 态。针阀30的抬起量由可动芯50和固定芯43磁极表面之间的气隙来决定。
上文介绍了根据本实施方式的喷射器10的基本结构。下面将对根据本 实施方式的喷射器10的特征结构进行解释。特征结构包括与第一发明相关 的结构以及与第二发明相关的结构。下面首先对与第二发明相关的结构进 行描述。
(与第二发明相关的喷射器10的特征结构) 本发明的发明人基于作为早期研究成果的如下认识,设计出了既能实 现低贯透力、又能实现高雾化度的特征结构。低的贯透力阻止了喷射器10 的燃料喷雾粘附到气缸内部64的壁面65和67上。
(解决技术问题的原理)
图5A以时序的方式表示了从喷射器10喷出的燃料喷雾的喷雾长度L (也被称为贯通量)随时间演化而逐渐变化的情况。图5B以时序的方式表 示了喷雾前端处喷射速度V的变化情况。图5A中的喷雾长度Ll是在喷射 结束时刻(图5A中的时间T1〉时的喷雾长度。喷雾长度L1被设定为距离 气缸内部64的壁面65和67具有一定间隙(参见图6A)。在图5A和图5B 中,由实线代表的时序特征曲线(下文称为本发明的喷射燃料特征曲线) 对本发明的该实施方式作了示例性的表示。由虚线代表的时序特征曲线(下 文称为现有技术的喷射燃料特征曲线)示例性地介绍了应用现有技术的对 比实例。
发明人对现有技术的特征曲线作了如下的分析。也就是说,如果应用 该现有技术,则从喷射孔25喷出的喷雾的前端速度不会急剧地降低,仅是 在总体上随着喷雾长度的增大而逐渐地降低。在喷射器10的喷射周期内, 在喷射结束时刻(即在图5A所示时刻T1)已增长到喷雾长度Ll的喷雾的 前端所具有的、用于在气缸内部穿行的力量(下文称为贯透力)与喷射初 始阶段时的贯透力基本上是相等的,其中,在喷射初始阶段,燃料被从喷 射孔25的出口部分25a中喷射出。因此,内能被蓄积在所喷出燃料的前端 部分中。尽管在喷雾的增长过程中从喷射孔25喷出的燃料的外侧部分通过 与周围空气剪切作用而被雾化,但所喷出燃料的内部部分却保持着内能, 直到在外侧的燃料部分被雾化之后燃料的内部部分通过与周围空气的剪切 作用实现雾化为止。如果致力于利用采取现有技术的这种燃料喷射装置(下文称为装置)
来实现高的雾化度,则由于喷出燃料的飞行距离(即喷雾长度L1)随着雾 化的进行而縮短,所以必须要提高贯透力。结果就是,由于贯透力高,喷 雾长度L1前端处的喷射速度被增大了。因而,例如如果喷雾与气缸内部64 中产生的气流等物质发生了干涉,则存在这样的可能性位于喷雾长度L1 前端的、保持着高贯透力的燃料将与气缸内部64的壁面65和67碰撞,并 粘附到这些壁面上。
下面将对根据本发明的喷出燃料特性设定进行介绍,发明人认为这样 的特性设定是合适的。如果燃料流动速度V在喷射孔25的出口部分25a处 形成了很大的梯度(下文称为速度梯度VG),则有利于喷出燃料液团(下文 称为燃料液团)中高速燃料部分与低速燃料部分之间的分离,从而可促进 燃料液团的散分。在速度梯度VG已被有效增大的喷出燃料中,对于燃料液 团中已被散分开的各个液团部分,通过与周围空气进行剪切而实现雾化的 作用受到了促进。因而,无需像现有技术中那样增大贯透力,就可促进燃 料的雾化。
此外,如图5B所示,即便与采用现有技术的装置相比,在喷射初始阶 段的喷射速度V (图5B中所示的喷射速度V1)被提高了,但由于燃料液团 发生了散分分裂,仍然能促进内能明显地下降,其中,该内能在喷射过程 中施加着贯透力。结果就是,在喷射结束时刻,喷雾长度L1前端的速度V 被显著地降低了。
下面将参照图4对上述速度梯度VG的定义进行介绍。图4中的图表表 示出了速度梯度VG的定义、以及图2中的Y轴和Z轴,其中,图2中的Y 轴和Z轴分别与图4中的Y轴和Z轴相对应。在X-Y平面内,喷射孔25出 口部分.25a中任意位置点(在图4中用圆形标记"a"代表)处的速度梯度 VG可由下面的表达式(a)进行表达。在表达式(a)中,s代表流动速度 的标量。<formula>formula see original document page 23</formula>在喷射孔25出口部分25a整个X-Y平面上的速度梯度VG (即在喷射 孔25整个出口部分25a上的速度梯度平均值)是由如下的表达式(b)进行表达的。在表达式(b)中,S代表出口部分25a的面积。
<formula>formula see original document page 24</formula>
下文中,简化的表述"速度梯度VG"是指表达式(b)定义的速度梯 度VG。简化表述"喷射速度V"是指在出口部分25a处、具有上述速度梯 度VG的燃料流的平均速度。
(燃料通道26的特征结构)
燃料通道26是在阀体ll、 20、 21的内周面与针阀30的外周面之间形 成的,燃料流经该燃料通道26。在下文参照图2和图3进行的描述中,简 化表述"燃料通道26"是指在喷嘴体21内周面21b与针阀30外周面30a 之间形成的通道。
如图2所示,在燃料通道26中,在喷嘴体21内周面21b与针阀30外 周面30a之间形成的、在喷射器10轴向上延伸的燃料通道部分被称为第一 燃料通道26a。在"锥形内壁面22与凹陷部分27"之间、以及"承座区段 33与针阀30顶端区段34"之间形成的燃料通道部分被称为第二燃料通道 26b。
第一燃料通道26a被制成在轴向方向上延伸的环形构造。第二燃料通 道26b被制成这样的通道其从第一燃料通道26a的下游端以环形的形状 进行扩展,且与多个喷射孔25连通。
第二燃料通道26b具有由位于阀座区段23和承座区段33下游的凹陷 部分27和顶端区段34所形成的燃料腔70,其中,阀座区段和承座区段能 阻断和允许燃料流经燃料通道26的流动。当承座区段33与阀座区段23分 离开时,向外流向燃料腔70的燃料流的主流方向(例如图10A和11A中的 箭头方向Y10)主要是由内壁面22上阀座区段23的縮径方向决定的,在相 对于燃料流动方向的下游方向上,阀座区段23的直径是縮小的。阀座区段 23的缩径方向即是阀座区段23的直径縮小所顺沿的趋势方向。
因而,为了能通过对流入到燃料腔70中的燃料流的主流方向进行控制 来有效地增大喷射孔25出口部分25a处的速度梯度VG,并将出口部分25 处的喷射速度V增大到可允许的范围内,将根据本实施方式的喷嘴体21和针阀30的结构设计得满足如下的条件(1) (4)。
在针阀30抬起期间,喷射孔25入口部分25b与其所面对着的顶端区 段34的斜面35之间的轴向距离在下文中被称为"喷射孔入口正上方的间 隙A"。喷嘴30承座区段33的承座直径被标为Ds。喷射孔入口正上方间隙 A与承座直径Ds之间的比值A/Ds满足不等式0. 048《A/Ds幼.18(条件(1))。 该比值代表了与燃料腔70中喷射孔入口正上方间隙A的大小相关的指数值 (或类似的图表数值)。
位于喷射孔入口部分25b径向内侧的平板状部分21b的内侧区域与其 所面对的顶端区段34上相对端面36之间的轴向距离在下文中被称为"喷 射孔内侧区域正上方的间隙B"。喷射孔内侧区域正上方间隙B与承座直径 Ds之间的比值B/Ds满足不等式BDs幼.18 (条件(2))。该比值B/Ds代 表了燃料腔70中与喷射孔内侧区域正上方间隙B的大小相关的指数值。
承座直径Ds与喷射孔入口部分25b所在的虚拟圆K直径Dp的比值 Ds/Dp满足不等式1. 5SDs /DpS3 (条件(3))。比值Ds/Dp指代了与承座区 段33与喷射孔25之间径向距离(Ds-Dp)大小相关的指数值。
作为凹陷部分27底部的板状部分21a的厚度t与喷射孔25直径d之 间的比值t/d满足不等式1.25^t/"3(条件(4))。该比值t/d所代表的 指数值涉及喷射孔25在其中心轴线J2方向上的内周长度的大小一即喷射 孔长度的大小。
对于与条件(1)和(2)相对应的间隙A和B,优选地是满足不等式 B〈A。优选地是,喷射孔25中心轴线J2的方向应当是倾斜的,以使得喷射 孔25出口部分25a比入口部分25b远离喷嘴体21的中心轴线Jl。
喷射孔25的入口部分25b上制有拐角,在该拐角处,喷射孔25的喷 射孔内周面25c与凹陷部分27的内周凹陷表面部分(即凹陷部分27底部 的上端面)相交,其中,该内周凹陷表面部分位于内周面21b中。优选地 是,在拐角处位于靠近阀座区段23—侧的拐角部分具有曲面,该曲面将内 周凹陷表面部分与喷射孔25的喷射孔内周面25c平滑地连接起来。利用这 样的构造,可将燃料主体流流入的入口部分25b的结构设计成这样使得 拐角上位于主体流流入一侧的环周边缘部分例如被制成了顺滑的销形拐 角。
(对与燃料腔70相关的指数值一喷射孔入口正上方间隙A的比值A/Ds进行设定的原因和效果)
根据喷射孔入口正上方间隙A的大小,需要考虑的是主体流的流动 方向改变为这样的方向在该方向上,到达喷射孔25入口部分25b的流体
动力学距离最短。如果主体流的流动方向改变了,则需要关注的问题是
主体流撞击喷射孔25的喷射孔内周面25c的冲撞度会改变。在这样的情况 下,尽管在与喷射孔25中心轴线J2垂直的截面内不同位置点处的燃料速 度之间会形成速度差,但问题是喷射孔25出口部分25a处的速度梯度并 未有效地增加。
本发明人进行的实验和数值分析揭示了这样的事实当条件(1) (0.048SA/Ds幼.18)得以满足时,能达到如下的效果。图7A到图7C表示 了在改变作为参数的指数值A/Ds时对速度梯度VG、喷射速度V、以及单个 喷射器10的颗粒直径PD进行测量的实验结果。进行实验和数值分析的条 件包括如下条件燃料喷射压力-10Mpa。图7A到图7C中的实线表示了通 过数值分析得到的数据。
图7A表示了数值A/Ds、速度梯度VG、以及喷射速度V之间的关系。 随着数值A/Ds的减小,速度梯度VG增大。也就是说,速度梯度VG随着数 值A/Ds的增大而减小。当数值A/Ds被增大到超过0. 18时,速度梯度VG 变得非常小。在此情况下,由于燃料的分散,流向喷射孔25入口部分25b 的主体流的流动方向例如会改变为与喷嘴体21中心轴线Jl基本上垂直的 方向。因而,主体流撞击喷射孔25内周面的沖撞程度就会改变。结果就是, 喷射孔25出口部分25a处的速度梯度VG会显著变小。也就是说,未能有 效地增大速度梯度VG。
图7C利用等颗粒直径的曲线表示了速度梯度VG、喷射速度V之间的 关系,该图线关注于喷雾的颗粒直径PD。对于图7B和图7C中的颗粒直径 PD,采用了从喷雾中实际颗粒直径分布情况获得的沙得(Sauter)平均直 径(SMD)。如图7C所示,两参数一喷射速度V和速度梯度VG都有助于促 进燃料的雾化,但速度梯度VG和喷射速度V的某些可能幅值具有相互排斥 的相互关系。
图7B表示了由发明人执行的实验以及数值分析的结果,该图形关注于 该颗粒直径PD值。可以发现当数值A/Ds小于0.048或大于0.18时,颗 粒直径PD会显著增大,也就是说,损害了促进雾化的功能。换言之,已经发现在让喷射速度V减小的同时可有效增大速度梯度VG的限度是A/Ds =0. 048,而允许在增大喷射速度V范围的同时降低速度梯度VG的限度是 A/Ds = 0.18,其中,喷射速度V与速度梯度VG具有相互排斥的关系。
因而,利用该实施方式中满足条件0.048《A/D"0. 18的特性结构,可 有效地增大速度梯度VG。结果就是,可在不像现有技术那样增大贯透力的 前提下,促进燃料的雾化。此外,在喷射过程的初始阶段,利用初始的速 度梯度,促进了喷出燃料(即喷雾)中燃料液团的散分。由于促进了燃料 液团的散分,所以能将喷雾前端的喷射速度从喷射初始阶段的初始速度显 著地降低下来(即喷射结束时截面上的喷射速度被显著降低),其中,喷雾 的前端位于靠近缸壁表面65或气缸内部64活塞上端面67的一侧。
换言之,喷射速度V可被降低到这样的程度防止了喷出的燃料粘附 到气缸的壁面65、 67上(也就是说降低了贯透力),同时,利用有效增大 的速度梯度,进一步地促进了燃料的雾化。
(对与喷射孔内侧区域正上方间隙B相关的指数值B/Ds进行设定的原
因和效果)
当包含上述主体流的燃料流流入到燃料腔70中时,存在着这样的可能 性除主体流之外的其它液流会沿着顶端区段34的外周面30a/以及凹陷 部分27的内周面21b分散开,并从主体流上分离出来,其中的顶端区段外 周面与凹陷部分内周面围成了燃料腔70。
考虑到这样的情况,除了条件(1)之外,还采用了满足不等式 B/Ds幼.18的特性结构。通过满足上述的结构特征一即条件(1)和(2), 能有效而优选地增大速度梯度VG。
图8A和图8B表示了在改变作为参数的数值B/Ds的条件下对速度梯度 VG、喷射速度V、以及单个喷射器10的颗粒直径PD的测量结果。执行数值 分析和测试的条件包括燃料喷射压力-10Mpa,数值A/Ds二0. 18。图8A 中的实线表示了通过数值分析得到的数据。
图8A表示了数值B/Ds、速度梯度VG、以及喷射速度V之间的关系。 随着数值B/Ds的增大,速度梯度VG减小。当数值B/Ds增大到超过0. 18 时,速度梯度VG明显地变小。由于数值A/Ds被固定为0. 18,所以,如图 7A所示,不论数值B/Ds如何改变,与数值A/Ds (=0.18)对应的喷射速 度V是恒定值。在图7A所示的A/Ds-O. 18的情况下,通过将数值B/Ds降低一也就是说,通过将数值B相对于数值A进行减小,可进一步地增大速 度梯度VG。
如图8所示,由于可按照这种方式有效而优选地增大速度梯度VG,所 以能更为有效地促进燃料的雾化。
(对数值Ds/Dp的范围进行设定的原因和效果)
除了利用条件(1)和(2)来有效增大速度梯度VG的方法之外,发明 人还发现了如下的方法。也就是说,利用基于一种与比值Ds/Dp相关的特 征结构的方法,也能有效地增大速度梯度VG,其中,Ds是承座区段33的 承座直径,Dp是虚拟圆(即节圆)的直径。
图9A到图9C表示了在改变作为参数的数值Ds/Dp的条件下对速度梯 度VG、喷射速度V、以及单个喷射器10的颗粒直径PD的测量结果。由于 上文已经解释了速度梯度VG与喷射速度V之间的相互排斥关系,所以附图 中略去了对喷射速度V的描述。图9B和图9C关注于由于速度梯度VG而高 度雾化的喷雾。图9B表示了数值Ds/Dp与颗粒直径PD之间的关系。图9C 表示了涉及喷雾形状的喷射角as (或喷雾角)变化情况cj与数值Ds/Dp之间 的关系。喷射角as表达的是从喷射孔25实际喷射出的喷出燃料(喷雾) 的喷射主流方向J3与喷嘴体21中心轴线Jl的偏斜角,该角度在图2中由 双点划线表示。图9C中的垂直轴线表示了喷射角as的变动程度cr,该垂直 轴线是标准偏差cj,其表达了喷射角as相对于图2所示喷射孔25倾斜度ah 的变动程度,其中的倾斜度也就是中心轴线J2的倾斜度。
指向喷射孔入口部分25b的主体流流动方向随着数值Ds/Dp的幅度而 改变。本发明人考虑了这样的问题流向改变的主体流不会撞击到位于入 口部分25b —侧的喷射孔内周面部分上,也不会冲击该喷射孔内周面部分, 而是与喷射孔25内周面25c上位于出口部分25a—侧的喷射孔内周面部分 相撞击,并对其进行冲击。也就是说,存在这样的可能性出口部分25a 处的速度梯度VG未被有效地增大,却仅是对燃料流造成了 一定程度的扰动, 使得出口部分25a上不同位置点处的燃料流速之间存在了速度差。在此情 况下,燃料喷雾会造成喷雾的喷射角as出现混乱,造成喷射角ocs的变动。
考虑到这样的情形,采用满足不等式1. 5SDs/Dp《3的特性结构。因而, 可有效地增大喷射孔25出口部分25a的速度梯度VG,同时防止了从喷射孔 25出口部分25a喷出的燃料喷雾的喷射角ots出现变动。如图9A中有关数值Ds/Dp与速度梯度VG之间关系的图线所示,随着 数值Ds/Dp的减小,速度梯度VG也减小。当数值Ds/Dp被设定为小于1. 5 时,速度梯度VG明显降低,从而未能有效地增大速度梯度VG。利用图10A 和图10B中的实例(Ds/Dp = 1.5)以及图IIA和图11B中的实例(Ds/Dp =3) —有关燃料流速分布的数值分析结果,己揭示了这样的原因。
图IOA和图11A都表示了在包含喷射孔25中心轴线J2的截面内、燃 料腔70以及喷射孔25中的流速分布状况。图10B和图11B都表示了在与 出口部分25a中心轴线J2垂直的截面内、流速的分布状况,也就是说表示 了在出口部分25a处形成速度梯度VG的情况。
当针阀30抬起时,流出到燃料腔70中的主体流的方向Y10主要是由 内壁面22的縮径方向决定的,而与数值Ds/Dp无关。内壁面22的縮径方 向是指这样的方向内壁面22的直径在该方向上是縮小的。
根据数值Ds/Dp幅值的大小,主体流方向Y10上的燃料流会改变方向 为朝向入口部分25b的主体流流向Y20(或Y30)。而后,在出口部分25a中 的燃料流中,靠近中心轴线Jl的燃料流Y21 (或Y31)的流速一般会与远 离中心轴线Jl的燃料流Y22 (或Y32)的流速之间产生速差,由此升高了 速度梯度。
但是,在图10A所示的、Ds/Dp = 1.5的情况中,位于承座区段33下 游的内壁面22末端(即图中的内壁面22右端)与喷射孔25入口部分25b 之间的径向距离相对较短。因而,指向入口部分25b的主体流方向Y20上 的燃料流不会撞击、冲击到位于入口部分25b —侧的喷射孔内周面25c上, 而是与位于出口部分25a—侧的喷射孔内周面25c相冲撞。结果就是,尽 管如图10B所示那样、出口部分25a不同位置点处的燃料流速分布出现了 速度差,但在形成有效地增大的速度梯度VG之前,燃料已被从出口部分25a 中喷射出来了。
在图11A所示的、Ds/Dp二3的情况中,内壁面22末端与喷射孔25入 口部分25b之间的径向距离相对较长。因而,指向喷射孔入口部分25b的 主体流方向Y30上的燃料流将冲撞着位于入口部分25b —侧的喷射孔内周 面25c上,同时,沿主体流方向Y30流向喷射孔入口部分25b的燃料流几 乎不会从主体流方向Y10改变方向。因而,如图11A和图11B所示,在Ds/Dp =3的情况下一即在数值Ds/Dp被设定为大值的情况下,在燃料流到达出口部分25a处时,出口部分25a处的速度梯度VG被充分地增大了 。也就是说, 可在出口部分25a处形成有效增大的速度梯度VG。
在将数值Ds/Dp设定为大于3的情况下,利用另外的数值分析结果, 获得了如下的认识。图12A和12B都表示了燃料腔70以及喷射孔25中压 力分布的数值分析结果。根据该结果,可以发现如图12A所示,在Ds/Dp =3的情况下,位于板状部分21a正上方的内侧区域的燃料压力变为高于燃 料腔70中其它部分处压力的压力值Pl。
在靠近入口部分25b的、位于板状部分21a正上方的内侧区域出现高 压P1的事实表明入口部分25b中的压力受到压力Pl的影响。结果就是, 由于存在着两压力相互干扰的作用,图9C所示喷雾喷射角ots的变动a会急 剧地增大,并转变为显著的变化。
如图12B所示,当数值Ds/Dp被设定为小于1. 5时,在板状部分21a 正上方的内侧区域将不会出现高压P1。但是,如果数值Ds/Dp被设定为小 于1. 5,则由于燃料流出现了上述的扰动,图9C所示喷雾喷射角as的变动 cr会急剧地增大,并转变为显著的变化。
(对指数值t/d进行设定的原因和效果)
如果朝向喷射孔入口部分25b的主体流冲撞向位于入口部分25b —侧 的喷射孔内周面上,就会在朝向出口部分25a的方向上使速度梯度增大。 但是,在主体流冲撞到喷射孔内周面25c上之后,除主体流之外的其它液 流也将受到喷射孔内周面25c的调整。因而,发明人考虑到存在这样的可 能性根据喷射孔25长度大小的变化,已有效增大的速度梯度VG的幅度 会显著地降低。
考虑到这样的情况,采用了使得与喷射孔长度大小相关的指数值t/d 满足不等式1. 253/(^3的特性结构。因而,可避免已有效增大的速度梯度 VG出现显著减小。因而,利用速度梯度VG可进一步地促进燃料的雾化。
图13A到图13C表示了在改变作为参数的数值t/d时对速度梯度VG、 颗粒直径PD、以及喷射角as变动量进行测量的实验结果。图13B和图13C 关注于由于该速度梯度VG而高度雾化的喷雾。图13B表示了数值t/d与颗 粒直径PD之间的关系。图13C表示了数值t/d与涉及喷雾形状的喷雾收縮 率as/ah之间的关系。
如图13A中数值t/d与速度梯度VG之间的关系所示,存在着这样的趋势随着数值t/d的增大,速度梯度VG逐渐增大。但是,如果数值t/d超
过了预定的数值范围,速度梯度VG就会下降。更详细来讲,速度梯度VG 随着数值t/d的增大而增大一直到数值t/d约等于1时为止。然后,如果 数值t/d超过了约1. 5,则速度梯度VG就会随着数值t/d的增大而减小。 更进一步地详细来讲,在数值t/d等于1.5到3.5的范围内,速度梯度VG 相对于数值t/d的改变而降低的程度相对较大一直到数值t/d达到约2. 5 时为止。如果数值t/d超过了2.5,速度梯度VG相对于数值t/d的改变而 降低的程度就会显著地下降而变小。
出于如下的原因,发明人将数值t/d的上限值设定为3、将下限值设 定为1.25。也就是说,该设定是基于如下的知识而进行的当数值t/d小 于1. 25或大于3时,颗粒直径PD会显著增大,即促进燃料雾化的功能受 到了损害,图13B所示的、关注颗粒直径PD的结果表达了上述的认识。换 言之,已经发现了能有效增大速度梯度VG的限值是t/d二1.25,并发现了 使速度梯度VG随数值t/d增大而减小的限值是t/d=3。
从可靠防止从喷射器10喷出的燃料喷雾中的燃料粘附到气缸内部64 壁面65和67的角度考虑,本发明人想到了数值t/d对于控制喷射方向的 功能一即控制喷雾收缩率ocs/och的功能是一项重要的基础功能。也就是说, 如果数值t/d超过1.25,喷雾收縮率as/ah就接近于约100%,且如图13C 所示,可利用喷射孔25的倾斜度ah来决定喷射方向,其中,图13C表示 了有关喷射方向可控性的结果。换言之,如图13C所示,如果数值t/d小 于1.25,就能有效地增大速度梯度VG,但由喷雾收縮率as/ah这个指数表 达的喷射方向可控性则会下降。因此,将t/d=1.25用作有效增大速度梯 度VG的限值。
上文介绍了与第二发明相关的特性结构。下面将参照图2和图14A到 14E对与第一发明相关的特性结构。
(涉及第一发明的喷射器10的特性结构)
锥形的内壁面22对应于形成阀座区段的内周面部分。因而,内壁面 22的縮径方向对应于阀座区段23的縮径方向,这些内容已在上文对第二发 明的描述中介绍了。
作出第一发明所基于的问题解决原理已在上文对第二发明所作的描述 中介绍了。具体而言,第一发明的目的是阻止流动能在燃料流入到喷射孔25的入口部分25b中之前就出现降低,以便于阻止喷射速度V的降低, 而喷射速度的减低却伴随着速度梯度V的出现。
第一发明是考虑了下列的情况而作出的。也就是说,在专利文件2 (JP-A-H11-70347)或JP-A-H3-264767所描述的现有技术的喷射器中,燃
料腔基本上被制成圆筒形,以利于流入到燃料腔中的燃料向各个喷射孔的 分布。但是,在这样的现有技术中,被布置成面对着喷射孔入口部分的顶 端区段被制成这样使得相反的端面位于入口部分的正上方。因而,存在 这样的问题当承座区段与阀座区段离开时,燃料的主体流流入到燃料腔 中,但主体流并不笔直地流入到喷射孔的入口部分中,从而造成了转向损 耗。
如果在燃料流流入到入口部分25b中之前就在包含主体流的燃料流中 造成了这样的转向损耗,流动能就会减少,使得燃料流入到入口部分25b 中的流速下降。结果就是,从喷射孔25喷出的燃料的喷射速度将下降。这 就意味着降低喷射速度的另一个因素叠加到了由于形成速度梯度而降低 喷射速度的因素上。因而,考虑到这样的情形,第一发明的目的是既能实 现低的贯透力,也能达到高的雾化度,同时防止了喷射速度的过度降低。
因而,如下文那样来设置涉及第一发明的特性结构。也就是说,如图 2所示,在作为上述阀件的针阔30顶端区段34上形成了斜面35,以使得 斜面35以环形的形状扩展,并从形成了承座区段33的承座表面33a的下 端向径向内侧扩展。承座区段33的承座表面33a被制成面对着内壁面22。 作为承座表面33a交叉角的承座角P (如图2所示)被设定在80度到130 度的范围内。
承座区段33所座压的、并可分离开的内壁面22的交叉角被设定为基 本上等于或略小于承座角P。喷射孔25的倾斜角ah被设定在一IO度到40 度的范围内。喷射孔25倾斜角的优选范围是0 40度。
喷嘴体21的结构被设置成使得内壁面22与喷射孔25具有如下的位置 关系。也就是说,在包含喷射孔25中心轴线J2的虚拟平面(图2中的纸 面)上,喷射孔25入口部分25b位于虚拟的延伸线ms上,该延伸线沿着 内壁面.22的縮径方向延伸。虚拟延伸线ms与位于入口部分25b —侧的喷 射孔内周面25c相交。也就是说,虚拟延伸线ms的交点mc位于喷射孔的 内周面25c上。因而,主体流方向上的燃料流可被控制为笔直地流入到入口部分25b中。因而,当针阀30与内壁面22分离开时,燃料流的转向损 耗得到了抑制一即使在燃料的主体流流经内壁面22之后也如此。因而,可 在防止燃料流动能降低的同时使燃料流入到入口部分25b中。
针阀30的结构被设计成使得顶端区段34的斜面与喷射孔25具有下文 所述的位置关系。也就是说,斜面35向内侧的扩展超过喷射孔25中心轴 线J2与顶端区段34相交的位置。更详细来讲,斜面35的末端位于喷射孔 25中心轴线J2与顶端区段24相交位置的径向内侧。因而,当承座表面33a 与内壁面22分开来时,即使燃料的主体流流过承座表面33a,燃料的主体 流也受到调整而沿着斜面35,从而抑制了燃料流动的转向损失。
利用上述关于喷嘴体21和针阀30的结构,并利用承座区段33和阀座 区段23—即承座表面33a、斜面35、以及内壁面22,可确保将燃料的主流 方向控制在笔直流入到喷射孔25入口部分25b的方向上。因而,可在防止 流动能降低的条件下使燃料的主体流流入到入口部分25b中。
另外,当主体流流入到入口部分25b中时,燃料的主体流与喷射孔内 周面25c相冲撞。因而,在主体流沿着与其相冲撞的喷射孔内周面25c从 入口部分25b—侧移动到出口部分25a—侧时,可在燃料中造成扰动。结 果就是,可在出口部分25a处造成很大的速度梯度VG。
由发明人完成的测试和数值分析已揭示了如下的事实如果承座表面 33a与斜面35之间的角度e满足不等式1829^27°,则有利于燃料向喷射孔 25入口部分25b的入流。换言之,位于承座表面33a和斜面35处的、且图 2所示的燃料通道26之外的燃料通道部分被设置为利于燃料流入到入口部 分25b中的通道形状。
如图2所示,角度e是这样的角度在与内壁面22相分离的方向上, 斜面35以该角度从承座表面33a处发生倾斜。
图14A到图14E表示了在改变作为参数的角度值e时对单个喷射器10 的速度梯度VG、喷射速度V、以及流量系数进行测量所得的测试结果。执 行测试和数值分析的条件包括如下条件燃料喷射压力^10Mpa。图14A到 图14E所示的实线表示了通过数值分析所得到的数据。
如图14A中流量系数与角度e之间的关系所示,存在着这样的趋势随
着角度e的增大,流量系数逐渐增大。其中的原因在于由于角度e的增大,
位于图14B所示的、处于上述承座表面33a和斜面35处燃料通道部分的横截面积的縮小率被抑制为小的数值。但是,如图14C中涉及分离角的指数
所示,如果角度e超过预定的数值范围,则包含主体流的燃料流中靠近斜面
35的燃料流部分与斜面35分离开的程度将过度地增大。因而,在此情况下,
随着角度e的增大,流量系数降低。
本发明人将上述角度e的上限设定为数值27、将下限设定为18,这是
因为如图i4A中关于流量系数的特征图线所示,通过将角度e设定在范围
18Se^27。中,可确保流量系数等于或大于预定值(在该实施方式中为0.6),
这就表明通道的形状相对地有利于燃料的流动。
图14D表示了角度e与速度梯度VG之间的关系。存在着这样的趋势-
速度梯度vg随着角度e的增大而减小。发明人认为此现象的原因是由于
位于承座表面33a和斜面35处的燃料通道面积随着角度e的增大而增大, 尽管能更为容易地获得预定的流量系数,但由于产生了过大的分离,所以, 主体流撞击喷射孔内周面25c的程度发生了改变。基于对于图14A到14E 中所示结果的认识,发现使得喷射速度V下降的限值是e-18度,使速度梯 度VG下降的限值是e^27度。
根据上述的实施方式,通过将出口部分25a处形成速度梯度的作用与 喷射速度不同于现有技术的效果组合起来,能促进燃料的雾化,而现有技 术中则是利用高的贯透力一即通过增大喷射速度来促进雾化的。因而,能 达到两方面的优点低的贯透力和高的雾化度。另外,作为防止喷射速度 随着速度梯度的形成而降低的措施,使燃料流入到喷射孔25的入口部分 25b中,同时防止了流动能的降低。因而,在防止了喷射速度过分降低的同 时,同时还实现了低贯透力和高雾化度的效果。
在本实施方式中,顶端区段34中斜面35的末端优选地是位于入口部 分25b所处位置的径向内侧。因而,可防止燃料流出现转向损耗一直到燃 料的主体流到达入口部分25b的位置处为止,即使在燃料的主体流流过承 座区段33后也如此。 (第二实施方式)
图15表示了本发明的第二实施方式。第二实施方式是第一实施方式的 改型。图15表示了喷射器的一部分,具体而言,其表示了喷射孔以及相对 于燃料流动方向位于喷射孔上游的燃料腔附近的结构。
针阀30的结构被设计成使得顶端区段34的斜面35与喷射孔25具下文所述的位置关系。也就是说,斜面35的末端向径向内侧的扩展超过了 入口部分25b的位置。位于承座表面33a和斜面35处的、按照这种方式制 成的燃料通道部分具有防止燃料流出现转向损耗的功能,至少直到燃料主 体流到达喷射孔25b所在位置的径向内侧时为止,燃料通道部分一直具有 这样的功能,即使在燃料主体流流过承座区段33之后也如此。因而,可在 保持流动能、不使其减少的前提下使燃料流入到喷射孔25的入口部分25b 中。
燃料喷雾的喷射角as是由安装该喷射器10的发动机所需的性能等因 素决定的。因而,可以考虑将制在凹陷部分27中的各个喷射孔25设置为 不同的喷射角as。由于喷射孔长度随着预期喷射角as的改变而改变,所以, 在具有不同喷射角as的各个喷射孔25之间,雾化程度将是变化的。
在这一点上,在该实施方式中,其上制有喷射孔25的板状部分21a的 构造被如下文所述那样设置在喷嘴体21的凹陷部分27中。也就是说,位 于入口部分25b —侧的板状部分21a的表面被制成平面,而位于出口部分 25a —侧的板状部分21a的表面则被制成球面。
位于出口部分25a —侧的表面被制成这样,使得在各个喷射孔25出口 部分25a之间形成的球面被相互连续地连接起来,且被制成外凸的球面形 状,它们在总体上相对于燃料的流动方向向下游(即图15中的向下方向) 突伸。
在上述的结构中,板状部分21a上位于入口部分25b —侧的表面被制 成平面,且位于出口部分25a—侧的表面被制成球面。因而,可防止由于 各个喷射孔25的喷射角as不同而造成各个喷射孔长度的不同。因此,可 防止各个具有不同喷射角as的喷射孔25在雾化度方面出现不同。
图16中左侧的图线表示了指数值Lt/d与喷射角as之间的关系。图16 中右侧的图线表示了指数值Lt/d与颗粒直径PD变动程度(改变度)之间 的关系。指数值Lt/d涉及到喷射孔的长度Lt,其是喷射孔长度Lt与喷射 孔25直径d之间的比值。图16中右侧图线所表达的颗粒直径PD变动量表 示的是颗粒直径PD的变化程度,该图线是以Lt/d=l. 5时的颗粒直径PD 为基础的。
喷射角as—即与喷射角as基本上相等的喷射孔25倾斜度och被设定在 范围一10^e《45。。在该设定范围内,如果板状部分21a的两侧都为平面,大致是在范围1. 5到2. 1之间。结果就是,如图16所示, 颗粒直径PD产生了约0 5. 7%的变动。
与此相反,在该实施方式中,数值Lt/d可被限制在约为1. 5到1. 6的 范围内。结果就是,颗粒直径PD的变动可被有效地限制在约为0 1. 2%的 范围内。
(其它实施方式)
本发明并不限于上述的实施方式,只要不悖离本发明的实质思想,本 发明也可被应用到其它各种实施方式中。
(1) 在上述的实施方式中,涉及第二发明的燃料腔70被制成这样的 形状其利用顺滑的曲面将阀座区段23与凹陷部分27底部的内周侧连接 起来。作为备选方案,燃料腔70可被制成图17A到图17L所示改型例中公 开的各种形状。也就是说,如图17A所示,可采用圆筒形的凹陷,该凹陷 是由垂直于底部的内周面、而非上述的曲面形成的。作为备选方案,如图 17E中另一种改型例所示,凹陷部分的底部可被制成与上述的曲面具有相同 的形状。作为备选措施,如图171中的另一种改型例所示,凹陷部分可被 制成圆锥形,且底部和阀座区段'23可由锥形的内周面来形成。
与上述的第一实施方式相同,图17A到图17D所示改型例中凹陷部分 27的底部是由板状部分21a构成的。图17E到图17H所示改型例中,带有 该底部的凹陷部分127被制成半球形。图171到图17L所示改型例中带有 该底部的凹陷部分227被制成锥形表面。底部对应于上述实施方式中的板 状部分21a。
(2) 在上述的各个实施方式中,针阀30的顶端区段34被制成基本上 为圆锥形。如图17B中的改型例所示,作为备选措施,顶端区段134可被 制成基本上为球面形状。作为备选措施,如同图17F中的改型例所示,顶 端区段134可被制成基本上为球面的形状,以使得顶端区段134面对着具 有上述半球面形状的凹陷部分127。作为备选措施,如图17J中的改型例所 示,顶端区段134可被制成基本上为球面形状,以使得顶端区段134面对 着具有上述锥形形状的凹陷部分。
(3) 在上述的实施方式中,顶端区段被制成圆锥形,以满足不等式 B〈A,其中,数值A/Ds与B/Ds是限定了燃料腔70形状的指数值。本发明 并不受限于此。也就是说,在图17C所示的改型例中,顶端区段234被制成平直的筒形,且在位于凹陷部分27 —侧的板状部分21a上制有阶梯部分 29,以使得阶梯部分29延伸向对置的端面236,其中,板状部分21a面对 着顶端区段234的对置端面236。在图17G所示的改型例中,延伸向顶端区 段134的阶梯部分29被制在如图17F所示半球面形状的凹陷部分127上。 在图17K所示的改型例中,延伸向顶端区段234的阶梯部分29被制在如图 17J所示的圆锥形凹陷部分227上。顶端区段可被制成球面形状或锥形。作 为备选措施,顶端区段可被制成如图17K所示的、制成平直筒形的顶端区 段234。
上述的阶梯形部分29被制成圆筒形,且被设置在凹陷部分27、 127或 227中,以便于面对着顶端区段。
(4) 阶梯形部分29并不限于圆筒形。例如,如图17D、 17H、以及17L 中的改型例所示,阶梯部分29可被制成圆锥形,且锥形阶梯部分29的顶 部被布置成面对着顶端区段。
(5) 在上述的实施方式中,采用了将喷射器10安装在气缸内部64中 心处的安装方式,且从喷射器10喷出的喷雾形状被形成为锥形。但本发明 并不受限于此。作为备选措施,例如如图18中改型例的燃料喷射装置那样, 可将喷射器10在气缸内部64偏斜地安装,且从喷射器10喷出的燃料可被 形成为平面扇形。在此情况下,喷射器10被固定到气缸内部64位于缸盖 61上进气阀68 —侧的拐角上。喷射器10被布置相对于朝向排气阀一侧的 垂直状态偏斜预定的角度。
(6) 在上述的实施方式中,沿着虚拟圆K的同一环形结构布置了四个 喷射孔25。本发明并不限于此,例如,作为备选措施,喷射孔25的数目可 以是两个、六个、八个或任意数目个。如果喷射孔25的数目是两个,贝喊 射孔25之间的间距可被定义为Dp,而不是将虚拟圆K (节圆)的直径定义 为Dp。
(7) 在从喷射器喷出的喷雾形状被形成为平面扇形的情况下,平面扇 形喷雾的数目不限于一个。作为备选措施,可由喷射器10所执行的喷射来 形成多个平面扇形的喷雾。
(8) 在上述的实施方式中,喷射孔25中心轴线J2的方向是倾斜的, 以使得喷射孔25的出口部分25a比入口部分25b更远离喷嘴体21的中心 轴线J1。对于这样的结构,当针阀30抬起、且燃料的主体流流入到喷射孔25的入口部分25b中时,主体流可有效地冲击到靠近喷嘴体21中心轴线 Jl 一侧的内周面部分上,该内周面部分位于喷射孔25入口部分25b —侧的 内周面上。因而,在出口部分25a处,可在靠近中心轴线Jl一侧的内周面 部分与远离中心轴线Jl 一侧的内周面部分之间有效地形成增大的速度梯 度。
(9) 在上文对实施方式所作的描述中,条件(1)到(4)的特征结构 被阐述为根据这些实施方式的喷射器10的重要结构,但是,不必同时来满 足条件(1)到(4)。也就是说,可采用使喷射器至少满足条件(1)和(2) 的方案。
(10) 在上述的实施方式中,喷射孔25的横截面形状被制成完整的圆 形。作为备选措施,横截面形状也可被制成椭圆形或槽缝形。
(11) 在上述的实施方式中,采用了以喷嘴体21作为阀体来形成凹陷 部分27和喷射孔25的构造。作为备选措施,可设置板件来作为形成喷射 孔的构件,其作为与喷嘴体独立的本体,且可在该板件上制出喷射孔。在 此情况下,板件例如被制成与对应于凹陷部分底部的板状部分21a具有相 同的厚度t。
(12) 在上述的实施方式中,在与第一发明相关的结构中,喷射孔25 的倾斜度数值ah被设定在范围一10Sah S45。中。在此情况下,通过将数 值ah设定在一10。《ah S45°、而非OXah S45。中,提高了设置喷雾形状的 自由度,并能防止燃料粘附到除壁面65、 67之外的火花塞上。
也就是说,如图19所示,在朝向火花塞喷射燃料的主体流喷射方向 J3上的喷射孔25倾斜度数值ah可被设定为与制在凹陷部分27上的其它喷 射孔25的倾斜度cxh存在非常大的不同。
尽管上文结合目前认为最为可行和优选的实施方式对本发明进行了描 述,但可以理解本发明并不限于所公开的实施方式,与此相反,本发明 应当涵盖处于后附权利要求书核心思想和范围内的各种改型和等效设置。
权利要求
1、一种喷射器,包括阀体,其具有内周表面,该内周表面围成了燃料通道,而且,在燃料流动的下游方向上,该内周表面的直径是缩小的,阀体还具有制在内周表面上的阀座区段、设置在阀座区段下游的凹陷部分、以及制在凹陷部分上的喷射孔,其中,所述的下游是相对于燃料的流动方向而言的;阀件,其被设置在阀体中,以使得阀件可在轴向方向上往复移动,阀件具有外周表面,其与阀体的内周表面一起形成了燃料通道,阀件具有制在外周表面上的承座区段,以使得承座区段可座压到阀座区段上,且该承座区段可与阀座区段分离开,阀件还具有顶端区段,其相对于燃料的流动方向位于承座区段的下游,并面对着凹陷部分;其中当承座区段与阀座区段分离开时,喷射器将燃料经喷射孔进行喷射,所述燃料流入到由凹陷部分与顶端区段所围成的燃料腔中,阀体的结构被设计成这样存在有一条虚拟的延伸线,其从内周表面上形成了阀座区段的内周面部分处延伸出,延伸的方向是内周面部分的直径缩小方向,在该方向上,内周面部分的直径是缩小的,该延伸线位于喷射孔的入口部分处,且在包含着喷射孔中心轴线的虚拟平面上与喷射孔的喷射孔内周面相交;以及阀件的顶端区段具有斜面,其从承座区段的下游端以环形的形状向内侧扩展,所述斜面向径向内侧的扩展超过了喷射孔中心轴线与顶端区段相交处的位置。
2、 根据权利要求1所述的喷射器,其特征在于顶端区段的所述斜面向径向内侧的扩展超过了喷射孔入口部分的位置。
3、 根据权利要求1所述的喷射器,其特征在于 顶端区段的斜面被制成截顶锥形。
4、 根据权利要求1所述的喷射器,其特征在于承座区段具有承座表面,其被布置成面对着阀座区段的内周面部分; 所述斜面被设置在承座区段上,且在远离内周面部分的方向上倾斜;以及承座表面与所述斜面之间所形成的夹角e满足不等式i8°《e^7°。
5、 根据权利要求1所述的喷射器,其特征在于燃料腔的结构被设计成这样座压在阀座区段上的承座区段的承座直 径Ds、轴向距离A、以及轴向距离B满足不等式0.048^A/Ds幼.18,以及 B/Ds^).18,其中,轴向距离A是指喷射孔入口部分与面对着入口部分的顶 端区段之间的轴向距离,距离B是指凹陷部分上内侧区域与面对着内侧区 域的顶端区段之间的轴向距离,其中的内侧区域位于喷射孔入口部分的径 向内侧。
6、 根据权利要求5所述的喷射器,其特征在于-燃料腔满足不等式B〈A。
7、 根据权利要求5所述的喷射器,其特征在于 在凹陷部分的内侧区域上制有阶梯形部分,其在朝向顶端区段的轴向上延伸;以及燃料腔满足不等式B〈A。
8、 根据权利要求1所述的喷射器,其特征在于在凹陷部分处制有多个喷射孔,并将各个喷射孔的入口部分沿着单一环形构造进行布置;以及座压在阀座区段上的承座区段的承座直径Ds与喷射孔入口部分之间 的间距Dp满足不等式1. 52Ds/Dp23 。
9、 根据权利要求1所述的喷射器,其特征在于在凹陷部分中制有多个喷射孔,且将各个喷射孔的入口部分布置在同一个虚拟的圆上,该圆的圆心与阀体的中心轴线重合;以及座压在阀座区段上的承座区段的承座直径Ds与虚拟圆直径Dp满足不 等式1.5^Ds/DpS3。
10、 根据权利要求1所述的喷射器,其特征在于凹陷部分上制出喷射孔的部分的厚度t与喷射孔直径d之间满足不等 式1.252/"3。
11、 根据权利要求1所述的喷射器,其特征在于喷射孔的中心轴线是倾斜的,以使得喷射孔出口部分所处位置较喷射 孔入口部分的位置离阀体的中心轴线更远。
12、 根据权利要求1所述的喷射器,其特征在于喷射孔的入口部分具有拐角,在该拐角处,喷射孔的喷射孔内周面与凹陷部分中所形成的内周面上的内周凹陷表面部分相交;以及位于拐角处的拐角部分处于靠近阀座区段的一侧,该拐角部分具有曲 面,其将内周凹陷表面部分与喷射孔内周面平滑地连接起来。
13、 一种喷射器,包括阀体,其具有内周表面,该内周表面围成了燃料通道,而且,在燃料 流动的下游方向上,该内周表面的直径是縮小的,阀体还具有制在内周表 面上的阀座区段、设置在阀座区段下游的凹陷部分、以及制在凹陷部分上的多个喷射孔,其中,所述的下游是相对于燃料的流动方向而言的;阀件,其被设置在阀体中,以使得阀件可在轴向方向上往复移动,阀 件具有外周表面,其与阀体的内周表面一起形成了燃料通道,阀件具有制 在外周表面上的承座区段,以使得承座区段可座压到阀座区段上,且该承 座区段可与阀座区段分离开,阀件还具有顶端区段,其相对于燃料的流动 方向位于承座区段的下游,并面对着凹陷部分;其中凹陷部分与顶端区段形成了基本上为圆筒形的燃料腔; 当承座区段与阀座区段分离开时,喷射器将流入到燃料腔中的燃料经 喷射孔进行喷射;座压在阀座区段上的承座区段的承座直径Ds、喷射孔入口部分与面对 着入口部分的顶端区段之间的轴向距离A、以及燃料腔中凹陷部分上内侧区 域与面对着内侧区域的顶端区段之间的轴向距离B满足不等式-0.048SA/Ds幼.18,以及B/DsS0.18,其中,内侧区域位于喷射孔入口部分 的径向内侧。
14、 根据权利要求13所述的喷射器,其特征在于-阀件的顶端区段被制成斜面形状或球面形状,其从承座区段的下端以环形的形状向内侧扩展;以及 燃料腔满足不等式B〈A。
15、 根据权利要求13所述的喷射器,其特征在于 在凹陷部分的内侧区域上制有阶梯形部分,其在朝向顶端区段的轴向上延伸;以及燃料腔满足不等式B〈A。
16、 根据权利要求13所述的喷射器,其特征在于 喷射孔的入口部分被沿着单一环形构造进行布置;以及 各个喷射孔入口部分之间的间距Dp满足不等式1. 5《Ds/DpS3。
17、 根据权利要求13所述的喷射器,其特征在于各个喷射孔的入口部分被布置在同一个虚拟的圆上,该圆的圆心与阀 体的中心轴线重合;以及虚拟圆的直径Dp满足不等式1.5SDS/Dp《3。
18、 根据权利要求13所述的喷射器,其特征在于凹陷部分上制出喷射孔的部分的厚度t与喷射孔直径d之间满足不等式1.25^t/d《3。
19、 根据权利要求13所述的喷射器,其特征在于-喷射孔的轴向是倾斜的,以使得喷射孔出口部分所处位置较喷射孔入口部分的位置离阀体的中心轴线更远。
20、 根据权利要求13所述的喷射器,其特征在于 喷射孔的入口部分具有拐角,在该拐角处,喷射孔的喷射孔内周面与凹陷部分中所形成内周面上的内周凹陷表面部分相交;以及位于拐角处的拐角部分处于靠近阀座区段的一侧,该拐角部分具有曲 面,其将内周凹陷表面部分与喷射孔内周面平滑地连接起来。
21、 根据权利要求1到20之一所述的喷射器,其特征在于 凹陷部分上制有喷射孔的部分被制成具有平面和球面,平面作为喷射孔入口部分一侧的端面,球面作为喷射孔出口部分一侧的另一端面。
全文摘要
本发明涉及一种喷射器。由喷射器阀体凹陷部分与阀件顶端区段所形成的燃料腔被设计成这样使得阀件座压在制于阀体内周表面上的阀座区段上的承座区段的承座直径Ds、轴向距离A、以及轴向距离B满足下列不等式0.048≤A/Ds≤0.18,以及B/Ds≤0.18,其中,轴向距离A是指制在凹陷部分中的喷射孔入口部分与面对着燃料腔中入口部分的阀件顶端区段之间的轴向距离,距离B是指凹陷部分中内侧区域与面对着内侧区域的顶端区段之间的轴向距离,其中的内侧区域在燃料腔中位于喷射孔入口部分的径向内侧。
文档编号F02M61/00GK101545438SQ200910130160
公开日2009年9月30日 申请日期2009年3月27日 优先权日2008年3月27日
发明者加藤典嗣, 柴田仁, 西胁丰治 申请人:株式会社电装
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1