一种风电互补的风能综合利用系统及其控制方法

文档序号:5157062阅读:191来源:国知局
一种风电互补的风能综合利用系统及其控制方法
【专利摘要】本发明涉及风力利用【技术领域】,尤其涉及一种风电互补的风能综合利用系统。其包括风力机械能转换装置、电力驱动装置、双动力合成装置、动力负载装置及控制系统,其特征在于:所述双动力合成装置包括第一输入轴、第二输入轴、动力输出轴。所述风力机械能转换装置包括风力机及风力动力输出轴,所述风力动力输出轴与所述第一输入轴连接;所述电力驱动装置包括电动机,其与第二输入轴连接;本发明还公开了一种控制方法。本发明的有益效果是:能将风能和电能叠加合成,不仅可有效解决由于风能随机性和不确定性造成的应用局限性,而且在风能超出动力负载装置需求时,还能通过控制系统将多余的风能转化为电能回馈电网,这使风能得以高效利用。
【专利说明】—种风电互补的风能综合利用系统及其控制方法

【技术领域】
[0001]本发明涉及风力利用【技术领域】,尤其涉及一种风电互补的风能综合利用系统,还涉及该系统的控制方法。

【背景技术】
[0002]风能是一种清洁、安全、可再生的绿色能源,利用风能对环境无污染,对生态无破坏,环保效益和生态效益良好,对于人类社会可持续发展具有重要意义。风能的利用主要是以风能作动力和风力发电两种形式;风力发电即把风的动能转变成机械能,再把机械能转化为电能,在能源转化中会有很大的转化损失。以风能作动力,就是利用风来直接带动各种机械装置,如带动水泵提水、带动高压水泵进行海水淡化等,这种风力发动机的优点是能源利用率高。但由于风力具有随机性和不确定性,因此限制了其应用范围,尤其在一些需要较稳定动力输出的场合更是如此。如专利号为ZL201120033186.2的专利文献公开了一种风电互补驱动海水淡化高压泵的装置,即是直接将风力转化为机械能带动高压水泵进行海水淡化。由于风力的随机性,为了保证海水淡化系统的连续稳定工作,其采用了电力驱动二次加压水泵进行风能补充的方式,但这种结构还不能很好的应对风力的随机性,即不能使电力与风力两者实现速度的合成;专利号为ZL201220391635.5的发明专利,公开了 “一种风电互补的动力均衡输出系统”,该发明不论风力和电力两种动力输出轴转速如何,都可以在动力输出机构得到有效的合成速度输出,即当风力机输出轴随机运转时,都可以和电力输出轴的动力按该发明所确定的模式合成输出。并且可以以电力轴的随动来补偿风力轴的变换,从而保证负载的速度输出恒定。当综合以上现有技术,尚存在以下缺陷;一是当风力过大时,传统的方法是采用阻尼装置来消耗多余的风能,这也造成了另一种能源浪费,不能对变化随机而变幅巨大的风力充分利用,二是上述动力均衡输出系统尚不能使风力与电力所产生的力矩得以合成;如果在风能做功的同时将多余的风能转化为便于存储输送的电能,回馈电网,则由此形成的具有稳定动力输出的风能利用系统将会使风能的利用前景更为广阔。


【发明内容】

[0003]本发明针对上述现有技术的不足,提供一种风电互补的风能综合利用系统。其不仅能使风能得到直接利用,而且还能将多余的风能转化成电力回馈电网。
[0004]本发明解决上述技术问题的技术方案如下:一种风电互补的风能综合利用系统,包括风力机械能转换装置、电力驱动装置、双动力合成装置、动力负载装置及控制系统,其特征在于:
[0005]所述双动力合成装置包括第一输入轴、第二输入轴及动力输出轴;
[0006]所述风力机械能转换装置包括风力机及风力机输出轴,所述风力机输出轴与所述双动力合成装置的第一输入轴连接;
[0007]所述电力驱动装置包括电动机,所述电力驱动装置的电力输出轴与所述双动力合成装置的第二输入轴连接;
[0008]所述动力负载装置包括与所述双动力合成装置的动力输出轴连接的动力驱动机构;
[0009]所述控制系统包括用于控制所述电动机的四象限变频器;用于检测转速的测速装置以及用于检测和控制系统的PLC控制器。
[0010]采用本发明的有益效果是:利用双动力合成装置,将风能和电能进行速度和功率的合成,不仅可有效解决由于风能随机性和不确定性造成的风能应用局限性,而且在风能超出动力负载装置需求时,还能通过控制系统将多余的风能转化为电能回馈电网,这使风能得以高效利用,同时也使风能的应用领域能大为扩展。
[0011]在上述技术方案的基础上,本发明还可以做如下改进。
[0012]进一步,所述测速装置包括分别设于所述双动力合成装置的第一输入轴、第二输入轴及动力输出轴上的第一光电编码器、第二光电编码器、第三光电编码器,所述第一光电编码器、第二光电编码器、第三光电编码器分别与所述PLC控制器的输入端连接,以提供转速信号;所述四象限变频器控制端与所述PLC控制器的输出端连接,所述四象限变频器包括电源端和电机端,所述电源端与外电网连接,所述电机端与所述电动机电连接。
[0013]采用上述进一步方案的有益效果是,利用PLC控制器和四象限变频器实现了对风力的随时监控和充分利用。
[0014]进一步,所述双动力合成装置包括壳体,所述第一输入轴、第二输入轴及动力输出轴相互平行的设置在所述壳体中,所述第一输入轴、第二输入轴及动力输出轴分别通过第一输入轴轴承、第二输入轴轴承及动力输出轴轴承固定在所述壳体上,所述第一输入轴上设有第一输入轴齿轮,所述第二输入轴上设有第二输入轴齿轮,所述动力输出轴上套装有行星齿轮变速系统,所述行星齿轮变速系统包括齿圈、行星架、太阳轮及行星齿轮,所述太阳轮固定在所述动力输出轴上,所述齿圈通过齿圈轴承固定在所述壳体上,所述齿圈外部设有齿圈齿轮、所述行星架通过行星架轴承固定在所述壳体上,所述行星架外部设有行星架齿轮,所述行星架上设有与所述太阳轮相啮合的行星齿轮,所述行星齿轮还与所述齿圈相哨合;
[0015]所述第一输入轴齿轮与所述齿圈齿轮相啮合,所述第二输入轴齿轮与所述行星架齿轮相啮合,所述第一输入轴、第二输入轴及动力输出轴的至少一端伸出所述壳体外,用于与外动力或外负载连接。
[0016]采用上述进一步方案的有益效果是,本发明与普通齿轮传动如差速器结构相比,不仅能实现不同速度的合成,同时还能实现转矩的合成。本发明采用行星齿轮变速系统显著的特点是:在传递动力时它可以进行功率分流,同时,主要优点如下:1.整机体积小,重量轻,结构紧凑,承载能力大:由于行星齿轮传动中具有功率分流和各太阳轮构成共轴线式的传动以及合理的运用内齿轮啮合副,因此,可使其结构非常紧凑;再由于太阳轮周围均匀的分布着数个行星齿轮来分担载荷,从而,使得每个齿轮承受的载荷较少,并允许这些齿轮采用较小的模数;此外,结构上充分利用了内啮合承载能力大和内齿圈本身的可容体积,从而有利于缩小其外廓尺寸,并具有较大的承载能力:2.传动效率高;由于行星齿轮结构的对称性,使得作用于太阳轮和行星齿轮中的反作用力能相互平衡,从而提高传动效率;在传动类型选择得当,结构布置合理的情况下,其传动效率可以达到96%-98%。;3.传动比大,只要适当的选择行星齿轮传动的类型以及配齿方案,便可以用少数几个齿轮获得很大的传动比,在有很大的传动比的情况下,仍可以保持结构紧凑,体积小,质量小的优点;
4.本发明运行平稳、抗冲击和振动的能力强。由于采用数个结构相同的行星齿轮,均匀的分布于太阳轮的周围,从而可以使太阳轮和行星齿轮的惯性力相互平衡。
[0017]进一步,所述第一输入轴轴承及第二输入轴轴承成对设置,其中每对中至少有一个为单向轴承。
[0018]采用上述进一步方案的有益效果是,采用单向轴承可以避免当两个输入轴中其中一个失去动力时,不会将动力输出轴反向传输到该外动力装置。也避免了在外动力装置上另设抱闸或单向传输机构。
[0019]进一步,所述壳体包括支撑肋板,所述第一输入轴轴承及第二输入轴轴承中分别有一个轴承设于所述支撑肋板上,所述齿圈轴承也设于所述支撑肋板上;所述行星架轴承通过行星架轴承套固定在所述壳体上;所述齿圈的外端还设有推力轴承,所述推力轴承通过推力轴承套固定在壳体上。
[0020]采用上述进一步方案的有益效果是,设置支撑肋板并将第一和第二输入轴的一端支撑在该支撑肋板上,比将各个支撑轴承设于壳体上轴距要短,从而保证了传输性能,在大力矩合成时,各轴能具有较好的刚性。由于该支撑肋板作用也使得本实用新型结构更紧凑,不必因为轴太长而加粗轴径。
[0021]进一步,所述电力驱动装置还包括第一电磁离合器、第一皮带轮及第二皮带轮,所述电动机的输出轴通过第一电磁离合器、第一皮带轮及第二皮带轮与所述双动力合成装置的第二输入轴连接;所述风力机输出轴通过第三皮带轮和第四皮带轮与所述第一输入轴连接;所述动力驱动机构包括第五皮带轮和第六皮带轮。
[0022]采用上述进一步方案的有益效果是,采用皮带轮作为动力传递机构,简单实用,运行可靠。
[0023]进一步,所述电动机的输出轴上还设有第七皮带轮,所述动力输出轴上还设有第二电磁离合器和换向器,所述第二电磁离合器的输入端设有第八皮带轮,所述第七和第八皮带轮通过皮带连接。
[0024]采用上述进一步方案的有益效果是,采用这种结构可以在风力为零时,或者说风力小到不值得利用时,直接启动电机驱动负载,从而避免了由于中间多级传递而造成能量损失。
[0025]进一步,所述动力负载装置是高压泵海水淡化系统。
[0026]采用上述进一步方案的有益效果是,本发明的风电互补的风能综合利用系统,其输出用于驱动海水淡化,经济实用,有很大的发展前景。
[0027]进一步,所述双动力合成装置的第一输入轴和第二输入轴上还分别设有第一抱闸装置和第二抱闸装置。
[0028]采用上述进一步方案的有益效果是,当需要电力或风力其中一个输入时,可以通过抱闸将另一个输入轴抱死,以避免对外部设施的影响。
[0029]本发明还公开了一种风能综合利用的控制方法:
[0030]一种风能综合利用系统的控制方法,其特征在于:包括采用如上所述的风电互补的风能综合利用系统,具体步骤如下:
[0031]I)、系统启动,四象限变频器根据PLC接收的第三光电编码器信号自动计算当前动力负载装置实际转速NP,并与设定的负载转速NS相比较:并设定两者速度控制差值Δ N ;
[0032]2)、如果NP〈NS,且NS_NP> Λ N,则说明风力不足以带动负载,此时四象限变频器输出控制信号使第一电磁离合器接通并启动电动机,四象限变频器内部通过PI算法自动调节频率,与NP实现闭环控制,直至NS-NP〈 Δ N ;
[0033]3)、如果风力增大,使NS-NP接近Λ N,四象限变频器通过PI调节作用使其变频频率变小,当NS-NP =Λ N时,四象限变频器使电动机停机,并关断第一电磁离合器;
[0034]4)、当风力增大到使NP>NS,且NP_NS〈 Λ N时,四象限变频器仍按步骤3)执行动作;
[0035]5)、当风力增大到使NP>NS,且NP_NS> Δ N时,此时风力所提供的能量大于负载所需转速,四象限变频器输出控制信号使第一电磁离合器闭合,四象限变频器根据第一光电编码器转速实现转速自动跟踪,并将多余能量回馈到电网;
[0036]6)、当风力变化时,四象限变频器根据PLC接收的第三光电编码器信号即实际负载转速按上述步骤自动控制系统运行。
[0037]采用上述方法的有益效果是:采用PLC及四象限变频器对本系统进行控制,利用上述控制方法,可以有效的、及时的跟踪风力的随机情况,使系统做出反应,尤其能将多余的风力转化成电能。

【专利附图】

【附图说明】
[0038]图1为本发明的一种风电互补的风能综合利用系统结构示意图;
[0039]图2为本发明的控制系统结构示意图;
[0040]图3为本发明的双动力合成装置结构示意图;
[0041]图4为本发明的双动力合成装置沿动力输出轴的垂直剖面图:
[0042]图5为本发明在电力驱动装置单独工作时的控制原理示意图;
[0043]图6为本发明在风力和电力同时工作时的控制原理示意图;
[0044]图7为本发明在电力驱动装置馈电时控制原理示意图。
[0045]在图1到图7中,各部件名称列表如下:
[0046]100、风力机械能转换装置;101、风力机;102、风力机输出轴;103、第三皮带轮;104、第四皮带轮;105、第一抱闸装置;
[0047]200、双动力合成装置;201、壳体;202、第一输入轴;203、第一输入轴轴承;204、第一输入轴齿轮;206、第二输入轴轴承;207、支撑肋板;208、第二输入轴;209、第二输入轴齿轮;211、动力输出轴;212、输出轴轴承;213、轴承套;214、推力轴承;215、齿圈齿轮;216、齿圈轴承;217、齿圈;218、行星齿轮;219、行星架;220、太阳轮;221、行星架齿轮;222、行星架轴承;223、行星架轴承套。
[0048]300、电力驱动装置;301、电力输出轴;302、第一电磁离合器;303、电动机;304、第一皮带轮;305、第二皮带轮;306、第二抱闸装置;307、第五皮带轮;308、第六皮带轮;309、第二电磁离合器;310、换向器;
[0049]400、动力负载装置;401、负载;402、第七皮带轮;403、第八皮带轮;
[0050]500、控制系统;501、PLC控制器;502、第一光电编码器;503、第二光电编码器;504、第三光电编码器;505、四象限变频器;506、外电网;507、双向电表;

【具体实施方式】
[0051]以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
[0052]如图1和图2所示,一种风电互补的风能综合利用系统,包括风力机械能转换装置100、电力驱动装置300、双动力合成装置200、动力负载装置400及控制系统500,其特征在于:
[0053]所述双动力合成装置200包括第一输入轴202、第二输入轴208及动力输出轴211 ;
[0054]所述风力机械能转换装置100包括风力机101及风力机输出轴102,所述风力机输出轴102与所述双动力合成装置的第一输入轴202连接;
[0055]所述电力驱动装置300包括电动机303,所述电力驱动装置的电力输出轴301与所述双动力合成装置的第二输入轴208连接;
[0056]所述动力负载装置400包括与所述双动力合成装置的动力输出轴211连接的动力驱动机构;
[0057]所述控制系统500包括用于控制所述电动机的四象限变频器505 ;用于检测转速的测速装置以及用于检测和控制系统的PLC控制器501。
[0058]所述测速装置包括分别设于所述双动力合成装置的所述第一输入轴202、第二输入轴208及动力输出轴上的第一光电编码器502、第二光电编码器503、第三光电编码器504,所述第一光电编码器502、第二光电编码器503、第三光电编码器504分别与所述PLC控制器的输入端电连接,以提供转速信号;所述四象限变频器505控制端与所述PLC控制器501的输出端电连接,所述四象限变频器505包括电源端和电机端,所述电源端通过双向电表507与外电网506连接,所述电机端与所述电动机303电连接。
[0059]具体实施时,所述四象限变频器可以选用西门子四象限变频器G120,PLC可以选用西门子S7系列,光电编码器可以选用型号较多,如型号较多,例如德国TWK光电编码器。
[0060]如图3和图4所不,所述双动力合成装置包括壳体201,所述第一输入轴202、第二输入轴208及动力输出轴211相互平行的设置在所述壳体201中,所述第一输入轴202、第二输入轴208及动力输出轴211分别通过第一输入轴轴承203、第二输入轴轴承206及动力输出轴轴承212固定在所述壳体上,所述第一输入轴202上设有第一输入轴齿轮204,所述第二输入轴208上设有第二输入轴齿轮209,所述动力输出轴211上套装有行星齿轮变速系统,所述行星齿轮变速系统包括齿圈217、行星架219、太阳轮220及行星齿轮218,所述太阳轮220固定在所述动力输出轴211上,所述齿圈217通过齿圈轴承216固定在所述壳体201上,所述齿圈217外部设有齿圈齿轮215、所述行星架219通过行星架轴承222固定在所述壳体201上,所述行星架219外部设有行星架齿轮221,所述行星架219上设有与所述太阳轮220相啮合的行星齿轮218,所述行星齿轮218还与所述齿圈217相啮合;
[0061]所述壳体为密封结构,所述动力合成组件浸润在润滑油中。
[0062]所述第一输入轴齿轮204与所述齿圈齿轮215相哨合,所述第二输入轴齿轮219与所述行星架齿轮221相啮合,所述第一输入轴202、第二输入轴208及动力输出轴211的至少一端伸出所述壳体外,用于与外动力或外负载连接。
[0063]所述第一输入轴轴承203及第二输入轴轴承206成对设置,其中每对中至少有一个为单向轴承。
[0064]所述壳体包括支撑肋板207,所述第一输入轴轴承203及第二输入轴轴承206中分别有一个轴承设于所述支撑肋板207上,所述齿圈轴承216也设于所述支撑肋板207上;所述行星架轴承222通过行星架轴承套223固定在所述壳体201上;所述齿圈217的外端还设有推力轴承214,所述推力轴承214通过推力轴承套213固定在壳体201上。
[0065]所述双动力合成装置的工作原理如下:
[0066]当第一输入轴203和第二输入轴208同时作用时,第一输入轴203通过第一输入轴齿轮204带动齿圈齿轮215转动,同时带动齿圈217转动,齿圈217则通过自身的内齿圈和行星齿轮的啮合将动力传递到太阳轮220,进而带动动力输出轴211转动;第二输入轴208通过第二输入轴齿轮209带动行星架齿轮221转动,行星架219则加速了行星齿轮的转动,进而将第二输入轴的动力与第一输入轴的动力在所述动力输出轴211上叠加,即合成了动力或力矩。
[0067]当两个输入轴中其中一个失去动力时,由于单向轴承的阻转作用,使齿圈17或行星架19停止运动,而把另一个输入轴的动力全部传递到动力输出轴11上;
[0068]当两个输入轴中其中一个或者两个处于随机作用状态时,并不能影响另一个的动力传递;另外,如果配以适当的检测系统,当其中一个动力降低时,还可以通过提升另一个的输入动力以保持输出动力的恒定。
[0069]如图1和图2所示,所述电力驱动装置300还包括第一电磁离合器302、第一皮带轮304及第二皮带轮305,所述电动机的输出轴通过第一电磁离合器302、第一皮带轮304及第二皮带轮305与所述双动力合成装置的第二输入轴208连接;所述风力机输出轴102通过第三皮带轮103和第四皮带轮104与所述第一输入轴202连接;所述动力驱动机构包括第五皮带轮307和第六皮带轮308。
[0070]所述电动机的输出轴上还设有第七皮带轮402,所述动力输出轴211上还设有第二电磁离合器309和换向器310,所述第二电磁离合器的输入端设有第八皮带轮403,所述第七和第八皮带轮通过皮带连接。
[0071]所述第一电磁离合器302、第二电磁离合器309与所述PLC控制器的输出端电连接。
[0072]所述动力负载装置400是高压泵海水淡化系统。
[0073]所述双动力合成装置的第一输入轴202和第二输入轴208上还分别设有第一抱闸装置105和第二抱闸装置306。所述第一抱闸装置105和第二抱闸装置306与所述PLC控制器的输出端电连接。
[0074]本发明还公开了一种风能综合利用的控制方法:
[0075]—种风能综合利用系统的控制方法,包括采用如上所述的风电互补的风能综合利用系统,具体步骤如下:
[0076]I)、系统启动,四象限变频器505根据PLC接收的第三光电编码器504信号自动计算当前动力负载装置400实际转速NP,并与设定的负载转速NS相比较:并设定两者速度控制差值Λ N ;
[0077]2)、如果NP〈NS,且NS_NP> Δ N,则说明风力不足以带动负载,此时四象限变频器505输出控制信号使第一电磁离合器302接通并启动电动机,四象限变频器505内部通过PI算法自动调节频率,与NP实现闭环控制,直至NS-NP〈 Δ N ;
[0078]3)、如果风力增大,使NS-NP接近Λ N,四象限变频器505通过PI调节作用使其变频频率变小,当NS-NP =Λ N时,四象限变频器505使电动机停机,并关断第一电磁离合器302 ;
[0079]4)、当风力增大到使NP>NS,且NP_NS〈AN时,四象限变频器505仍按步骤3)执行动作;
[0080]5)、当风力增大到使NP>NS,且NP-NS〉Δ N时,此时风力所提供的能量大于负载所需转速,四象限变频器505输出控制信号使第一电磁离合器302闭合,四象限变频器505根据第一光电编码器502转速实现转速自动跟踪,并将多余能量回馈到电网;
[0081]6)、当风力变化时,四象限变频器505根据PLC接收的第三光电编码器504信号即实际负载转速按上述步骤自动控制系统运行。
[0082]下面以驱动海水淡化为例,即以动力负载装置为水泵来说明本发明的工作原理:
[0083]如图5所示,为本发明在电力驱动装置单独工作时的控制原理示意图。当无风时,电力驱动装置300单独驱动动力负载装置400。此时PLC控制器501对第一抱闸装置105输出抱闸信号,双动力合成装置200的风力机械能转换装置一侧的第一输入轴202抱死。
[0084]PLC控制器501根据水泵给定速度,计算出四象限变频器505的给定频率,并将频率信号通过信号总线传输给四象限变频器505。
[0085]四象限变频器505根据给定频率值,采用带速度反馈的矢量控制方法,调整电力驱动装置300的电动机转速,第二光电编码器503测得电动机转速,用于四象限变频器505的闭环矢量控制。电动机通过动力合成装置200带动水泵转动,第三光电编码器504用于测量水泵转速,并反馈给PLC控制器501,用于水泵转速的闭环控制。
[0086]如图6所示,为本发明在风力和电力同时工作时的控制原理示意图。在有风时,风力机械能转换装置100和电力驱动装置300可共同驱动动力负载装置200。通过实验测得风力机单独驱动水泵的风速阈值,当有风但是达不到该风速阈值,那么风力机无法单独驱动水泵,风力机和电动机作为动力输入源,共同驱动水泵。第一光电编码器502测得风力机转速信息后,输入到PLC控制器501中,PLC控制器501根据水泵给定速度和风力机速度,计算出四象限变频器505的给定频率,并传输给四象限变频器。
[0087]四象限变频器505根据给定频率值,仍然采用闭环矢量控制方法,调整电力驱动装置300的电动机转速。第二光电编码器503用于测定电动机转速并用于四象限变频器505的闭环控制。
[0088]电动机303和风力机101通过双动力合成装置200进行转速合成,驱动水泵按照给定转速转动。第三光电编码器504测定水泵转速并用于水泵的闭环控制。
[0089]如图7所示,为本发明在电力驱动装置馈电时控制原理示意图。当风速达到并超过能够单独驱动负载的阈值时,此时风力机除了驱动水泵外,多余能量带动电动机发电。
[0090]风力机通过双动力合成装置200带动水泵和电力驱动装置300的电动机转子,电动机303处于发电状态发电,并通过四象限变频器505输出满足电网品质的电力。
[0091]第一光电编码器502测得风力机械能转换装置100动力输出轴211转速信息后,输入到PLC控制器501中,PLC控制器501根据水泵给定速度和风力机速度,计算出四象限变频器505的给定频率,并传输给四象限变频器505。
[0092]四象限变频器505采用闭环矢量控制方式,调整电动机303转速。第二光电编码器503用于四象限变频器的闭环控制。
[0093]第三光电编码器504用于水泵的闭环控制。
[0094]以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
【权利要求】
1.一种风电互补的风能综合利用系统,包括风力机械能转换装置(100)、电力驱动装置(300)、双动力合成装置(200)、动力负载装置(400)及控制系统(500),其特征在于: 所述双动力合成装置(200)包括第一输入轴(202)、第二输入轴(208)及动力输出轴(211); 所述风力机械能转换装置(100)包括风力机(101)及风力机输出轴(102),所述风力机输出轴(102)与所述双动力合成装置的第一输入轴(202)连接; 所述电力驱动装置(300)包括电动机(303),所述电力驱动装置的电力输出轴(301)与所述双动力合成装置的第二输入轴(208)连接; 所述动力负载装置(400)包括与所述双动力合成装置的动力输出轴(211)连接的动力驱动机构; 所述控制系统(500)包括用于控制所述电动机的四象限变频器(505);用于检测转速的测速装置以及用于检测和控制系统的PLC控制器(501)。
2.根据权利要求1所述的风电互补的风能综合利用系统,其特征在于,所述测速装置包括分别设于所述双动力合成装置的所述第一输入轴(202)、第二输入轴(208)及动力输出轴上的第一光电编码器(502)、第二光电编码器(503)、第三光电编码器(504),所述第一光电编码器、第二光电编码器、第三光电编码器分别与所述PLC控制器的输入端连接,以提供转速信号;所述四象限变频器(505)控制端与所述PLC控制器(501)的输出端连接,所述四象限变频器(505)包括电源端和电机端,所述电源端与外电网(506)连接,所述电机端与所述电动机(303)电连接。
3.根据权利要求1所述的风电互补的风能综合利用系统,其特征在于,所述双动力合成装置包括壳体(201),所述第一输入轴(202)、第二输入轴(208)及动力输出轴(211)相互平行的设置在所述壳体(201)中,所述第一输入轴(202)、第二输入轴(208)及动力输出轴(211)分别通过第一输入轴轴承(203)、第二输入轴轴承(206)及动力输出轴轴承(212)固定在所述壳体上,所述第一输入轴(202)上设有第一输入轴齿轮(204),所述第二输入轴(208)上设有第二输入轴齿轮(209),所述动力输出轴(211)上套装有行星齿轮变速系统,所述行星齿轮变速系统包括齿圈(17)、行星架(219)、太阳轮(220)及行星齿轮(218),所述太阳轮(220)固定在所述动力输出轴(211)上,所述齿圈(217)通过齿圈轴承(216)固定在所述壳体(201)上,所述齿圈(217)外部设有齿圈齿轮(215)、所述行星架(219)通过行星架轴承(222)固定在所述壳体(201)上,所述行星架(219)外部设有行星架齿轮(221),所述行星架(219)上设有与所述太阳轮(220)相啮合的行星齿轮(218),所述行星齿轮(218)还与所述齿圈(217)相啮合; 所述第一输入轴齿轮(204)与所述齿圈齿轮(215)相哨合,所述第二输入轴齿轮(209)与所述行星架齿轮(221)相哨合,所述第一输入轴(202)、第二输入轴(208)及动力输出轴(211)的至少一端伸出所述壳体外,用于与外动力或外负载连接。
4.根据权利要求3所述的风电互补的风能综合利用系统,其特征在于,所述第一输入轴轴承(203)及第二输入轴轴承(206)成对设置,其中每对中至少有一个为单向轴承。
5.根据权利要求3所述的风电互补的风能综合利用系统,其特征在于,所述壳体包括支撑肋板(207),所述第一输入轴轴承(203)及第二输入轴轴承(206)中分别有一个轴承设于所述支撑肋板(207)上,所述齿圈轴承(216)也设于所述支撑肋板(207)上;所述行星架轴承(222)通过行星架轴承套(223)固定在所述壳体(201)上;所述齿圈(217)的外端还设有推力轴承(214),所述推力轴承(214)通过推力轴承套(213)固定在壳体(201)上。
6.根据权利要求1?3任一项所述的风电互补的风能综合利用系统,其特征在于,所述电力驱动装置(300)还包括第一电磁离合器(302)、第一皮带轮(304)及第二皮带轮(305),所述电动机的输出轴通过第一电磁离合器(302)、第一皮带轮(304)及第二皮带轮(305)与所述双动力合成装置的第二输入轴(208)连接;所述风力机输出轴(102)通过第三皮带轮(103)和第四皮带轮(104)与所述第一输入轴(202)连接;所述动力驱动机构包括第五皮带轮(307)和第六皮带轮(308)。
7.根据权利要求6所述的风电互补的风能综合利用系统,其特征在于,所述电动机的输出轴上还设有第七皮带轮(402),所述动力输出轴(211)上还设有第二电磁离合器(309)和换向器(310),所述第二电磁离合器的输入端设有第八皮带轮(403),所述第七和第八皮带轮通过皮带连接。
8.根据权利要求1所述的风电互补的风能综合利用系统,其特征在于:所述动力负载装置(400)是高压泵海水淡化系统。
9.根据权利要求1所述的风电互补的风能综合利用系统,其特征在于:所述双动力合成装置的第一输入轴(202)和第二输入轴(208)上还分别设有第一抱闸装置(105)和第二抱闸装置(306)。
10.一种风能综合利用系统的控制方法,其特征在于:包括采用如权利要求1?9任一项所述的风电互补的风能综合利用系统,具体步骤如下: 1)、系统启动,四象限变频器(505)根据PLC接收的第三光电编码器(504)信号自动计算当前动力负载装置(400)实际转速NP,并与设定的负载转速NS相比较,并设定两者速度控制差值Λ N ; 2)、如果NP〈NS,且NS-NP〉ΔN,则说明风力不足以带动负载,此时四象限变频器(505)输出控制信号使第一电磁离合器(302)接通并启动电动机,四象限变频器(505)内部通过PI算法自动调节频率,与NP实现闭环控制,直至NS-NP〈 Δ N ; 3)、如果风力增大,使NS-NP接近ΛN,四象限变频器(505)通过PI调节作用使其变频频率变小,当NS-NP =Λ N时,四象限变频器(505)使电动机停机,并关断第一电磁离合器(302); 4)、当风力增大到使NP>NS,且NP-NS〈Λ N时,四象限变频器(505)仍按步骤3)执行动作; 5)、当风力增大到使NP>NS,且NP-NS〉ΔN时,此时风力所提供的能量大于负载所需转速,四象限变频器(505)输出控制信号使第一电磁离合器(302)闭合,四象限变频器(505)根据第一光电编码器(502)转速实现转速自动跟踪,并将多余能量回馈到电网; 6)、当风力变化时,四象限变频器(505)根据PLC接收的第三光电编码器(504)信号即实际负载转速按上述步骤自动控制系统运行。
【文档编号】F03D11/02GK104196683SQ201410413013
【公开日】2014年12月10日 申请日期:2014年8月20日 优先权日:2014年8月20日
【发明者】吴速, 麻常选, 任效承 申请人:吴速
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1