包括催化型分区涂覆的过滤器基底的强制点火发动机和排气系统的制作方法

文档序号:15327673发布日期:2018-09-04 19:20阅读:244来源:国知局

本发明涉及一种催化型过滤器,用于从由强制点火内燃机排放的废气中过滤颗粒物质。



背景技术:

强制点火发动机使用火花点火来引起烃和空气混合物燃烧。与之相反,压缩点火发动机通过将烃注入到压缩空气中来引起烃燃烧。强制点火发动机可以通过汽油燃料,与包括甲醇和/或乙醇的含氧物共混的汽油燃料,液化石油气或者压缩天然气来提供燃料。

三元催化剂(TWC)典型地包含一种或多种铂族金属,特别是选自铂、钯和铑的那些。

TWC用来催化三种同时的反应:(i)将一氧化碳氧化成二氧化碳,(ii)将未燃烧的烃氧化成二氧化碳和水;和(iii)将氮氧化物还原成氮和氧。TWC接收来自于化学计量点或该点左右运行的发动机的废气时,这三种反应最有效地发生。作为本领域公知的,当汽油燃料在强制点火(例如火花点火)内燃机中燃烧时所排放的一氧化碳(CO)、未燃烧的烃(HC)和氮氧化物(NOx)的量主要受到燃烧汽缸中的空气-燃料比的影响。具有化学计量比平衡的组成的废气是这样的废气,其中氧化气体(NOx和O2)和还原气体(HC和CO)的浓度基本匹配。产生这种化学计量比平衡的废气组合物的空气-燃料比典型地为14.7:1。

理论上,应当可以实现化学计量比平衡废气组合物中的O2、NOx、CO和HC完全转化成CO2、H2O和N2(和残留的O2),并且这是TWC的任务。所以理想地,发动机应当以这样的方式运行,即燃烧混合物的空气-燃料比产生化学计量比平衡的废气组合物。

定义废气的氧化气体和还原气体之间的组成平衡的一种方式是该废气的lambda(λ)值,其可以根据式(1)来定义:

实际的发动机空气-燃料比/化学计量发动机空气-燃料比(1)

其中λ值为1代表化学计量比平衡的(或者化学计量的)废气组合物,其中λ值>1代表过量的O2和NOx,并且该组合物被描述为“贫的”,和其中λ值<1代表过量的HC和CO,并且该组合物被描述为“富的”。根据产生该空气-燃料比的废气组合物,将发动机所运行于的空气-燃料比称为“化学计量的”、“贫的”或“富的”,这在本领域也是通常的:因此是化学计量比运行的汽油发动机或贫燃汽油发动机。

应当理解,当废气组合物是贫化学计量比的时,使用TWC将NOx还原成N2是不太有效的。同样地,当废气组合物是富的时,该TWC不太能够氧化CO和HC。所以挑战是将流入TWC的废气的组成尽可能地保持为接近于化学计量组成。

当然,当发动机处于稳态时,相对容易确保空气-燃料比是化学计量的。但是,当发动机被用于驱动车辆时,根据驾驶者对发动机施加的负荷要求,所需燃料的量瞬间变化。这使得控制空气-燃料比以产生用于三元转化的化学计量的废气特别困难。实践中,空气-燃料比通过发动机控制单元来控制,其接收来自废气氧(EGO)(或λ)传感器的关于废气组成的信息:所谓的闭路反馈系统。这种系统的一个特征是空气-燃料比在化学计量(或控制设定)点稍富和稍贫之间振荡(或扰动),因为存在着与调整空气-燃料比有关的时滞。这种扰动的特征在于空气-燃料比的振幅和响应频率(Hz)。

典型的TWC中的活性组分包含铂和钯之一或之二与铑相组合,或者甚至仅钯(无铑),其负载在高表面积氧化物上,以及储氧组分。

当废气组合物是设定点稍微富时,需要少量的氧来消耗未反应的CO和HC,即使得该反应化学计量更大。相反,当废气稍贫时,需要消耗过量的氧。这通过开发储氧组分来实现,该组分在扰动过程中释放或吸收氧。现代TWC中最常用的储氧组分(OSC)是氧化铈(CeO2)或者含铈混合氧化物,例如Ce/Zr混合氧化物。

环境PM被大部分作者基于它们的空气动力学直径(空气动力学直径定义为与所测颗粒在空气中沉降速度相同的1g/cm3密度球体的直径)而分为以下类别:

(i)空气动力学直径小于10μm的PM-10颗粒;

(ii)直径小于2.5μm的细颗粒(PM-2.5);

(iii)直径小于0.1μm(或100nm)的超细颗粒;和

(iv)特征为直径小于50nm的纳米颗粒。

自从二十世纪九十年代中期以来,由内燃机排出的颗粒的粒度分布已经引起了越来越多的关注,这归因于细颗粒和超细颗粒可能的不利健康影响。PM-10微粒在环境空气中的浓度在美国受到法律管控。作为健康研究的结果,美国在1997年引入了新的、另外的用于PM-2.5的环境空气质量标准,所述研究指出了人的死亡率与小于2.5μm的细颗粒浓度之间的强相关性。

现在关注点已经转移到由柴油和汽油发动机所产生的纳米颗粒,这是因为相比于较大尺寸的颗粒,它们被认为能够更深地渗入人的肺部,并因此它们被相信比较大颗粒危害更大,该研究发现可以外推到2.5-10.0μm范围的微粒。

柴油微粒的尺寸分布具有公认的双峰特性,其对应于颗粒成核和积聚机理,并且相应的颗粒类型分别被称作成核模态(nuclei mode)和积聚模态(accumulation mode)(参见图1)。从图1中可见,在成核模态中,柴油PM包含众多具有非常小质量的小颗粒。几乎全部柴油微粒的尺寸明显小于1μm,即它们包含细颗粒(即处于1997美国法律下)、超细颗粒和纳米颗粒的混合物。

成核模态颗粒据信包含大部分挥发性冷凝物(烃、硫酸、硝酸等)并且包含小固体材料,例如灰分和碳。积聚模态颗粒被理解为包含固体(碳、金属灰分等),其与冷凝物和所吸附的材料(重质烃、硫物质、氮氧化物衍生物等)互混。粗模态(coarse mode)颗粒据信不在柴油燃烧方法中产生,并且可以通过如下机理来形成,例如来自发动机气缸壁、排气系统或者颗粒取样系统的微粒材料的沉积和随后的再夹带(re-entrainment)。这些模态之间的关系显示于图1中。

成核颗粒的组成会随着发动机运行条件、环境条件(特别是温度和湿度)、稀释和取样系统条件而变化。实验室研究和理论已经显示大部分成核模态形成和生长发生在低稀释比范围内。在这个范围中,挥发性颗粒前体如重质烃和硫酸的气体向颗粒转化,使得成核模态同时成核和生长,以及在积聚模态中吸附到现有颗粒上。实验室测试(参见例如SAE 980525和SAE 2001-01-0201)已经显示,随着空气稀释温度降低,成核模态的形成剧烈增加,但是在湿度是否具有影响方面存在着相矛盾的证据。

通常,低温、低稀释比、高湿度和长停留时间有利于纳米颗粒形成和生长。研究已经显示,纳米颗粒主要由挥发性材料如重质烃和硫酸组成,并且仅在非常高负荷有固体部分的证据。

相反,在稳态运行中发动机排出的汽油微粒的尺寸分布显示了单峰分布,具有约60-80nm的峰(参见例如SAE 1999-01-3530中的图4)。通过与柴油尺寸分布相比,汽油PM主要是超细的,具有可以忽略的积聚模态和粗模态。

在柴油微粒过滤器中对柴油微粒进行微粒收集是基于使用多孔阻挡层从气相中分离气载(gas-borne)微粒的原理。柴油机过滤器可以定义为深床过滤器和/或表面型过滤器。在深床过滤器中,过滤器介质的平均孔尺寸大于所收集的颗粒的平均直径。颗粒通过深度过滤机理的组合沉积到介质上,该组合包括扩散沉积(布朗运动)、惯性沉积(碰撞)和流线拦截(布朗运动或惯性)。

在表面型过滤器中,过滤器介质的孔直径小于PM的直径,因此PM通过筛分来分离。分离通过所收集的柴油PM本身的积累来进行,该积累通常被称作“滤饼”和该过程被称作“饼滤”。

应当理解,柴油微粒过滤器例如陶瓷壁流式整料可以通过深度和表面过滤的组合来工作:当深度过滤能力饱和以及微粒层开始覆盖过滤表面时,在较高的烟灰负载量时形成滤饼。深度过滤的特征在于相比于饼滤稍低的过滤效率和较低的压力降低。

本领域中用于从气相中分离汽油PM所提出的其他技术包括涡流回收。

从2014年9月1日起的欧洲排放法规(Euro 6)要求控制由柴油和汽油(强制点火)客车排放的颗粒数。对于汽油欧洲轻型车辆,可允许的限度是:1000mg/km一氧化碳;60mg/km氮氧化物(NOx);100mg/km总烃(其中≤68mg/km是非甲烷烃);和4.5mg/km颗粒物质((PM),仅用于直接喷射式发动机)。Euro 6PM标准将在多年内逐步采用,并且从2014年初起该标准设定为6.0×1012/km(Euro 6)和从2017年初起该标准设定为6.0×1011/km(Euro 6+)。

应当理解,美国联邦LEV III标准对2017-2021年的US FTP周期已经设定了3mg/英里的质量限度(目前是10mg/英里)。该限度从2025年开始进一步收紧到1mg/英里,不过该降低的标准的执行可能从2022年开始。

新Euro 6(Euro 6和Euro 6+)排放标准提出了许多挑战性设计问题,来满足汽油排放标准。具体地,如何设计过滤器或者包括过滤器的排气系统,用于降低PM汽油(强制点火)排放值,同时仍然满足非PM污染物例如氮氧化物(NOx)、一氧化碳(CO)和未燃烧的烃(HC)中一种或多种的排放标准,全部处于可接受的背压,例如在欧洲行驶周期上通过最大周期内背压所测量的。

可以想到,对于三元催化的微粒过滤器来说,为了满足Euro 6PM数标准最小颗粒降低率相对于等价的流通式催化剂为≥50%。此外,虽然三元催化的壁流式过滤器相对于等价的流通式催化剂的一些背压增加是不可避免的,但是在我们的经验中,对于大部分客车来说,在MVEG-B行驶周期上的峰值背压(来自于“新鲜的”三次测试的平均值)应当限制于<200毫巴,例如<180毫巴,<150毫巴和优选<120毫巴例如<100毫巴。

WO2011/077139公开了一种NOx阱,其包含这样的组分,该组分包含至少一种铂族金属,至少一种NOx储存材料和松散的二氧化铈或松散的含铈混合氧化物(其均匀沉积在蜂窝状基底整料上的第一层中),该在第一层中均匀沉积的组分具有第一上游区(其具有相对于第二下游区增加的活性,用于氧化烃和一氧化碳),和第二下游区(其具有相对于第一上游区增加的活性,以在脱硫事件过程中产生热),其中第二下游区包含稀土氧化物的分散体,其中该稀土氧化物在第二下游区中的负载量(单位g in-3)大于第一上游区中稀土氧化物的负载量。

WO2011/110919公开了一种柴油发动机后处理系统,其包括具有排气集管和与该排气集管直接相连的过滤器基底(没有任何插入催化剂)的柴油发动机,其中该过滤器基底在它的入口侧上包含SCR催化剂(其掺入了非焦化分子筛)。

该新排放标准将强制使用用于过滤由强制点火内燃机排放的废气中的颗粒物质的过滤器。但是,因为这种颗粒物质的尺寸远小于柴油发动机排放的颗粒物质,因此该设计挑战是过滤来自于强制点火废气的颗粒物质,但是处于可接受的背压。



技术实现要素:

现在已经发现一种催化用于车辆强制点火发动机的排气系统中的过滤器的方式,由此与单独的过滤器和催化剂基底部件相比,降低了排气系统部件的总体积(其特别是对于客车车辆是重要的,因为这里空间会是受限的),但是其具有相对于均匀涂覆的催化型过滤器降低的背压,即具有经由入口端和出口端二者以相同的载体涂层(washcoat)负载量施涂的涂层。

根据一方面,本发明提供一种强制点火发动机,其包括排气系统,该排气系统包括催化型过滤器,用于从由强制点火内燃机排放的废气中过滤颗粒物质,该过滤器包括具有总基底长度和具有入口表面和出口表面的多孔基底,其中该入口表面通过含有第一平均孔尺寸的孔的第一多孔结构与该出口表面隔开,其中该多孔基底涂覆有载体涂层组合物,该载体涂层组合物是包含至少一种贵金属的NOx吸收剂催化剂载体涂层组合物;或者选择性催化还原(SCR)催化剂载体涂层组合物,其中经载体涂层涂覆的多孔基底的第二多孔结构含有第二平均孔尺寸的孔,其中第二平均孔尺寸小于第一平均孔尺寸,该NOx吸收剂催化剂载体涂层或SCR催化剂载体涂层作为第一区和第二区轴向布置在该多孔基底上,第一区包括第一基底长度的该入口表面,第一基底长度小于总基底长度,和第二区包括第二基底长度的该出口表面,第二基底长度小于总基底长度,其中第一区中的基底长度和第二区中的基底长度之和≥100%,其中

(i)第一区中的载体涂层负载量>第二区;或者

(ii)当该载体涂层组合物是NOx吸收剂催化剂载体涂层组合物时,第一区中的载体涂层负载量和总贵金属负载量均>第二区,

和其中第一区位于第二区上游。

对于在特征(i)中的载体涂层负载量和总贵金属负载量(但是没有在特征(i)的定义中具体提及),这种特征同样适用于入口表面和出口表面之间。因此,例如因为特征(i)仅定义了载体涂层负载量,所以在NOx吸收剂催化剂中的总贵金属负载量在第一区和第二区二者中是基本相同的(均匀的)。

平均孔尺寸可以通过水银孔隙率法来测定。

NOx吸收剂催化剂(NAC)例如从美国专利5,473,887中已知,且经设计以从贫燃废气(λ>1)中吸附氮氧化物(NOx)并在废气中氧浓度降低时解吸该NOx。解吸的NOx可以用适合的还原剂(例如汽油燃料)还原成N2,该还原剂用NAC自身或者位于NAC下游的催化剂组分(例如铑)进行助催化。在实践中,能够间歇地根据计算的NAC剩余NOx吸附容量将对氧浓度的控制调节到所需的氧化还原组成,例如比正常发动机运行操作更富(但仍贫于化学计量的或λ=1的组成)、化学计量的或富化学计量的(λ<1)。氧浓度可以通过多种手段调节,例如节流,将另外的烃燃料注入发动机汽缸(例如在排气冲程过程中)或者将烃燃料直接注入发动机集管下游的废气。

典型的NAC配方包含催化氧化组分(例如铂),显著量(即明显大于作为助催化剂(例如TWC中的助催化剂)所需的量)的NOx储存组分(例如钡或二氧化铈(CeO2)),和还原催化剂(例如铑)。对于该配方来说,用于从贫废气中储存NOx通常的机理为:

NO+1/2O2→NO2 (2);和

BaO+NO2+1/2O2→Ba(NO3)2 (3),

其中在反应(2)中,一氧化氮与氧在铂上的活性氧化位上反应生成NO2。反应(3)包括由储存材料以无机硝酸盐的形式来吸附NO2。

在较低的氧浓度和/或升高的温度时,该硝酸盐物质变得热力学不稳定并分解,依照下面的反应(4)生成NO或NO2。在适合的还原剂存在下,这些氮氧化物随后被一氧化碳、氢和烃还原成N2,这可以在还原催化剂上发生(参见反应(5))。

Ba(NO3)2→BaO+2NO+3/2O2或Ba(NO3)2→BaO+2NO2+1/2O2 (4);和

NO+CO→1/2N2+CO2 (5);

(其他反应包括Ba(NO3)2+8H2→BaO+2NH3+5H2O,然后

NH3+NOx→N2+yH2O或2NH3+2O2+CO→N2+3H2O+CO2等)。

在上面的反应(2)-(5)中,活性钡物质作为氧化物提供。然而,应当理解在空气存在下,大部分钡为碳酸盐或者可能为氢氧化物的形式。本领域技术人员可以调整上面的反应方案,由此用于氧化物之外的钡物质,和废气流中的催化涂覆顺序,和包含用于NOx吸收的任何其他碱土金属、碱金属或镧系元素。

涂覆在蜂窝流通式整料基底上的现代NOx吸收剂催化剂典型地以分层布置来布置。但是,施用到过滤器基底上的多层会产生背压问题。因此,如果用于本发明的NOx吸收剂催化剂是“单层”NOx吸收剂催化剂,则是非常优选的。特别优选的“单层”NOx吸收剂催化剂包含负载在二氧化铈-氧化锆混合氧化物或者任选稳定化的氧化铝(例如用二氧化硅或氧化镧或其他稀土元素稳定化)上的第一组分铑,并组合第二组分(其负载铂和/或钯)。第二组分包括铂和/或钯,其负载在基于氧化铝的高表面积载体上和粒状“松散的”二氧化铈(CeO2)组分上,即不是负载在微粒载体上的可溶性二氧化铈,而是“松散的”二氧化铈,其能够负载原样的Pt和/或Pd。除了铂和/或钯之外,粒状二氧化铈包含NOx吸收剂组分并负载碱土金属和/或碱金属,优选钡。该基于氧化铝的高表面积载体可以是铝酸镁例如MgAl2O4。

优选的“单层”NAC组合物包含铑和铂和/或钯载体组分的混合物。这些组分可以单独制备,即在将它们在混合物中合并之前预成形,或者铑、铂和钯盐和载体和其他组分可以合并,并且铑、铂和钯组分优先水解以沉积到所需载体上。

SCR催化剂可以选自以下的至少一种:Cu、Hf、La、Au、In、V、镧系元素和第VIII族过渡金属例如Fe,其负载在难熔氧化物或分子筛上。适合的难熔氧化物包括Al2O3、TiO2、CeO2、SiO2、ZrO2和含有其两种或更多种的混合氧化物。非沸石催化剂还可以包括氧化钨,例如V2O5/WO3/TiO2、WOx/CeZrO2、WOx/ZrO2或Fe/WOx/ZrO2。

在具体的实施方案中,SCR催化剂载体涂层包含至少一种分子筛,例如铝硅酸盐沸石或SAPO。该至少一种分子筛可以例如是小孔、中孔或大孔分子筛。这里“小孔分子筛”表示含有最大环尺寸为8的分子筛,例如CHA;这里“中孔分子筛”表示含有最大环尺寸为10的分子筛,例如ZSM-5;和这里“大孔分子筛”表示具有最大环尺寸为12的分子筛,例如β。小孔分子筛对于在SCR催化剂中使用是潜在有利的,参见例如WO2008/132452。

用于本发明的SCR催化剂的具体分子筛是合成铝硅酸盐沸石分子筛,其选自AEI、ZSM-5、ZSM-20、ERI(包括ZSM-34)、丝光沸石、镁碱沸石、BEA(包括β)、Y、CHA、LEV(包括Nu-3)、MCM-22和EU-1,优选AEI或CHA,和二氧化硅-氧化铝之比是约10-约50,例如约15-约40。

在还原剂是含氮还原剂(所谓的“NH3-SCR”)的情况中,特别关注的金属选自Ce、Fe和Cu。适合的含氮还原剂包括氨。氨可以原位产生,例如在位于过滤器上游的NAC的富再生过程中或者通过TWC与发动机来源的富废气接触(参见上文反应(4)和(5)的替代)。可选地,含氮还原剂或其前体可以直接注入废气中。适合的前体包括甲酸铵、尿素和氨基甲酸铵。前体分解为氨和其他副产物可以通过水热水解或催化水解来进行。

多孔基底优选是整料基底,可以是金属,例如烧结的金属,或者陶瓷,例如碳化硅、堇青石、氮化铝、氮化硅、钛酸铝、氧化铝、莫来石例如针状莫来石(参见例如WO01/16050)、铯榴石、金属陶瓷(thermet)例如Al2O3/Fe、Al2O3/Ni或B4C/Fe,或者包含其任意两种或更多种片段的复合物。在一个优选的实施方案中,过滤器是壁流式过滤器,其包括具有多个入口通道和多个出口通道的陶瓷多孔过滤器基底,其中每个入口通道和每个出口通道部分地通过多孔结构的陶瓷壁来限定,其中每个入口通道通过多孔结构的陶瓷壁与出口通道隔开。这种过滤器布置也公开在SAE 810114中,并且可以在该文献中参考进一步的细节。可选地,过滤器可以是泡沫体,或者所谓的部分过滤器,例如EP1057519或WO01/080978中公开的那些。

本发明一个具体特征是第一上游区所用的载体涂层负载量可以高于以前所认为的最高载体涂层负载量,例如公开在WO2010/097634的实施例中的那些。在一种具体的实施方案中,第一区中的载体涂层负载量>1.60g in–3,和在优选的实施方案中,第一区中的载体涂层负载量>2.4g in–3。但是,优选第一区的载体涂层负载量≤3.0g in-3

在根据本发明第一方面根据特征(i)或(ii)的一个优选的实施方案中,第二区中的载体涂层负载量是0。与第一区中相对高的贵金属负载量和/或第一区中>1.6g in-3的相对高的载体涂层负载量相组合,该优选的实施方案有益地将良好的三元催化剂活性与低背压相组合。

在本发明的催化型过滤器中,第一区中的基底长度和第二区中的基底长度之和≥100%,即,在入口表面上的第一区和出口表面上的第二区之间在轴向上没有间隙,或者存在轴向交叠。

在入口和出口表面涂层之间的轴向交叠长度可以>10%,例如10-30%,即第一区中的基底长度和第二区中的基底长度之和>110%,例如110-130%。

第一区中的基底长度可以与第二区相同或不同。因此,在第一区长度与第二区长度相同的情况中,多孔基底以1:1的比率在入口表面和出口表面之间涂覆。但是,在一个实施方案中,第一区中的基底长度<第二区中的基底长度。

在实施方案中,第一区中的基底长度<第二区中的基底长度,例如<45%。在优选的实施方案中,第一区中的基底区长度<总基底长度的40%,例如<35%。

在特征(ii)或(iii)的催化型过滤器中,第一区中的总贵金属负载量>第二区中的总贵金属负载量。在特别优选的实施方案中,第一区中的总贵金属负载量>50g ft-3,但是优选60-250g ft-3,和典型地是70-150g ft-3。第二区中的总贵金属负载量可以例如<50g ft-3,例如<30g ft-3,例如<20g ft-3

在优选的实施方案中,第一区和第二区包括表面载体涂层,其中载体涂层基本上覆盖多孔结构的表面孔,并且载体涂层涂覆的多孔基底的孔部分地通过载体涂层中的颗粒之间的空间限定(颗粒间孔)。制造表面涂覆的多孔过滤器基底的方法包括将聚合物例如聚乙烯醇(PVA)引入多孔结构中,将载体涂层施用到包含聚合物的多孔过滤器基底上并干燥,然后煅烧涂覆的基底以烧掉聚合物。图2中显示了第一实施方案的示意图。

涂覆多孔过滤器基底的方法是本领域技术人员已知的,并且包括但不限于WO99/47260中公开的方法,即涂覆整料载体的方法,其包括步骤:(a)将容纳装置放在载体上面,(b)将预定量的液体组分计量添加到所述容纳装置中,以先(a)后(b)或者先(b)后(a)的顺序,和(c)通过施加压力或真空,将所述液体组分抽入载体的至少一部分中,和将基本上全部的所述量保持在载体内。在用任选的烧制/煅烧来干燥第一涂层后,可以从整料载体的另一端重复这些方法步骤。

可选地,可以使用WO2011/080525中公开的方法,即包括步骤:(i)保持蜂窝整料基底基本上竖直;(ii)将预定体积的液体经由基底下端的通道的开放端引入基底中;(iii)将所引入的液体密封保留在基底内;(iv)反转含有所保留的液体的基底;和(v)在反转的基底的下端将真空施加到基底通道的开放端,以将液体沿着基底通道牵引。

在该优选的实施方案中,多孔载体涂层的平均颗粒间孔尺寸是5.0nm-5.0μm,例如0.1-1.0μm。

如上文所述,用于本发明第一方面的NOx吸收剂催化剂载体涂层组合物或SCR催化剂载体涂层组合物通常包含固体颗粒。在实施方案中,载体涂层固体颗粒的平均尺寸(D50)是1-40μm。

在另外的实施方案中,载体涂层固体颗粒的D90是0.1-20μm。

D50和D90测量通过激光衍射粒度分析,使用Malvern Mastersizer 2000来获得,其是一种基于体积的技术(即D50和D90也可以称作DV50和DV90(或D(v,0.50)和D(v,0.90)),并且应用数学Mie理论模型来测定粒度分布。稀释的载体涂层样品通过超声波在35瓦在无表面活性剂的蒸馏水中处理30秒来制备。

优选多孔基底是整料基底。在特别优选的实施方案中,用于本发明的多孔基底是陶瓷壁流式过滤器,其由例如堇青石或碳化硅或上述任何其他材料制成。但是,不同于流通式整料的基底整料可以根据需要来使用,例如部分过滤器(参见例如WO01/080978或EP1057519)、金属泡沫基底等。

在实际使用中的柴油壁流式过滤器的孔密度可以与用于本发明中的壁流式过滤器不同,在于柴油壁流式过滤器的孔密度通常是300个孔/平方英寸(cpsi)或者更低,例如100或200cpsi,以使得相对更大的柴油PM组分可以进入过滤器的入口通道,而不影响柴油微粒过滤器的实心正面,由此在到开放通道的通路上结块和结垢,而用于本发明中的壁流式过滤器可以是高至300cpsi或更大,例如350cpsi,400cpsi,600cpsi,900cpsi或者甚至1200cpsi。

使用较高孔密度的一个优点是过滤器相比于柴油微粒过滤器可以具有降低的横截面例如直径,这是一个有用的实际优点,其增加将排气系统置于车辆上的设计选项。

将理解的是,用于本发明中的过滤器的益处基本上独立于未涂覆的多孔基底的孔隙率。孔隙率是多孔基底中空隙空间百分比的度量,并且与排气系统中的背压有关:通常,孔隙率越低,背压越高。但是,用于本发明的过滤器中的孔隙率典型地>40%或>50%,并且可以有利地使用45-75%例如50-65%或55-60%的孔隙率。载体涂层涂覆的多孔基底的平均孔尺寸对于过滤是重要的。因此,具有相对高孔隙率的多孔基底也可能是差的过滤器,这是因为平均孔尺寸也是相对高的。

在实施方案中,例如多孔过滤器基底的多孔结构的表面孔的第一平均孔尺寸是8-45μm,例如8-25μm,10-20μm或10-15μm。在具体实施方案中,第一平均孔尺寸>18μm,例如是15-45μm,20-45μm,例如20-30μm,或25-45μm。

在一个优选的实施方案中,强制点火发动机的排气系统包括流通式整料基底,其包含位于催化型过滤器上游的三元催化剂组合物。该发动机经配置以间歇地富运行,例如以再生NOx吸收剂催化剂的NOx吸收能力,并且与TWC和/或NOx吸收剂接触的富废气可以原位产生氨以用于在包含SCR催化剂(优选上文公开的任何优选的SCR催化剂)的下游蜂窝状基底上还原NOx。

在另一优选的实施方案中,过滤器用NOx吸收剂催化剂载体涂层催化,并且包含SCR催化剂(优选上文公开的任何优选的SCR催化剂)的蜂窝状基底位于该过滤器的下游。发动机的间歇富运行,例如以再生NOx吸收剂催化剂的NOx吸收能力,可以在TWC或NOx吸收剂上原位产生氨,用于在下游SCR催化剂上还原NOx。

即,本发明的强制点火发动机的排气系统可以包括一系列的整料基底,其在流动方向上从上游到下游如下来布置:(i)在流通式整料基底上的TWC,随后是根据本发明第一方面的包含SCR催化剂的过滤器基底,其中发动机经配置以间歇地富运行,以由此在TWC组分上原位产生氨;(ii)在流通式整料基底上的NOx吸收剂催化剂,随后是根据本发明第一方面的包含SCR催化剂的过滤器基底,其中发动机经配置以间歇地富运行,以由此在NOx吸收剂催化剂组分上原位产生氨;(iii)在根据本发明第一方面的过滤器基底上的NOx吸收剂催化剂,随后是包含SCR催化剂的蜂窝状基底,其中发动机经配置以间歇地富运行,以由此在NOx吸收剂催化剂组分上原位产生氨;(iv)与(ii)相同,不过流通式整料基底上的TWC位于流通式整料基底上的NOx吸收剂催化剂的上游,其中氨可以在TWC组分和NOx吸收剂催化剂组分二者上原位产生;和(v)与(iii)相同,不过流通式整料基底上的TWC位于根据本发明第一方面的过滤器上的NOx吸收剂催化剂的上游,其中氨可以在TWC组分和NOx吸收剂催化剂组分二者上原位产生。

包含SCR催化剂的排气系统需要含氮还原剂以助催化NOx还原反应,即有效地,含氮还原剂应当存在于流入SCR催化剂的废气中。如前段所述,在某些优选的实施方案中,这种含氮还原剂例如氨通过TWC和/或NOx吸收剂催化剂组分与富废气原位接触来产生。但是,对于原位产生氨而言可选地或另外地,在其他优选的实施方案中,排气系统包括注射器,用于将含氮还原剂前体例如尿素注入SCR催化剂组分上游的废气中。这种注射器流体连接到这种含氮还原剂前体的源上,例如其槽上,并且通过适当编程的发动机管理装置和由监控相关废气组成的传感器提供的闭路或开路反馈,来调控进入废气流中的前体的阀控剂量。

用于本发明的该方面的强制点火内燃机,例如火花点火内燃机,可以通过汽油燃料、与包括甲醇和/或乙醇的含氧物共混的汽油燃料,液化石油气或者压缩天然气来提供燃料。

根据第二方面,本发明提供一种同时转化强制点火内燃机废气中的氮氧化物和颗粒物质的方法,该方法包括将该气体与催化型过滤器接触的步骤,该催化型过滤器包括具有总基底长度和具有入口表面和出口表面的多孔基底,其中该入口表面通过含有第一平均孔尺寸的孔的多孔结构与该出口表面隔开,其中该多孔基底涂覆有载体涂层组合物,该载体涂层组合物是包含至少一种贵金属的NOx吸收剂催化剂的载体涂层组合物;或者选择性催化还原(SCR)催化剂载体涂层组合物,其中经载体涂层涂覆的多孔基底的多孔结构含有第二平均孔尺寸的孔,其中第二平均孔尺寸小于第一平均孔尺寸,该NOx吸收剂催化剂载体涂层或SCR催化剂载体涂层作为第一区和第二区轴向布置在该多孔基底上,第一区包括第一基底长度的该入口表面,第一基底长度小于总基底长度,和第二区包括第二基底长度的该出口表面,第二基底长度小于总基底长度,其中第一区中的基底长度和第二区中的基底长度之和≥100%,其中:

(i)第一区中的载体涂层负载量>第二区;或者

(ii)当该载体涂层组合物是NOx吸收剂催化剂载体涂层组合物时,第一区中的载体涂层负载量和总贵金属负载量均>第二区,

其中该气体先接触第一区,后接触第二区。

附图说明

为了能够更充分地理解本发明,参考附图,其中:

图1的图显示了柴油发动机废气中PM的尺寸分布。作为对比,汽油尺寸分布显示在SAE 1999-01-3530的图4中;

图2是本发明的载体涂层涂覆的多孔过滤器基底的一个实施方案的示意图;和

图3是本发明的排气系统的一个实施方案的示意图。

具体实施方式

图2显示了穿过包含表面孔12的多孔过滤器基底10的横截面。图2显示了一个实施方案,其特征是包含载体涂层固体颗粒的多孔表面载体涂层14,限定孔的颗粒之间的空间(颗粒间孔)。可以看到,载体涂层14基本上覆盖了多孔结构的孔12,并且颗粒间孔16的平均孔尺寸小于多孔过滤器基底10的平均孔尺寸12。

图3显示了本发明的设备11,其包括车辆强制点火发动机13和用于其的排气系统15。排气系统15包括管道17,其连接催化后处理组分,即Pd-Rh基TWC,其涂覆到位于接近发动机的废气集管(所谓的紧连接(close coupled)位置)的惰性堇青石流通式基底18上。该紧连接催化剂18下游依次是分区的CuCHA SCR催化剂,其涂覆到堇青石壁流式过滤器20上,该过滤器具有总长度,并且包含涂覆到从该壁流式过滤器上游或入口端开始测量的总长度的三分之一长度的入口通道,并且载体涂层负载量是2.8g in-3,该涂层限定了第一区22。出口通道涂覆有CuCHA SCR催化剂,其涂覆到从该壁流式过滤器下游或出口端开始测量的壁流式过滤器总长度的三分之二长度上,并且载体涂层负载量是1.0g in-3,该涂层限定了第二区24。发动机管理装置(未示出)间歇地富运行,即处于“富峰”型模式,由此以将上游TWC与富废气接触,和原位产生氨和其他重整的含氮还原剂物质,和促进下游SCR催化剂上NOx的转化。

为了更充分地理解本发明,仅作为示例,提供了以下实施例。该实施例不是根据本发明。但是,全部三个实施例说明了在降低的背压,与参比催化剂相比,用类似量的催化剂负载过滤器的原则。实施例2与NOx吸收剂催化剂实施方案相关,其中第一上游区具有比第二下游区更高的铂族金属负载量,在烃点火温度(其也是NOx吸收剂催化剂活性的重要方面)和背压二者中改进。实施例中所述的载体涂层负载量使用WO2011/080525公开的方法获得。

实施例

实施例1

用TWC组合物以彼此不同的构造形式分别涂覆两个堇青石壁流式过滤器,过滤器的尺寸是4.66×5.5英寸,300个孔/平方英寸,壁厚度是千分之12英寸,并且平均孔尺寸是20μm和孔隙率是65%。在每种情况中,将该TWC组合物研磨到d90<17μm,以使得该涂料当施涂时将预期优先更多地位于壁流式过滤器壁表面(“壁上”)。

第一过滤器(在表1中称作具有“均匀的”载体涂层负载量)在具有TWC载体涂层区(该区延伸到从开口通道端开始测量的过滤器基底总长度的目标33.3%)的打算用于过滤器入口侧的通道中,其具有包含贵金属负载量85g/ft3(80Pd:5Rh)的载体涂层,载体涂层负载量是2.4g/in3。出口通道涂覆到过滤器基底从开口通道端开始测量的总长度的66.6%的长度,其具有包含贵金属负载量18g/ft3(16Pd:2Rh)的载体涂层,载体涂层负载量也是2.4g/in3。使用X射线成像来确保在入口通道区和出口通道区之间的纵切面上发生重叠。因此,载体涂层负载量在第一区和第二区之间是均匀的,但是第一区中的铂族金属负载量>第二区。

第二过滤器(在表1中称作具有“分区的”载体涂层负载量)在具有TWC载体涂层区(该区延伸到从开口通道端开始测量的过滤器基底总长度的目标33.33%)的入口通道中,其具有包含贵金属负载量85g/ft3(80Pd:5Rh)的载体涂层,载体涂层负载量是2.8g/in3。出口通道涂覆到过滤器基底从开口通道端开始测量的总长度的66.66%的长度,其具有包含贵金属负载量18g/ft3(16Pd:2Rh)的载体涂层,载体涂层负载量是1.0g/in3。使用X射线成像来确保在入口通道区和出口通道区之间的纵切面上发生重叠。因此,第一区中的载体涂层负载量和铂族金属负载量均>第二区。

第一和第二过滤器的总贵金属含量相同。

将每个过滤器在1100℃水热炉老化4小时,并且安装在具有2.0L直接喷射式汽油发动机的Euro 5客车的紧连接位置上。在最小的三个MVEG-B行驶周期上评价每个过滤器,测量相对于参比催化剂的排放物颗粒数的减少。该参比催化剂是均匀涂覆到600孔/平方英寸堇青石流通式基底整料(具有与第一和第二过滤器相同的尺寸)上的TWC,并且载体涂层负载量是3g in-3和贵金属负载量是33g ft-3(30Pd:3Rh)。测定安装在过滤器上游和下游的传感器之间(或参比催化剂)的背压差。

在欧洲,从2000年开始(Euro 3排放标准),在新欧洲行驶周期(NEDC)上测量排放物。这由四个重复的在先ECE15行驶周期加上一个额外的城市驾驶(EUDC)周期组成,并且在开始排放物取样之前没有40秒的预热时间。这种改变的冷启动测试也称作“MVEG-B”行驶周期。全部排放物以g/km表示。

Euro 5/6现行法规引入了由UN/ECE微粒测量程序(PMP)所开发的新的PM物质排放测量方法,其调节了PM物质排放限度,以说明在使用老方法和新方法的结果中的差异。除了基于物质的限度之外,Euro 5/6法规还引入了颗粒数排放限度(PMP方法)。

表1显示了测试结果,从中可以看出相对于均匀载体涂层涂覆的过滤器,以分区构造载体涂层涂覆的过滤器表现出改进的背压和具有良好的颗粒数降低水平(不过是中等降低)。虽然产生了较低的颗粒数减少中的适度减少,但是第二过滤器仍然满足完全Euro 6+(2017)标准限度。

表1载体涂层分区对于颗粒数减少和背压(BP)的影响

实施例2

用TWC组合物以彼此不同的构造形式分别涂覆两个堇青石壁流式过滤器,过滤器的尺寸是4.66×4.5英寸,300个孔/平方英寸,壁厚度是千分之12英寸,并且平均孔尺寸是20μm和孔隙率是65%。在每种情况中,将该TWC组合物研磨到d90<17μm,以使得该涂料当施涂时将预期优先更多地位于壁流式过滤器壁表面(“壁上”)。

第三过滤器(在表2中称作具有“均匀的”铂族金属负载量(对比例))在具有TWC载体涂层区(该区延伸到从开口通道端开始测量的过滤器基底总长度的目标50%)的打算用于过滤器入口侧的通道中,其具有包含贵金属负载量60g ft-3(57Pd:3Rh)的载体涂层,载体涂层负载量是2.4g/in3

第四过滤器(在表2中称作具有“分区的”PGM负载量)在具有TWC载体涂层区(该区延伸到从开口通道端开始测量的过滤器基底总长度的目标50%)的打算用于过滤器入口侧的通道中,其具有包含100g/ft-3贵金属(97Pd:3Rh)的载体涂层,载体涂层负载量是2.4g/in3;并且出口通道用从开口通道端开始测量的过滤器基底总长度的目标50%延伸的TWC载体涂层区涂覆,其具有包含20g/ft-3贵金属(17Pd:3Rh)的载体涂层,载体涂层负载量也是2.4g/in3

第三和第四过滤器的总贵金属含量相同。

将每个过滤器在1100℃水热炉老化4小时,并且安装在具有1.4L直接喷射式汽油发动机的Euro 5客车的紧连接位置上。在最小的三个MVEG-B行驶周期上评价每个过滤器,测量相对于参比催化剂的排放物颗粒数的减少。还以与实施例1中所述相同的方式评价峰值背压(BP)。

烃点火温度(催化剂以50%或更高的效率催化进料气体中的烃转化时的温度)在安装在实验室测试室中的单独的发动机上评价。该发动机是2.0升涡轮增压的直接喷射式汽油发动机。仔细控制废气温度,并且在给定时间内,通过使用温度散热器和增加节流位置的组合增加250-450℃,在此期间,测量和报告该催化剂的转化效率。

表2中显示了在过滤器基底上分区涂覆贵金属的结果,从中可以看出,如同用两个过滤器之间相同的载体涂层负载量所预期的那样,%颗粒数减少与流通式参比催化剂(均匀的60g ft-3贵金属含量(57Pd:3Rh),3g in-3均匀载体涂层负载量,在具有与第三和第四过滤器相同尺寸的600孔/平方英寸堇青石整料基底上)相同。但是,均匀PGM构造相对于分区构造的烃点火更高。这可以归因于在入口侧上较高的PGM浓度。

表2 PGM分区对于点火温度的影响

实施例3

用TWC组合物以彼此不同的构造形式分别涂覆两个堇青石壁流式过滤器,过滤器的尺寸是4.66×5.5英寸,300个孔/平方英寸,壁厚度是千分之12英寸,并且平均孔尺寸是20μm和孔隙率是65%。第一参比过滤器用相同的三元催化剂载体涂层,以40g/ft3总铂族金属和总共1.6g/in3载体涂层负载量均匀地分区涂覆到从入口端开始的总过滤器长度的50%长度和从出口端开始的总过滤器长度的50%长度。根据本发明的第二过滤器用相同的三元催化剂载体涂层分区涂覆到参比实施例中所用的那些,到从入口端开始的过滤器总长度的50%长度。该出口端区保持没有任何载体涂层。第一入口区中的总铂族金属负载量是80g/ft-3,载体涂层负载量是2.4g/in-3,即铂族金属负载量在参比实施例和本发明的过滤器之间相同。

将每个经涂覆的过滤器在10%水/空气中在950℃水热炉老化5小时。每个零件的冷流背压是在室温,使用背压实验室测试设备在室温和压力抽吸空气来测量。结果在下表中给出,从中可以看出对于所测试的流速范围内的结果,对于相同的贵金属负载量,参比实施例所产生的背压明显高于本发明的过滤器。

表3比较本发明的过滤器与参比实施例,所提出的冷流背压(毫巴)相对于流量(m3/h)数据

为了避免任何疑义,这里所提及的全部现有技术文献的整个内容在此引入作为参考。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1