操作汽车系统的方法与流程

文档序号:12258566阅读:218来源:国知局
操作汽车系统的方法与流程
本公开涉及一种操作汽车系统的方法。
背景技术
:传统的内燃机配备有排气后处理系统。在柴油发动机的情况下,后处理系统的一个功能在于NOX排放的处理,考虑到当前和未来立法要求将NOX的量达到非常严格的排放目标。已经提出了多种后处理系统以达到这种目标,其中一种是包括在SCRF上游的稀燃NOX捕集器的后处理系统。如已知的,稀燃NOX捕集器(LNT)是用于降低氮氧化物(NO和NO2)的装置,并且是涂覆有包含沸石的特殊涂层的催化转化器支撑物,而SCRF是涂覆在多孔DPF(柴油颗粒过滤器)上的被动SCR(选择性催化还原)催化剂。稀燃NOX捕集器(LNT)受制于周期性再生过程以释放和减少从LNT捕集的氮氧化物(NOX)。为了进行再生过程(也被称为DeNOX再生),稀燃NOX捕集器(LNT)循环地操作,例如通过将发动机从稀薄燃烧操作转换到富燃操作。已知的LNT控制策略设计为将LNT的DeNOX再生管理作为排气中的空燃比(也称为λ)的函数。特别地,已知的策略在如果LNTNOX转换效率低于其预定的阈值时(即如果存储在LNT中的NOX的量大于预定的阈值)请求DeNOX再生。一旦请求,当验证到λ信号的临界点时(即在LNT出口处的空燃比低于在LNT入口处的空燃比的时刻),DeNOX再生过程结束。还已知的是,LNT能够在再生过程期间生成氨(NH3)。氨由在LNT下游的SCRF使用以改善总的NOX转化效率。技术实现要素:根据本公开,提供了一种提高总的NOX转化效率的策略。本发明的实施例提供了一种操作汽车系统(例如,乘用车)的方法,所述汽车系统配备有内燃机(例如柴油发动机)、并且配备有排气后处理系统,所述排气后处理系统包括稀燃NOX捕集器(LNT),所述稀燃NOX捕集器在选择性催化还原洗涂颗粒过滤器(SCRF)的上游并且可能紧密联接到所述选择性催化还原洗涂颗粒过滤器。LNT的入口温度通过温度传感器进行测量而监测。代表存储在LNT中的NOX的量的参数被监测,所述监测可通过专用的NOX传感器进行测量而实现。相关于LNT入口温度和存储在LNT中的NOX的量的映射图与诸如ECU的控制器一起使用,以估算在LNT再生过程中生成的氨的量。如果所估算的氨的量大于其阈值,则进行LNT再生过程。所述提出的策略能够当LNT能够生成大量氨时触发内燃机的工作状态中的富燃DeNOX过程。然而在SCRF中的大量的氨增加了总体NOX的转化效率。根据本发明的实施例,LNT再生过程在LNT入口处的空燃比处于预定值时进行。所述实施例的效果在于,取决于汽车系统的状态,可以选择对于在再生过程中由LNT进行的氨的生成来说最佳的LNT入口处的空燃比的最优值。根据本发明的实施例,如果没有超过SCRF的氨存储能力,则进行LNT再生。这提供了限制因素,以避免在其中SCRF不能容纳任何生成的氨的所有情况下的消耗燃料的LNT再生过程。根据本发明的实施例,如果再生过程完成的可能性大于其阈值,则进行LNT再生。这允许避免不完全的LNT再生,不完全的LNT再生导致车辆的更高的燃油消耗。根据本发明的另实施例,如果在LNT入口处的空燃比等于固定的且例如预定的值(诸如0.92,例如)时存储在SCRF中的积碳的量没有超过其预定值,则进行LNT再生。由于氨的再生取决于λ值,所述值可被选择为最优化氨的生成。此外,在λ等于0.92时,LNT已知为生成充足量的氨,这提供了有帮助的准据(criteria)以决定是否值得进行再生过程。根据本发明的实施例,如果LNT的NOX转化效率大于其最小值,则进行LNT再生。这提供了在NOX转化效率足够高以保证SCRF中生成的氨的有效的使用以净化排气的所有情况下的进行LNT再生过程的准据。根据本发明的实施例,在LNT出口处的空燃比低于LNT的入口处的空燃比之后,LNT再生过程持续预定量的时间。所述实施例的效果在于其允许增加的氨的生成。本发明的另一方面提供了一种用于操作汽车系统的设备,所述汽车系统包括内燃机(例如柴油发动机)、并且配备有排气后处理系统,所述排气后处理系统包括稀燃NOX捕集器(LNT),所述稀燃NOX捕集器在选择性催化还原洗涂颗粒过滤器(SCRF)的上游,所述设备包括用于监测LNT入口温度的器件;用于监测代表存储在LNT中的NOX的量的参数的器件;用于使用相关于LNT入口温度和存储在LNT(510)中的NOX的量的映射图来确定在LNT入口温度和代表存储在LNT(510)中的NOX的量的参数的这些数值处的在LNT再生过程中生成的氨的量的器件;如果所估算的氨的量大于其阈值、则进行LNT再生过程的器件。这方面相对于先前的实施例具有类似的效果,即其能够在LNT能够最大化氨的生成时请求富燃DeNOX过程。在SCRF中的大量的氨增加了总体NOX的转化效率。根据本发明的方面,所述设备包括器件以在LNT入口处的空燃比处于预定值时进行LNT再生过程。所述实施例的效果在于,取决于汽车系统的状态,可以由LNT在再生过程期间选择对于氨的生成来说最好的LNT入口处的空燃比的最优值。根据本发明的方面,所述设备包括器件以在没有超过SCRF的氨存储能力时进行LNT再生。这提供了限制因素,以避免在其中SCRF不能容纳任何生成的氨的所有情况下的消耗燃料的LNT再生过程。根据本发明的实施例,所述设备包括器件以在再生过程完成的可能性大于其阈值时进行LNT再生。所述方面的效果在于其避免了消耗燃料的LNT再生过程。根据本发明的另一方面,所述设备包括器件以在LNT入口处的空燃比等于0.92时、如果存储在SCRF中的积碳的量没有超过其预定值时进行LNT再生。所述方面的一个效果在于,由于已知在λ等于0.92时的再生过程生成充足量的氨,其提供了有帮助的准据以确定是否值得进行再生过程。根据本发明的实施例,所述设备包括器件以在LNT的NOX转化效率大于其最小值时进行LNT再生。这提供了在NOX转化效率足够高以保证SCRF中所生成的氨的有效的使用以净化排气的所有情况下的进行LNT再生过程的准据。根据本发明的方面,所述设备包括器件以在LNT出口处的空燃比低于LNT的入口处的空燃比之后,LNT再生过程持续预定量的时间。这允许了增加的氨的生成。根据所述方面的一个的方法可以借助于计算机程序来运行,所述计算机程序包括用于运行上述方法的所有步骤的程序代码,并且以计算机程序产品的形式包括计算机程序。计算机程序产品可被是内燃机的控制装置的部分,所述控制装置包括电子控制单元(ECU)、与ECU关联的数据载体和存储在所述数据载体中的计算机程序。在所述情况下,当控制设备执行计算机程序时,进行上述方法的所有步骤。附图说明本发明将结合下列附图在下文中进行描述,其中相同的附图标记指示相同的元件。图1示出了汽车系统;图2为属于图1所示的汽车系统的内燃机的剖面图;图3示出了用于内燃机的后处理系统的部分的示意图;图4和5是对于不同的λ值、作为LNT入口温度和存储在LNT中的NOX的量的函数的由LNT生成的氨的映射图;图6是本发明的实施例的逻辑框图示意图;以及图7是表示本发明的实施例的流程图。具体实施方式下文的描述仅仅是示例性的并且并非意图为限制本发明或本申请或限制本发明的使用。此外,没有意图被本发明的前述
背景技术
展示的任意理论或者下文详细的描述所束缚。一些实施例可包括图1和图2所示的汽车系统100,其具有发动机缸体120的内燃机(ICE)110,发动机缸体限定至少一个汽缸125,汽缸具有联接以旋转曲轴145的活塞140。汽缸盖130与活塞140协同合作以限定燃烧室150。燃料和空气混合物(未示出)置于燃烧室150中并被点燃,导致引起活塞140的往复运动的热膨胀排气气体。燃料由至少一个燃料喷射器160提供,并且空气通过至少一个进气口210。在高压下将燃料从与高压燃料泵180流体连通的燃料轨170提供至燃料喷射器160,所述高压燃料泵增加从燃料源190接收的燃料的压力。汽缸125的每个具有至少两个阀215,它们由与曲轴145同时旋转的凸轮轴135促动。阀215选择性地允许空气从端口210进入燃烧室150内,并且交替地允许排气气体通过端口220排出。在一些示例中,凸轮相位器155可选择性地改变在凸轮轴135和曲轴145之间的正时。空气可通过进气歧管200分配到(一个或多个)进气口210。空气进气管道205可从周围环境向进气歧管200提供空气。在其它实施例中,可提供节流阀330以调节进入歧管200的空气质量流量。仍在其它实施例中,可设置有一种强制空气系统,如具有旋转地联接至涡轮机250的压缩机240的涡轮增压器230。压缩机240的旋转增加了在管道205和歧管200中的空气的压力和温度。置于管道205中的中间冷却器260可降低空气的温度。涡轮机250通过接收来自排气歧管225的排气气体而旋转,所述排气歧管225引导排气气体从排气口220,并且通过一系列叶片,在膨胀之前通过涡轮机250。排气气体排出涡轮机250并且被引入后处理系统270中。所述示例示出了一种可变几何涡轮机(VGT),所述涡轮机带有布置为移动叶片来改变通过涡轮机250的排气气体流量的VGT促动器290。在其他实施例中,涡轮增压器230可以是固定几何的和/或包括废气门。后处理系统270可包括具有一个或多个排气后处理装置280的排气管275。后处理装置可为任何被配置为改变排气气体组成的装置。后处理装置280的一些示例包括,但不限于,催化转化器(两元或三元)、氧化催化剂、稀燃NOX捕集器、碳氢化合物吸收器、选择性催化还原(SCR)系统、和颗粒过滤器,诸如柴油颗粒过滤器(DPF)。特别地,后处理系统270包括稀燃NOX捕集器(LNT)510和选择性催化还原过滤器(SCRF)520,这两者将在下文中参考图3进行描述。其它实施例可包括联接在排气歧管225和进气歧管200之间的排气再循环(EGR)系统300。EGR系统300可包括以降低EGR系统300中的排气气体的温度的EGR冷却器310。EGR阀320调节在EGR系统300中排气气体流量。汽车系统100还可包括电子控制单元(ECU)450,所述电子控制单元与一个或多个与ICE110相关联的传感器和/或装置通信。ECU450可接收来自各种传感器的输入信号,所述传感器被配置用于生成与ICE110相关联的各种物理参数成比例的信号。传感器包括,但不限于,空气质量流量和温度传感器340、歧管压力和温度传感器350、燃烧压力传感器360、冷却液和油温度和水平传感器380、燃料轨压力传感器400、凸轮位置传感器410、曲轴位置传感器420、排气压力和温度传感器430、EGR温度传感器440、以及加速踏板位置传感器445。此外,ECU450可生成输出信号至被布置为控制ICE110操作的各种控制装置,包括但不限于,燃料喷射器160、节气阀体330、EGR阀320、VGT促动器290、以及凸轮相位器155。注意的是,虚线用于指出ECU450与各种传感器与和设备之间的通信,但为了清楚起见省略了一些。现在转到ECU450,所述设备可包括数字中央处理单元(CPU),它与存储系统或数据载体460和接口总线通信。CPU被配置用来执行作为程序存储在存储系统中的指令,以及发送和接收信号至/自接口总线。所述存储系统可包括各种存储类型,存储类型包括光学存储、磁性存储、固态存储,以及其它非易失性(non-volatile)记忆。接口总线可被配置为发送、接收和调制模拟和/或数字信号至/自各种传感器和控制装置。所述程序可实施在本文中公开的方法,允许CPU进行所述方法的步骤并控制ICE110。存储在存储系统中的程序是从外部经由电缆或以无线方式被传输的。在汽车系统100的外部,其作为计算机程序产品通常是可见的,所述计算机程序产品在本领域又被称为计算机可读介质或机器可读介质,并且应被理解为存储在载体中的计算机程序代码,所述载体本质上是暂时的或非暂时的,结果便是计算机程序产品本质上也可以被认为是暂时或非暂时的。暂时的计算机程序产品的示例是信号,例如电磁信号,如光学信号,所述信号是用于计算机程序代码的暂时载体。承载这样的计算机程序代码可通过调制信号由用于数字数据的传统调制技术(如QPSK)来达到,使得代表所述计算机程序代码的二进制数据被施加到暂时电磁信号。这种信号例如当以无线方式经由Wi-Fi连接,将计算机程序代码传送至笔记本电脑时被使用。在非暂时计算机程序产品的情况下,所述计算机程序代码被实施在有形存储介质中。继而,存储介质是上面提到的非暂时载体,使得计算机程序代码被永久地或非永久地以可检索的方式存储在此存储介质内或上。所述存储介质可为在计算机技术中已知的传统类型,如闪存、Asic(特定用途集成电路)、CD等。作为ECU450的替代,汽车系统100可具有不同类型的处理器以提供电子逻辑电路,例如,嵌入式控制器、机载计算机、或任何可以被配置在车辆中处理模块。图3示出了用于内燃机110的后处理系统500的部分的示意图。在后处理系统270中,在LNT入口处的温度传感器530与在LNT入口处的λ传感器540和在LNT出口处的λ传感器560一起示出。两个λ传感器540、550可基于排气中的氧浓度生成电压,并且从而适合于测量代表在排气中的空燃比(即lambda(λ))的参数,λ限定为由空燃比除以化学计量空燃比。此外,后处理系统270可包括在LNT510上游的NOX量传感器550和在LNT510下游的NOX量传感器570。已经观察到这样的现象,在稀燃NOX捕集器(LNT)的DeNOX再生过程中,生成一定量的氨(NH3),并且所述些氨然后被存储在LNT510下游的SCRF520中。SCRF520使用这些氨以提高总的NOX转化效率。SCRF的NOX转化效率从而是LNT生成NH3的能力的函数。表1总结了由于LNT510和SCRF520之间的相关性的相关现象。表1驾驶模式LNTSCRF稀燃NOX存储不可应用富燃NOX转化以及NH3形成NH3存储稀燃NOX存储经由被动SCR进行NOX转化这些参数对于LNT510生成的氨有很大的影响。其中一些可直接控制作为针对DeNOX燃烧模式管理的λ的设定点。其他参数,诸如在LNT入口处的温度和在LNT510中的NOX存储,是不可控的,因为它们取决于驾驶状态。在任何情况下,LNT510中的NOX存储可通过读取来自于在LNT510上游的NOX传感器550和在LNT510下游的NOX传感器570的信号而被估算。为了理解对于LNT510生成氨的最优条件,已经进行了所述现象的充分的表征,以适当地标定所述策略。图4和5是对于不同的λ值、作为LNT入口温度和存储在LNT510中的NOX的量的函数的由LNT510生成的氨的映射图。特别地,图4的映射图表示了在λ的值在0.92时由LNT生成的氨,图5的映射图表示了在λ的值在0.95时由LNT生成的氨。这些映射图借助于试验活动而确定并且用于本发明的多个实施例中,如下文中详细描述的。更具体地,已经进行试验活动以特征化由LNT510在DeNOX再生过程中的氨,其以在LNT510的入口处的温度和在LNT510中的NOX存储的物理状态来描述,具有或者不具有硫。其他参数,诸如排气的空间速度以及NOX发动机排放已经被认为是在所述研究中可忽略。这些试验活动采取下列标定过程的形式。首先,获得在LNT510的入口处的温度的稳定值。然后进行DeNOX摆动过程,以清空LNT510,其中摆动过程是指在高温下进行的一系列富燃阶段,每个富燃阶段跟随有一个稀燃阶段。发动机110以及被监测以降低温度,并且突然地被赋能以返回到旋转的工作点以具有合适的温度。然后进行NOX加载阶段直到在排放工作台上读取的NOX存储值达到预定的设定点。DeNOX过程已经在两个不同的λ处进行,即在λ等于0.92(图4)和λ等于0.95(图5)处进行,以获得相应的映射图。对于每个DeNOX过程的结束准据是通常λ的临界值。在所述过程中,氨的生成已经通过适当的工具(诸如,傅里叶变换红外光谱(FTIR)分析器)而测量。更特别地,在图4中,第一映射图表示为在λ设为0.92时将LNT入口温度和存储在LNT510中的NOX的量与在LNT再生过程中生成的氨的量相关联。示出了两个面,面S1确定为在排气中没有硫成分,而面S2确定为在排气中具有预定的硫成分。对于LNT入口温度和存储在LNT510中的NOX量的每个数值对,代表在这些条件下生成的氨的量的示例性的点P1、P2已经在相应的表面S1和S2上绘出。在图5中,第二映射图表示为在λ设为0.95时将LNT入口温度和存储在LNT510中的NOX的量与在LNT再生过程中生成的氨的量相关联。在图5的情况下,示出了两个面,面S1’确定为在排气中没有硫成分,而面S2’确定为在排气中具有预定的硫成分。对于LNT入口温度和存储在LNT510中的NOX量的每个数值对,代表在这些条件下生成的氨的量的示例性的点P1’、P2’已经在相应的表面S1’和S2’上绘出。图6是本发明的实施例的逻辑框图示意图。在图6中,方框700总体上表示开始LNT510的DeNOX再生过程的现有技术的准据。特别地,如果LNT的NOX转化效率低于其预定的阈值时,已知的准据请求DeNOX再生过程。一旦请求,当验证到λ信号的临界点时(即在LNT出口处的空燃比低于在LNT入口处的空燃比的时刻),DeNOX再生过程结束。根据本发明的多个实施例,已经增加了开始LNT510的DeNOX再生过程的最优氨生成准据(方框710)。特别地,这些准据涉及使用图4和图5中相关于LNT入口温度和存储在LNT510中的NOX的量的映射图中的一个,以在LNT再生过程中估算生成的氨的量以及在所估算的氨的量大于其预定的阈值时进行LNT再生过程。然而,LNT再生过程的进行跟进下列准据(方框720)中的一个或多个而受限或抑制。例如,如果没有超过SCRF520的氨存储能力,则进行LNT再生过程。相反地,如果超过SCRF520的氨存储能力,则不进行LNT再生过程,并且所述限制有助于在SCRF将不会接收足够量的氨的所有情况下避免消耗燃料的LNT再生。此外,如果再生过程完成的可能性大于其阈值,则进行LNT再生。相反,如果再生过程完成的可能性低于其阈值,则不进行LNT再生过程并且所述限制可有助于避免消耗燃料的LNT再生过程。另一限制准据提供为:如果在λ等于0.92时SCRF的积碳负荷超过其阈值,则不进行LNT再生过程。由于已知在λ等于0.92时的再生过程生成大量的积碳,这有助于确定在这些条件下是否值得进行再生过程。最后,作为另一限制,如果LNT的NOX转化效率低于其最小值,则不进行LNT再生。这样的限制提供了这样的准据,以在LNT的NOX转化效率保证相较于增加的燃油消耗的利益的所有情况下进行LNT再生过程。然后ECU450估算对于当前的LNT入口温度和LNT的NOX存储值来说最佳的λ值(0.92或0.95)以在富燃条件下使用,从而以具有最佳的氨的生成(方框730)。这样的估算也可通过使用图4和图5的映射图来进行。通常来说,优选地是在λ设为0.95时进行再生过程,因为其相比于在λ为0.92时生成更少的积碳,但是在大多数情况下,从读取上述映射图来说,发现在λ设为0.92时获得最佳的氨的生成,并且从而所述策略更优选λ的所述数值(0.92)。一旦选择了最佳的λ数值,则进行DeNOX再生过程(方框740),并且所述再生过程根据λ临界点准据而结束(方框760)。此外,在一些情况下,如果基于LNT入口温度和LNTNOX存储值而预测到相当好的氨的生成,则DeNOX再生过程可被延长或持续超过λ临界点出现后有限量的时间。所述延长阶段的持续时间在方框750被估算,并且可取决于汽车系统100的状态而延长若干秒。图7是表示由ECU450执行的本发明的实施例的流程图。本发明的第一步骤是监测LNT入口温度(方框800)。继而,监测代表存储在LNT510中的NOX的量的参数(方框810)。LNT入口温度和存储在LNT中的NOX的量的数值用作映射图的输入以估算在LNT再生过程中生成的氨的量(方框820)。然后进行检查以验证所估算的氨的量是否大于其阈值(方框830)。在肯定的情况下,则开始LNT的DeNOX的再生过程(方框840)。从上述描述可以看出,多个实施例的效果在于,提出的策略能够在LNT能够将NH3生成作为已经试验确定的氨映射图的函数而最大化时请求富燃的DeNOX过程。虽然上文的细节描述中展示出了至少一个示例性实施例,但是应当意识到存在大量的变型。还应意识到的是,一个或多个示例性实施例仅为示例,并且并非意图为以任何方式限制本发明的范围、应用或配置。然而,前述的详细描述将为本领域技术人员提供用于实施一个示例性实施例的便捷路线图,应理解是在所描述的实施例中的功能和布置可具有各种变化而不偏离如在附属权利要求及其法律等价物所阐述的本发明的范围。相关申请的交叉引用本申请要求于2015年8月13日提交的英国专利申请No.1514392.8的优先权,所述专利申请的全部内容通过引用并入本文。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1