复合材料叶片及其制造方法、前缘金属罩形成单元与流程

文档序号:18706653发布日期:2019-09-17 23:48阅读:116来源:国知局
复合材料叶片及其制造方法、前缘金属罩形成单元与流程

本发明涉及复合材料叶片、前缘金属罩形成单元、复合材料叶片的制造方法。



背景技术:

在动叶以及静叶中,使用将使树脂浸渍于强化纤维的复合材料层层叠而形成的复合材料叶片主体。例如,关于飞机发动机的风扇叶片中使用的复合材料叶片主体,考虑到飞鸟撞击、砂尘等的碰撞,提出了在包括前缘的前缘区域粘接有厚重的金属制的前缘罩构件的结构(参照专利文献1)。

现有技术文献

专利文献

专利文献1:日本特开2016-138550号公报

发明要解决的课题

另一方面,工业用燃气轮机压缩机中使用的复合材料叶片主体为了降低进气温度而进行水滴喷雾,因此,需要水滴腐蚀的对策。具有高耐腐蚀性和疲劳强度的钛合金等金属材料适合于水滴腐蚀的对策。但是,上述那样的钛合金等金属材料是难加工材料,因此,存在难以与工业用燃气轮机压缩机中使用的复合材料叶片主体所具有的薄壁且复杂曲面的前缘区域的形状配合地进行加工的问题。因此,使用专利文献1的方法来制造适合于对工业用燃气轮机压缩机中使用的复合材料叶片主体用作水滴腐蚀的对策的前缘罩构件的话,在制造性、制造成本的方面存在课题。

另外,与飞机发动机的风扇叶片中使用的复合材料叶片主体受到的飞鸟撞击、砂尘等的碰撞的能量相比,工业用燃气轮机压缩机中使用的复合材料叶片主体受到的水滴碰撞的能量极小。因此,使用专利文献1的方法来制造适合于对工业用燃气轮机压缩机中使用的复合材料叶片主体用作水滴腐蚀的对策的前缘罩构件的话,就对撞强度这点而言成为过剩设计,因此,存在可能丧失工业用燃气轮机压缩机中使用的复合材料叶片主体所具备的轻量性的优点的问题。



技术实现要素:

本发明鉴于上述问题而提出,其目的在于,提供也适合于对工业用燃气轮机压缩机中使用的复合材料叶片主体用作水滴腐蚀的对策的复合材料叶片、前缘金属罩形成单元、复合材料叶片的制造方法。

用于解决课题的手段

为了解决上述课题并达成目的,复合材料叶片的特征在于,包括:复合材料叶片主体,其包含强化纤维和树脂;金属层,其设置于所述复合材料叶片主体的包括空气流的上游侧的部位即前缘的前缘区域的外侧,所述金属层的膜厚为5μm以上且100μm以下;以及粘接剂层,其设置于所述复合材料叶片主体和所述金属层之间,将所述金属层粘接于所述复合材料叶片主体。

根据该结构,将具有高耐腐蚀性和疲劳强度、轻量且具有追随着复合材料叶片主体的前缘区域的形状的金属层经由粘接剂层粘接于复合材料叶片主体的前缘区域,因此,能够得到也适合于对工业用燃气轮机压缩机中使用的复合材料叶片主体用作水滴腐蚀的对策的复合材料叶片。另外,通过具有电绝缘性的粘接剂层,能够抑制金属层的电蚀。

在该结构中,优选为,所述复合材料叶片还包括具有电绝缘性的电绝缘层,所述电绝缘层与所述复合材料叶片主体的所述前缘区域中的供所述金属层设置的面侧接触。此外,更优选为,该电绝缘层是绝缘玻璃纤维层。根据该结构,电绝缘层使复合材料叶片主体的前缘区域与金属层之间电绝缘,因此,能够抑制金属层因其与复合材料叶片主体中包含的强化纤维的电位差而被电蚀。

在这些结构中,优选为,所述金属层包括hv硬度比软质金属高的硬质金属层和hv硬度比所述硬质金属层高的超硬质金属层中的至少任一方。此外,优选为,所述硬质金属层是ni合金镀敷层。另外,优选为,所述超硬质金属层是硬质cr镀敷层。根据这些结构,能够减轻前缘区域由于水滴的碰撞而磨损的情况。

此外,优选为,所述金属层包括所述硬质金属层和所述超硬质金属层,所述超硬质金属层形成于所述硬质金属层的外侧的至少一部分。根据这些结构,进一步在硬质金属层的外侧的至少一部分形成超硬质金属层,从而能够提高金属层追随复合材料叶片主体的叶片长度方向上的曲率的追随性,并且能够优先对水滴的碰撞角近似垂直而碰撞能量较高的部分进行加强。

在金属层包括硬质金属层和超硬质金属层中的至少任一方的结构中,优选为,所述金属层在供所述复合材料叶片主体设置的面侧还包括包含所述软质金属的软质金属层。此外,优选为,所述软质金属层是cu镀敷层或者纯ni镀敷层。根据这些结构,软质金属层为软质的且延展性较高,因此,使由于复合材料叶片主体与硬质金属层或者超硬质金属层之间的线性膨胀系数差以及弹性模数差等产生的剪切应力缓和,由此,能够提高硬质金属层或者超硬质金属层的粘接性,并且能够降低发生剥离的可能性。另外,软质金属层为软质的且延展性较高,因此,能够降低追随着复合材料叶片主体的前缘区域的脆性材料的硬质金属层或者超硬质金属层破碎的可能性。

在这些结构中,优选为,所述金属层的外侧表面以及所述复合材料叶片主体与所述金属层的边界部分的外侧表面均由连续的面形成。根据该结构,能够抑制复合材料叶片的空气动力上的效率降低。

为了解决上述课题并达成目的,前缘金属罩形成单元的特征在于,包括:阴模,其具有能够与复合材料叶片主体中的包括空气流的上游侧的部位即前缘的前缘区域以隔开规定间隙的方式嵌合的形状;以及金属层,其形成于所述阴模的内侧面,具有与所述规定间隙相应的体积。根据该结构,能够在通过阴模适当地维持了金属层的形状的状态下进行搬运等处理。

为了解决上述课题并达成目的,复合材料叶片的制造方法通过在复合材料叶片主体中的包括空气流的上游侧的部位即前缘的前缘区域的外侧设置金属层来制造复合材料叶片,所述复合材料叶片的制造方法的特征在于,具有:金属层形成步骤,在该金属层形成步骤中,在具有能够与所述复合材料叶片主体的所述前缘区域以隔开规定间隙的方式嵌合的形状的阴模的内侧面,形成具有与所述规定间隙相应的体积的所述金属层;以及粘接步骤,在该粘接步骤中,使形成于所述阴模的所述金属层与所述复合材料叶片主体的所述前缘区域嵌合并粘接。根据该结构,将具有高耐腐蚀性和疲劳强度、轻量且具有追随着复合材料叶片主体的前缘区域的形状的金属层经由粘接剂层粘接于复合材料叶片主体的前缘区域,因此,能够得到对工业用燃气轮机压缩机中使用的复合材料叶片主体作为适当的水滴腐蚀的对策的复合材料叶片。

在该结构中,优选为,所述阴模具有第一阴模和第二阴模,所述第一阴模和所述第二阴模彼此能够分离且能够组装,所述第一阴模能够与所述复合材料叶片主体的所述前缘区域中的前端侧的区域对置地嵌合,所述第二阴模能够与所述复合材料叶片主体的所述前缘区域中的基端侧的区域对置地嵌合,在所述金属层形成步骤中,在所述第一阴模的内侧面形成所述金属层中的超硬质金属层,对形成有所述超硬质金属层的所述第一阴模组装所述第二阴模,在组装后的所述第一阴模的所述超硬质金属层的内侧面以及所述第二阴模的内侧面形成所述金属层中的硬质金属层,进而在所述硬质金属层的内侧面形成所述金属层中的软质金属层。根据该结构,能够将处理分为超硬质金属层、硬质金属层以及软质金属层的各阶段来执行金属层的形成。因此,能够容易地在复合材料叶片主体的前缘区域中的期望的区域分别形成不同种类的金属层。

附图说明

图1是实施方式所涉及的复合材料叶片的概略立体图。

图2是示出实施方式所涉及的复合材料叶片的详细结构的一例的剖视图。

图3是示出图2的金属层的特性的曲线图。

图4是示出实施方式所涉及的复合材料叶片的详细结构的另一例的剖视图。

图5是示出实施方式所涉及的复合材料叶片的详细结构的再另一例的剖视图。

图6是示出实施方式所涉及的复合材料叶片的制造方法的流程图。

图7是说明图6的金属层形成步骤的一阶段的说明图。

图8是说明图6的金属层形成步骤的下一阶段的说明图。

图9是说明图6的金属层形成步骤的再下一阶段的说明图。

图10是说明图6的粘接步骤的一阶段的说明图。

图11是说明图6的粘接步骤的下一阶段的说明图。

图12是说明图6的粘接步骤的再下一阶段的说明图。

附图标记说明

10、10a、10b、10c金属层

11a、11b、11c超硬质金属层

12a、12b、12c、15b、15c端部

13a、13b、13c粘接剂层

14b、14c硬质金属层

16c软质金属层

20、20a、20b、20c复合材料叶片

21、21a、21b、21c复合材料叶片主体

22、22a、22b、22c前缘

23、23a、23b、23c前缘区域

26复合材料叶片支承构件

30曲线

31、32、33点

41第一阴模

42第二阴模

45、46电极

50c前缘金属罩形成单元

具体实施方式

以下,基于附图详细说明本发明所涉及的实施方式。需要说明的是,本发明不被该实施方式限定。另外,实施方式中的构成要素包含本领域技术人员能够且容易置换的要素或者实质上相同的要素。此外,以下记载的构成要素能够适当组合。

[实施方式]

图1是实施方式所涉及的复合材料叶片20的概略立体图。如图1所示,复合材料叶片20具有:金属层10;以及复合材料叶片主体21,金属层10设置于复合材料叶片主体21的包括前缘22的前缘区域23的外侧。在此,前缘区域23是指,在与前缘22交叉的方向上,跨越前缘22而覆盖与前缘22相邻的背侧以及腹侧的面的一部分的、位于距前缘22一定距离内的区域,且在沿着前缘22的方向上,位于前缘22的至少一部分长度或者全部长度的范围内的区域。复合材料叶片20例示为在工业用燃气轮机压缩机中使用。

复合材料叶片主体21例如在叶片厚度方向上层叠复合材料层而形成,该叶片厚度方向是将复合材料叶片主体21的背侧和腹侧连结的方向。图1所示的l方向是将复合材料叶片主体21的叶顶侧和叶根侧连结的方向即叶片长度方向。图1所示的w方向是将复合材料叶片主体21的前缘侧和后缘侧连结的方向即叶片宽度方向。复合材料叶片主体21形成为背侧以及腹侧为复杂曲面,叶顶侧的w方向与叶根侧的w方向为扭转的关系。在复合材料叶片主体21中,在作为背侧的曲面与腹侧的曲面的交线的两根曲线之中,空气流的上游侧的曲线成为前缘22,空气流的下游侧的曲线成为后缘。复合材料叶片主体21通过复合材料叶片支承构件26将叶根侧的端部固定于旋转轴的周面,从而被支承为能够以规定直径向规定方向旋转。

复合材料叶片主体21中包含的复合材料具有强化纤维以及浸渍于强化纤维的树脂。关于复合材料,例示在飞机、汽车以及船舶等中通常使用的材料。关于强化纤维,例示由约数百根至数千根左右的5μm以上7μm以下的基本纤维捆扎而成的纤维。关于构成强化纤维的基本纤维,较佳地例示玻璃纤维、碳纤维以及芳纶纤维。构成强化纤维的基本纤维并不限定于此,也可以是其他塑料纤维或者金属纤维。

含浸于强化纤维的树脂优选为热固化性树脂,但也可以是热塑性树脂。关于热固化性树脂,例示环氧树脂、聚酯树脂以及乙烯基酯树脂。关于热塑性树脂,例示聚酰胺树脂、聚丙烯树脂、abs(acrylonitrilebutadienestyrene)树脂、聚醚醚酮(peek)、聚醚酮酮(pekk)以及聚苯硫醚(pps)等。但是,含浸于强化纤维的树脂并不限定于此,也可以是其他树脂。

在含浸于强化纤维的树脂为热固化性树脂的情况下,热固化性树脂能够成为软化状态、固化状态以及半固化状态。软化状态是使热固化性树脂热固化之前的状态。软化状态是不具有自支承性的状态,且是在无支承体支承的情况下无法保持形状的状态。软化状态是热固化性树脂被加热而能够进行热固化反应的状态。固化状态是使热固化性树脂热固化之后的状态。固化状态是具有自支承性的状态,且是即使在无支承体支承的情况下也能够保持形状的状态。固化状态是热固化树脂即使被加热也无法进行热固化反应的状态。半固化状态是软化状态和固化状态之间的状态。半固化状态是使热固化性树脂进行了比固化状态弱的程度的热固化的状态。半固化状态是具有自支承性的状态,且是即使在无支承体支承的情况下也能够保持形状的状态。半固化状态是热固化性树脂被加热而能够进行热固化反应的状态。在以下的说明中,将使未固化的热固化性树脂含浸于碳纤维等的强化纤维的复合材料的中间基材适当地称作预浸渍体。

如图1所示,金属层10设置为以与前缘区域23的外侧面粘接的方式覆盖前缘区域23。金属层10的膜厚为5μm以上且100μm以下,优选为5μm以上且50μm以下。关于金属层10中使用的金属材料的其他详情,在后述的复合材料叶片20的详细结构的各例的说明的栏中进行详述。

图2是示出实施方式所涉及的复合材料叶片20的详细结构的一例的剖视图。图3是示出图2的金属层10的特性的曲线图。图4是示出实施方式所涉及的复合材料叶片20的详细结构的另一例的剖视图。图5是示出实施方式所涉及的复合材料叶片20的详细结构的再另一例的剖视图。图2、图4以及图5均是沿着与前缘22的曲线正交的方向的面中的剖视图。以下,使用图2、图3、图4以及图5说明复合材料叶片20的详细结构例。

如图2所示,作为复合材料叶片20的详细结构例的第一例的复合材料叶片20a具有作为金属层10的详细结构例的第一例的金属层10a以及作为复合材料叶片主体21的详细结构例的第一例的复合材料叶片主体21a。金属层10a设置于复合材料叶片主体21a的包括前缘22a的前缘区域23a的外侧。需要说明的是,前缘22a以及前缘区域23a分别是前缘22以及前缘区域23的详细结构例的第一例。

如图2所示,复合材料叶片20a还具有粘接剂层13a,该粘接剂层13a设置于金属层10a与前缘区域23a之间,将金属层10a粘接于前缘区域23a。粘接剂层13a既可以使用常温固化型的粘接剂,也可以使用加热固化型的粘接剂,但在金属层10a的树脂为半固化状态粘接于前缘区域23a的情况下,优选使用加热固化型的粘接剂。需要说明的是,在本实施方式中,设为复合材料叶片20a具有粘接剂层13a,但本发明不限定于该方式。例如,也可以是将前缘区域23a所包含的树脂用于前缘区域23a与金属层10a的粘接,因此,粘接剂层13a与前缘区域23a的边界变得不明显的方式。另外,也可以是将与前缘区域23a所包含的树脂为同样成分的粘接剂用于前缘区域23a与金属层10a的粘接,因此,粘接剂层13a与前缘区域23a的边界变得不明显的方式。该粘接剂层13a具有电绝缘性,因此,能够抑制金属层10a的电蚀。

另外,优选为,包括具有电绝缘性的电绝缘层,该电绝缘层设置为与复合材料叶片主体21a的前缘区域23a中的供金属层10a设置的面侧接触。此外,更优选为,该电绝缘层是绝缘玻璃纤维层。在上述那样的情况下,就复合材料叶片20a而言,由于电绝缘层使复合材料叶片主体21a的前缘区域23a与金属层10a之间电绝缘,因此,能够抑制金属层10a因其与复合材料叶片主体21a中包含的强化纤维的电位差而被电蚀。

金属层10a由具有高耐腐蚀性和疲劳强度的金属构成。另外,就hv硬度(vickershardness)以及磨损深度而言,金属层10a具有图3的曲线图中的曲线30所示的特性。即,金属层10a具有随着hv硬度变高而磨损深度变浅的倾向。需要说明的是,在图3的曲线图中,横轴是hv硬度,纵轴是磨损深度,磨损深度的单位是[mm/yr]。在此,磨损深度的单位[mm/yr]表示,每一年的磨损深度[mm]。

金属层10a在使用软质金属的情况下,如图3的曲线图所示,具有由曲线30上的点31的附近至左侧的区域所示的特性,即,hv硬度为30以上且300以下,磨损深度为1mm/yr以上且10mm/yr以下。关于金属层10a中使用的软质金属,例示通过铜(cu)镀敷处理而形成为层状的铜(cu)镀敷层、以及通过纯度高的纯镍(ni)镀敷处理而形成为层状的硬度较低的纯镍(ni)镀敷层等。金属层10a在使用硬质金属的情况下,具有由曲线30上的点32的附近所示的特性,即,hv硬度为500以上且800以下,与软质金属相比hv硬度较高,磨损深度为0.04mm/yr以上且0.2mm/yr以下。关于金属层10a中使用的硬质金属,例示通过镍(ni)合金镀敷处理而形成为层状的镍(ni)合金镀敷层。作为镍合金镀敷,能够较佳地应用镍(ni)-磷(p)镀敷,镍(ni)-硼(b)镀敷,镍(ni)-钨(w)镀敷等。镍合金镀敷能够应用无电解镀敷,因此,通过应用无电解镀敷,从而即使是对于开口部较窄且具有深度的形状的表面,也能够以均匀的膜厚形成层。金属层10a在使用超硬质金属的情况下,具有由曲线30上的点33的附近所示的特性,即,hv硬度为800以上且1200以下,与硬质金属相比hv硬度较高,磨损深度为0.01mm/yr以上且0.04mm/yr以下。关于金属层10a中使用的超硬质金属,例示通过硬质铬(cr)镀敷处理而形成为层状的硬质铬(cr)镀敷层。

如图2所示,金属层10a包括超硬质金属层11a。即,金属层10a使用有超硬质金属。需要说明的是,本发明并不限定于此,优选为,金属层10a包括硬质金属和超硬质金属中的至少任一方。在上述那样的情况下,设置于前缘区域23a的金属层10a的磨损深度小至0.2mm/yr以下,因此,在用于工业用燃气轮机压缩机的情况下,能够减轻前缘区域23a由于伴随着为了降低复合材料叶片主体21a的进气温度而进行的水滴喷雾的水滴的碰撞而磨损的情况。

如图2所示,金属层10a的超硬质金属层11a设置为在与前缘22a交叉的方向上跨越前缘22a。详细而言,超硬质金属层11a设置为,在沿着与前缘22a的曲线正交的方向的剖面上,超硬质金属层11a在与前缘22a交叉的方向上的端部12a处的切线ta的方向的角度θa相对于前缘22a所指向的方向ca为0°以上且15°以下。另外,超硬质金属层11a在沿着前缘22a的方向上,以前缘22a的至少一部分长度或者全部长度设置。

另外,优选为,超硬质金属层11a与复合材料叶片主体21a的前缘区域23a的边界面从位于方向ca的区域至位于端部12a的区域以无高度差的方式平滑地形成。此外,更优选为,超硬质金属层11a的厚度在位于方向ca的区域最厚,随着朝向端部12a变薄,并且在位于端部12a的区域正好变为0。在上述那样的情况下,在复合材料叶片20a中,由于复合材料叶片主体21a与超硬质金属层11a之间的线性膨胀系数差以及弹性模数差等产生的剪切应力得到缓和,由此,能够提高超硬质金属层11a的粘接性,能够降低发生剥离的可能性。另外,在复合材料叶片20a中,能够降低追随着复合材料叶片主体21a的前缘区域23a的脆性材料的超硬质金属层11a破碎的可能性。

另外,优选为,超硬质金属层11a与复合材料叶片主体21a的前缘区域23a的边界面的算术平均粗糙度为1μm以上且10μm以下。具体而言,优选为,超硬质金属层11a与前缘区域23a的边界面通过被实施砂纸打磨等喷砂处理而被加工至上述范围内的算术平均粗糙度。在上述那样的情况下,在复合材料叶片20a中,通过超硬质金属层11a与前缘区域23a的边界面的算术平均粗糙度,在该边界面产生固着效果,由此,能够提高超硬质金属层11a与前缘区域23a的紧贴强度。

另外,优选为,超硬质金属层11a与复合材料叶片主体21a的前缘区域23a的边界部分的外侧表面、即端部12a附近的外侧表面由连续的面形成。在此,连续的面是指,平滑、无高度差且没有弯曲的面。在该情况下,复合材料叶片20a被抑制空气动力上的效率降低。

复合材料叶片20a具有以上那样的结构,因此,将具有高耐腐蚀性和疲劳强度、轻量且具有追随着复合材料叶片主体21a的前缘区域23a的形状的金属层10a经由粘接剂层13a粘接于复合材料叶片主体21a的前缘区域23a,因此,适合于对工业用燃气轮机压缩机中使用的复合材料叶片主体21a用作水滴腐蚀的对策。

复合材料叶片20b是复合材料叶片20的详细结构例的第二例,如图4所示,其在复合材料叶片20a的基础上,将金属层10a变更为金属层10b。关于复合材料叶片20b的其他结构,由于与复合材料叶片20a相同,因此省略其详细的说明。

需要说明的是,在复合材料叶片20的详细结构例的第二例的复合材料叶片20b的说明中,为了便于说明,在说明书中以及附图中,对各构成要素使用了与复合材料叶片20的详细结构例的第一例的复合材料叶片20a的说明不同的附图标记。具体而言,对于与复合材料叶片20a中的金属层10a、超硬质金属层11a、端部12a、粘接剂层13a、复合材料叶片主体21a、前缘22a、前缘区域23a、方向ca、切线ta以及角度θa分别对应的结构,在复合材料叶片20b中,设为金属层10b、超硬质金属层11b、端部12b、粘接剂层13b、复合材料叶片主体21b、前缘22b、前缘区域23b、方向cb、切线tb以及角度θb。

在复合材料叶片20b中,如图4所示,金属层10b包括超硬质金属层11b和硬质金属层14b,超硬质金属层11b形成于硬质金属层14b的外侧的至少一部分。详细而言,硬质金属层14b设置为,在沿着与前缘22b的曲线正交的方向的剖面上,硬质金属层14b在与前缘22b交叉的方向上的端部15b处的切线方向的角度相对于前缘22b所指向的方向cb为0°以上且15°以下。另外,硬质金属层14b在沿着前缘22b的方向上,以前缘22b的至少一部分长度或者全部长度设置。并且,详细而言,超硬质金属层11b设置为,在沿着与前缘22b的曲线正交的方向的剖面上,端部12b处的切线tb的方向的角度θb相对于前缘22b所指向的方向cb为15°以上且60°以下。另外,超硬质金属层11b在沿着前缘22b的方向上,以与硬质金属层14b相同或者较短的长度设置。因此,在复合材料叶片20b中,通过在硬质金属层14b的外侧的至少一部分形成超硬质金属层11b,能够提高金属层10b追随复合材料叶片主体21b的叶片长度方向上的曲率的追随性,并且能够优先对水滴的碰撞角近似垂直而碰撞能量较高的部分进行加强。在以下的说明中,在复合材料叶片主体21b的前缘区域23b之中,将设置有超硬质金属层11b的区域称为前端侧的区域,将设置有硬质金属层14b且未设置超硬质金属层11b的区域称为基端侧的区域。

另外,优选为,超硬质金属层11b与硬质金属层14b的边界面从位于方向cb的区域至位于端部12b的区域以无高度差的方式平滑地形成。此外,更优选为,超硬质金属层11b的厚度在位于方向cb的区域最厚,随着朝向端部12b而变薄,并在位于端部12b的区域正好变为0。另外,优选为,硬质金属层14b与复合材料叶片主体21b的前缘区域23b的边界面从位于方向cb的区域至位于端部12b的区域以无高度差的方式平滑地形成。此外,更优选为,硬质金属层14b的厚度在从端部12b至端部15b之间,在位于端部12b的区域最厚,随着朝向端部15b而变薄,在位于端部15b的区域正好变为0。在上述那样的情况下,在复合材料叶片20b中,也起到与在复合材料叶片20a中超硬质金属层11a与复合材料叶片主体21a的前缘区域23a的边界面以无高度差的方式平滑地形成的情况、以及超硬质金属层11a的厚度朝向端部12a而逐渐变薄的情况同样的作用效果。

另外,优选为,超硬质金属层11b与硬质金属层14b的边界部分的外侧表面、即端部12b附近的外侧表面以及硬质金属层14b与复合材料叶片主体21b的前缘区域23b的边界部分的外侧表面、即端部15b附近的外侧表面均由连续的面形成。在该情况下,复合材料叶片20b被抑制空气动力上的效率降低。

复合材料叶片20b具有以上那样的结构,因此,除了上述的作用效果之外,还起到与复合材料叶片20a同样的作用效果。

复合材料叶片20c是复合材料叶片20的详细结构例的第三例,如图5所示,其在复合材料叶片20b的基础上变更为如下结构,在硬质金属层14b的复合材料叶片主体21b侧的边界面还形成有包含软质金属的软质金属层16c。关于复合材料叶片20c的其他结构,由于与复合材料叶片20b相同,因此省略其详细的说明。

需要说明的是,在复合材料叶片20的详细结构例的第三例的复合材料叶片20c的说明中,为了便于说明,在说明书中以及图面中,对各构成要素使用了与复合材料叶片20的详细结构例的第二例的复合材料叶片20b的说明不同的附图标记。具体而言,对于与复合材料叶片20b中的金属层10b、超硬质金属层11b、端部12b、粘接剂层13b、硬质金属层14b、端部15b、复合材料叶片主体21b、前缘22b、前缘区域23b、方向cb、切线tb以及角度θb分别对应的结构,在复合材料叶片20c中,设为金属层10c、超硬质金属层11c、端部12c、粘接剂层13c、硬质金属层14c、端部15c、复合材料叶片主体21c、前缘22c、前缘区域23c、方向cc、切线tc以及角度θc。

如图5所示,复合材料叶片20c的软质金属层16c设于金属层10c的供复合材料叶片主体21c设置的面侧。软质金属层16c设于硬质金属层14c与复合材料叶片主体21c的前缘区域23c的边界部分的整面。因此,在复合材料叶片20c中,软质金属层16c为软质的且延展性较高,因此,使由于复合材料叶片主体21c与硬质金属层14c或者超硬质金属层11c之间的线性膨胀系数差以及弹性模数差等产生的剪切应力缓和,由此,能够提高硬质金属层14c或者超硬质金属层11c的粘接性,并且能够降低发生剥离的可能性。另外,在复合材料叶片20c中,软质金属层16c为软质的且延展性较高,因此,能够降低追随着复合材料叶片主体21c的前缘区域23c的脆性材料的硬质金属层14c或者超硬质金属层11c破碎的可能性。

复合材料叶片20c具有上述那样的结构,因此,除了上述的作用效果之外,还起到与复合材料叶片20b同样的作用效果。

图6是示出实施方式所涉及的复合材料叶片的制造方法的流程图。图7是说明图6的金属层形成步骤s12的一阶段的说明图。图8是说明图6的金属层形成步骤s12的下一阶段的说明图。图9是说明图6的金属层形成步骤s12的再下一阶段的说明图。图10是说明图6的粘接步骤s13的一阶段的说明图。图11是说明图6的粘接步骤s13的下一阶段的说明图。图12是说明图6的粘接步骤s13的再下一阶段的说明图。使用图6至图12,作为实施方式所涉及的复合材料叶片20的制造方法的一例,对上述三个例子中的具有最复杂的结构的复合材料叶片20c的制造方法进行说明。如图6所示,实施方式所涉及的复合材料叶片20的制造方法包括阴模准备步骤s11、金属层形成步骤s12以及粘接步骤s13。

阴模准备步骤s11是准备具有能够与复合材料叶片主体21c的前缘区域23c以隔开规定间隙的方式嵌合的形状的阴模的步骤。在此,规定间隙是指,具有与在后述的金属层形成步骤s12中形成的预定金属层10c同等的形状以及体积的空间。阴模能够通过使用复合材料叶片主体21c的前缘区域23c的设计图以及金属层10c的设计图来对阴模材料进行成形而准备。另外,阴模还能够如下那样准备:使用一个一个形状具有微妙差异的复合材料叶片主体21c的前缘区域23c以及模拟了金属层10c的形状的模型,对阴模的材料进行成形。另外,阴模也能够通过使用将复合材料叶片主体21c的切除前缘区域23c后的部分以及模拟了金属层10c的形状的模型来准备。

优选为,阴模由能够在后述的金属层形成步骤s12中较佳地形成金属层10c并且能够在后述的粘接步骤s13中较佳地使金属层10c剥离的材料形成。关于形成阴模的材料,例如优选使用在表面形成钝化皮膜的金属即不锈钢。

阴模既可以是一体的,也可以是能够分离成二体以上并能够组装的方式。在本实施方式中,阴模具有图7及之后附图所示的第一阴模41、以及图8及之后附图所示的第二阴模42。如图7所示,第一阴模41具有如下形状:能够与复合材料叶片主体21c的前缘区域23c中的形成超硬质金属层11c的前端侧的区域对置且以隔开相当于超硬质金属层11c、硬质金属层14c以及软质金属层16c的厚度的间隙的方式嵌合。如图8所示,第二阴模42具有如下形状:能够与复合材料叶片主体21c的前缘区域23c中的从端部12c至端部15c之间的基端侧的区域对置且以隔开相当于硬质金属层14c以及软质金属层16c的厚度的间隙的方式嵌合。

另外,第一阴模41与第二阴模42通过组合为一体,从而其边界部分的内侧表面、即相当于端部12c的位置附近的内侧表面具有由连续的面所形成那样的形状。由此,在后述的金属层形成步骤s12中形成的金属层10c中,超硬质金属层11c与硬质金属层14c的边界部分的外侧表面、即端部12c附近的外侧表面由连续的面形成。

金属层形成步骤s12是在阴模的内侧面形成具有与规定间隙相应的体积的金属层10c的步骤。在金属层形成步骤s12中,首先,在第一阴模41的内侧面形成超硬质金属层11c。在金属层形成步骤s12中,例如,如图7所示,将第一阴模41浸于电解硬质cr镀敷浴,并使对应于第一阴模41的内侧面的形状的电极45接近第一阴模41的内侧面而对该面实施电解硬质cr镀敷处理,从而形成作为超硬质金属层11c的硬质cr镀敷层。

在金属层形成步骤s12中,接下来,对在内侧面形成了超硬质金属层11c的第一阴模41组装第二阴模42。在金属层形成步骤s12中,之后,在形成于第一阴模41的超硬质金属层11c的内侧面和第二阴模42的内侧面形成硬质金属层14c。在金属层形成步骤s12中,例如,如图8所示,将组装后的第一阴模41以及第二阴模42浸于ni合金镀敷浴,并实施ni合金镀敷处理,从而形成作为硬质金属层14c的ni合金镀敷层。

在金属层形成步骤s12中,进一步地,在内侧面形成有超硬质金属层11c以及硬质金属层14c的第一阴模41以及第二阴模42的内侧面,形成软质金属层16c。在金属层形成步骤s12中,例如,如图9所示,将第一阴模41以及第二阴模42浸于电解cu镀敷浴,并使对应于第一阴模41以及第二阴模42的内侧面的形状的电极46接近第一阴模41以及第二阴模42的内侧面而对该面实施电解cu镀敷处理或者纯ni镀敷处理,从而形成作为软质金属层16c的cu镀敷层或者纯ni镀敷层。

在金属层形成步骤s12中,在阴模为如第一阴模41以及第二阴模42等那样能够分离为二体以且能够组装的方式的情况下,如上所述,能够将处理分为超硬质金属层11c、硬质金属层14c以及软质金属层16c的各阶段来执行金属层10c的形成。因此,在金属层形成步骤s12中,在复合材料叶片主体21c的前缘区域23c中,能够容易地在前端侧的区域以及基端侧的区域等期望的区域分别形成不同种类的金属层10c。

经过金属层形成步骤s12,如上所述,形成包括超硬质金属层11c、硬质金属层14c以及软质金属层16c的金属层10c。另外,经过阴模准备步骤s11以及金属层形成步骤s12,得到图9所示的前缘金属罩形成单元50c,该前缘金属罩形成单元50c包括:第一阴模41和第二阴模42;以及形成于第一阴模41和第二阴模42的内侧面且具有与规定间隙相应的体积的金属层10c。前缘金属罩形成单元50c是用于在后述的粘接步骤s13中将金属层10c粘接于复合材料叶片主体21c的前缘区域23c的外侧面的单元,其能够在通过第一阴模41以及第二阴模42适当地维持了金属层10c的形状的状态下进行搬运等处理。

在此,在金属层形成步骤s12中,不是将金属层10c直接形成于复合材料叶片主体21c的前缘区域23c,而是形成于第一阴模41以及第二阴模42。需要说明的是,金属层10c在后述的粘接步骤s13中经由该第一阴模41以及第二阴模42而粘接于复合材料叶片主体21c的前缘区域23c。因此,在金属层形成步骤s12中,在通过金属镀敷处理形成金属层10c的情况下,无需使用能够浸入大尺寸的复合材料叶片主体21c的大规模的金属镀敷浴,只要使用能够浸入尺寸比复合材料叶片主体21c小的第一阴模41以及第二阴模42的较小规模的金属镀敷浴便足够。此外,在金属层形成步骤s12中,阴模是如第一阴模41以及第二阴模42等那样能够分离为二体以上且能够组装的方式,并且,在仅对第一阴模41等组装前的一部分阴模进行金属镀敷处理的情况下,只要使用仅能够浸入更小尺寸的第一阴模41的更小规模的金属镀敷浴便足够。因此,在金属层形成步骤s12中,能够利用相对较小的设备来形成金属层10c,因此,能够大幅度改善形成金属层10c的成本,并且能够提高金属层10c的品质。另外,在金属层形成步骤s12中,能够使用相对较小的设备,因此,在该设备中进行镀敷处理的情况下,即使最小开口部窄至1mm以下,也容易朝向第一阴模41以及第二阴模42的内侧面适当地供给镀敷液。在金属层形成步骤s12中,在使用镍合金镀敷的情况下,能够应用无电解镀敷,因此,通过应用无电解镀敷,即使是对于开口部较窄且具有深度的形状的表面,也能够适当地供给镀敷液而以均匀的膜厚形成层。另外,在金属层形成步骤s12中,在进行电解镀敷处理的情况下,可以预先利用不锈钢等金属形成第一阴模41以及第二阴模42等,容易确保供电极安装的区域。

另外,在金属层形成步骤s12中,也能够通过蒸镀处理、溅射处理等真空处理来形成金属层10c。在上述那样的情况下,优选为,也与通过上述的金属镀敷处理形成金属层10c的情况同样地,按照超硬质金属层11c、硬质金属层14c以及软质金属层16c的顺序进行形成。另外,在上述那样的情况下,也与通过上述的金属镀敷处理形成金属层10c的情况同样地,只要使用相对较小的真空腔室便足够,因此,能够大幅度改善形成金属层10c的成本,并且能够提高金属层10c的品质。

需要说明的是,在金属层形成步骤s12中,也可以为,在形成了金属层10c之后,通过对金属层10c的内侧面实施砂纸打磨等喷砂处理而使算术平均粗糙度为1μm以上且10μm以下。由此,在金属层10c与在后述的粘接步骤s13中经由粘接剂层13c所粘接的复合材料叶片主体21c的前缘区域23c的边界面产生固着效应,由此,能够提高金属层10c与前缘区域23c的紧贴强度。

粘接步骤s13是将形成于第一阴模41以及第二阴模42的金属层10c嵌合并粘接于复合材料叶片主体21c的前缘区域23c的步骤。在粘接步骤s13中,首先,在复合材料叶片主体21c的前缘区域23c涂敷粘接剂而形成粘接剂层13c。在粘接步骤s13中,接下来,如图10所示,将前缘金属罩形成单元50c以朝向形成有金属层10c侧的方式嵌合于复合材料叶片主体21c的前缘区域23c。

在粘接步骤s13中,接下来,在对粘接剂层13c使用了常温固化型的粘接剂的情况下,通过在图11所示的已将前缘金属罩形成单元50c嵌合于复合材料叶片主体21c的前缘区域23c的状态下等待粘接剂层13c固化,从而将金属层10c经由粘接剂层13c粘接于复合材料叶片主体21c的前缘区域23c。在粘接步骤s13中,在使用了常温固化型的粘接剂的粘接剂层13c固化之后,对第一阴模41以及第二阴模42进行加热,从而使金属层10c从第一阴模41以及第二阴模42剥离。需要说明的是,在粘接步骤s13中,在对复合材料叶片主体21c使用有预浸渍体的情况下,伴随着该加热,预浸渍体包含的树脂固化。

另一方面,在粘接步骤s13中,在对粘接剂层13c使用了加热固化型的粘接剂的情况下,通过在图11所示的已将前缘金属罩形成单元50c嵌合于复合材料叶片主体21c的前缘区域23c的状态下对第一阴模41以及第二阴模42进行加热,从而使粘接剂层13c固化而将金属层10c经由粘接剂层13c粘接于复合材料叶片主体21c的前缘区域23c,并且使金属层10c从第一阴模41以及第二阴模42剥离。需要说明的是,在粘接步骤s13中,在对复合材料叶片主体21c使用有预浸渍体的情况下,伴随着该加热,预浸渍体中包含的树脂固化。

在粘接步骤s13中,在将金属层10c经由粘接剂层13c粘接于复合材料叶片主体21c的前缘区域23c、并使金属层10c从第一阴模41以及第二阴模42剥离之后,如图12所示,将剥离了金属层10c的第一阴模41以及第二阴模42从复合材料叶片主体21c的前缘区域23c拆下,从而得到复合材料叶片20c。

需要说明的是,在取代复合材料叶片20c而希望得到复合材料叶片20b的情况下,只要以上述实施方式所涉及的复合材料叶片的制造方法为基础,进行如下变更即可:在金属层形成步骤s12中,省略形成软质金属层16c的处理。

另外,在取代复合材料叶片20c而希望得到复合材料叶片20a的情况下,只要以上述实施方式所涉及的复合材料叶片的制造方法为基础,进行如下变更即可:在金属层形成步骤s12中,取代形成金属层10c的处理而进行形成包括超硬质金属层11a的金属层10a的处理。

实施方式所涉及的复合材料叶片的制造方法具有以上那样的结构,因此,将具有高耐腐蚀性和疲劳强度、轻量且具有追随着复合材料叶片主体21a、21b、21c的前缘区域23a、23b、23c的形状的金属层10a、10b、10c,经由粘接剂层13a、13b、13c,粘接于复合材料叶片主体21a、21b、21c的前缘区域23a、23b、23c,因此,能够得到适合于对工业用燃气轮机压缩机中使用的复合材料叶片主体21a、21b、21c用作水滴腐蚀的对策的复合材料叶片20a、20b、20c。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1